2.3直线、平面垂直的判定及其性质题型归纳
第二章 2.3.1 直线与平面垂直的判定
§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标 1.了解直线与平面垂直的定义;了解直线与平面所成角的概念.2.掌握直线与平面垂直的判定定理.3.会用直线与平面垂直的判定定理判定线面垂直.知识点一直线与平面垂直的定义思考空间两条直线垂直一定相交吗?答案不一定相交,空间两条直线垂直分为两种情况:一种是相交垂直,一种是异面垂直. 知识点二直线与平面垂直的判定定理知识点三 直线与平面所成的角1.若直线l ⊥平面α,则l 与平面α内的直线可能相交,可能异面,也可能平行.( × )2.若直线l 与平面α内的无数条直线垂直,则l ⊥α.( × )3.直线与平面所成角为α,则0°<α≤90°.( × )4.如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的所有直线.( √ )题型一 直线与平面垂直的定义及判定定理的理解 例1 下列命题中,正确的序号是________. ①若直线l 与平面α内的一条直线垂直,则l ⊥α; ②若直线l 不垂直于平面α,则α内没有与l 垂直的直线; ③若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; ④过一点和已知平面垂直的直线有且只有一条. 考点 直线与平面垂直的判定 题点 判定直线与平面垂直 答案 ③④解析 当l 与α内的一条直线垂直时,不能保证l 与平面α垂直,所以①不正确;当l 与α不垂直时,l 可能与α内的无数条平行直线垂直,所以②不正确,③正确;过一点有且只有一条直线垂直于已知平面,所以④正确.反思感悟(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.跟踪训练1(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)考点直线与平面垂直的判定题点判定直线与平面垂直答案(1)C(2)①③④解析(1)∵OA⊥OB,OA⊥OC,OB∩OC=O,OB,OC⊂平面OBC,∴OA⊥平面OBC.(2)根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直,而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.题型二直线与平面垂直的判定例2如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.考点直线与平面垂直的判定题点直线与平面垂直的证明证明(1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.反思感悟(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪训练2如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明(1)∵AB为⊙O的直径,∴AM⊥BM.又P A⊥平面ABM,∴P A⊥BM.又∵P A∩AM=A,∴BM⊥平面P AM.又AN⊂平面P AM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.求直线与平面所成的角典例如图,在正方体ABCD-A1B1C1D1中,(1)求A 1B 与平面AA 1D 1D 所成的角; (2)求A 1B 与平面BB 1D 1D 所成的角. 考点 直线与平面所成的角 题点 直线与平面所成的角 解 (1)∵AB ⊥平面AA 1D 1D ,∴∠AA 1B 就是A 1B 与平面AA 1D 1D 所成的角, 在Rt △AA 1B 中,∠BAA 1=90°,AB =AA 1, ∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°. (2)连接A 1C 1交B 1D 1于点O ,连接BO .∵A 1O ⊥B 1D 1,BB 1⊥A 1O ,BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面BB 1D 1D , ∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角. 设正方体的棱长为1,则A 1B =2,A 1O =22. 又∵∠A 1OB =90°,∴sin ∠A 1BO =A 1O A 1B =12,又0°≤∠A 1BO ≤90°,∴∠A 1BO =30°,∴A 1B 与平面BB 1D 1D 所成的角是30°. [素养评析] (1)求直线与平面所成角的步骤 ①寻找过斜线上一点与平面垂直的直线.②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角. ③把该角归结在某个三角形中,通过解三角形,求出该角.(2)从求直线与平面所成角的步骤看,可以归纳为作、证、求三个环节,作、证充分体现了逻辑推理的数学核心素养,而求又突出了数学运算的素养.1.在正方体ABCD -A 1B 1C 1D 1的六个面中,与AA 1垂直的平面的个数是( ) A.1 B.2 C.3 D.6 答案 B2.给出下列三个命题:①一条直线垂直于一个平面内的三条直线,则这条直线和这个平面垂直;②一条直线与一个平面内的任何直线所成的角相等,则这条直线和这个平面垂直;③一条直线在平面内的射影是一点,则这条直线和这个平面垂直.其中正确的个数是()A.0B.1C.2D.3答案 C解析①错,②③对.3.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是()A.平行B.垂直C.相交D.不确定考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 B解析由于直线l和三角形的两边AC,BC同时垂直,而这两边相交于点C,所以直线l和三角形所在的平面垂直,又因三角形的第三边AB在这个平面内,所以l⊥AB.4.如图,在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1CB.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案 B解析∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,A1D,A1B1⊂平面A1DB1,∴AD1⊥平面A1DB1.5.如图,在正方体ABCD-A1B1C1D1中,异面直线BD1与A1D所成的角为________.考点异面直线所成的角题点求异面直线所成的角答案90°解析连接AD1,∵AB⊥A1D,AD1⊥A1D,AB∩AD1=A,AB,AD1⊂平面ABD1,∴A1D⊥平面ABD1,∴A1D⊥BD1.1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).一、选择题1.给出下列条件(其中l为直线,α为平面):①l垂直于α内三条不都平行的直线;②l垂直于α内无数条直线;③l垂直于α内正六边形的三条边.其中能得出l⊥α的所有条件序号是()A.②B.①C.①③D.③答案 C2.在正方体ABCD-A1B1C1D1中,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1DD.异面直线AD与CB1所成的角为45°考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析由正方体的性质得BD∥B1D1,且BD⊄平面CB1D1,所以BD∥平面CB1D1,故A正确;因为BD⊥平面ACC1A1,所以AC1⊥BD,故B正确;异面直线AD与CB1所成的角即为AD 与DA1所成的角,故为45°,所以D正确.3.下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析①④不正确,其他三项均正确.4.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 C解析连接AC.因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.5.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定答案 C解析∵AB⊥α,l⊂α,∴AB⊥l,又∵BC⊥β,l⊂β,∴BC⊥l,∴l⊥平面ABC,∴l⊥AC.6.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH.7.如图所示,在正三棱柱ABC-A1B1C1中,若AB∶BB1=2∶1,则AB1与平面BB1C1C所成角的大小为()A.45°B.60°C.30°D.75°答案 A解析取BC的中点D,连接AD,B1D,∵AD⊥BC且AD⊥BB1,∴AD⊥平面BCC1B1,∴∠AB1D即为AB1与平面BB1C1C所成的角.设AB=2,则AA1=1,AD=62,AB1=3,∴sin∠AB1D=ADAB1=22,∴∠AB1D=45°.故选A.8.如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的有()①BC⊥平面P AB;②AD⊥PC;③AD⊥平面PBC;④PB⊥平面ADC.A.1个B.2个C.3个D.4个考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析∵P A⊥平面ABC,∴P A⊥BC,又BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,故①正确;由BC⊥平面P AB,得BC⊥AD,又P A=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,∴AD⊥PC,故②③正确.故选C.二、填空题9.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.答案a与b相交10.如图所示,三棱锥P-ABC中,P A⊥平面ABC,P A=AB,则直线PB与平面ABC所成角的度数为________.答案45°解析因为P A⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△P AB中,∠BAP=90°,P A=AB,所以∠PBA=45°,即直线PB 与平面ABC所成的角等于45°11.如图,在直三棱柱ABC-A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)考点直线与平面垂直的判定题点判定直线与平面垂直答案∠A1C1B1=90°解析如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)三、解答题12.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形.已知AD=2,P A=2,PD=22,求证:AD⊥平面P AB.考点直线与平面垂直的判定题点直线与平面垂直的证明证明在△P AD中,由P A=2,AD=2,PD=22,可得P A2+AD2=PD2,即AD⊥P A.又AD⊥AB,P A∩AB=A,P A,AB⊂平面P AB,所以AD⊥平面P AB.13.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明取CD的中点G,连接EG,FG.又∵E,F分别为AD,BC的中点,∴FG∥BD,EG∥AC.∵AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,BD⊥CD.又EG∩CD=G,∴BD⊥平面ACD.14.如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC ⊥SBB.AB ∥平面SCDC.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D.AB 与SC 所成的角等于DC 与SA 所成的角考点 直线与平面所成的角题点 直线与平面所成的角答案 D解析 对于选项A ,由题意得SD ⊥AC ,AC ⊥BD ,SD ∩BD =D ,∴AC ⊥平面SBD ,故AC ⊥SB ,故A 正确;对于选项B ,∵AB ∥CD ,AB ⊄平面SCD ,∴AB ∥平面SCD ,故B 正确;对于选项C ,由对称性知SA 与平面SBD 所成的角与SC 与平面SBD 所成的角相等,故C 正确.15.如图,P A ⊥矩形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ∥平面P AD ;(2)若PD 与平面ABCD 所成的角为45°,求证:MN ⊥平面PCD .考点 直线与平面垂直的判定题点 直线与平面垂直的证明证明 (1)取PD 的中点E ,连接NE ,AE ,如图.又∵N 是PC 的中点,∴NE ∥DC 且NE =12DC . 又∵DC ∥AB 且DC =AB ,AM =12AB , ∴AM ∥CD 且AM =12CD ,∴NE ∥AM ,且NE =AM , ∴四边形AMNE 是平行四边形,∴MN ∥AE .∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.(2)∵P A⊥平面ABCD,∴∠PDA即为PD与平面ABCD所成的角,∴∠PDA=45°,∴AP=AD,∴AE⊥PD.又∵MN∥AE,∴MN⊥PD.∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD. 又∵CD⊥AD,P A∩AD=A,P A,AD⊂平面P AD,∴CD⊥平面P AD.∵AE⊂平面P AD,∴CD⊥AE,∴CD⊥MN.又CD∩PD=D,CD,PD⊂平面PCD,∴MN⊥平面PCD.。
高中 直线、平面垂直的判定与性质 知识点+例题+练习
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
2.3.1直线与平面垂直的判定(经典)
如图,点Q是_点_P_在_平_面_内_的_射_影_ _线_段_PQ_是点P到平面 的垂线段
(2)斜线
一条直线和一个平面相交,但不和
这个平面垂直,这条直线叫做这个平面
的斜线.
P
斜线和平面的交点
叫做斜足。
从平面外一点向平 面引斜线,这点与斜
R
足间的线段叫做这点
到这个平面的斜线段
思考:平面外一点到一个平面的垂线段有 几条?斜线段有几条?
A
B
O
D
α
C
这条直线垂直于梯形所在的平面。(√ )
(4)若一条直线与一个平面不垂直,则这个平面内
没有与这条直线垂直的直线。(× )
定理应用
四:典型例题
例1 如图,已知 a//b,a,求证 b.
证明:在平面 内作两条相交
直线m,n.
a
b
m n
巩固练习
例2 如图,在三棱锥V—ABC中,VA=VC, AB=BC,求证:VB⊥AC。
如图,长方体ABCD—A1B1C1D1中,棱
AA1,BB1,CC1,DD1 所在直线与底面ABCD的 位置关系如何?它们彼此之间具有什么
位置关系? C1
D1
B1
A1
C
D
B
A
一、线面垂直的性质定理
垂直于同一个平面的两条直线平行
已知:a⊥α, b⊥α, 求证:a // b
证明:
假设 a与b不平行.
记直线b和α的交点为o,
A
A
B
D
CB
C D
过 ABC 的顶点A翻折纸片,得到折痕AD,将翻
折后的纸片竖起放置在桌面上(BD,DC于桌面接
触).
(1)折痕AD与桌面垂直吗?
2.3直线_平面垂直的判定及其性质
【典型例题】 例.如图9-10, 在正三棱柱ABC-A1B1C1中,A1A=AB, D是CC1的中 点,F是A1B的中点.求证: (1) DF平面ABC; (2) AFBD
直线和平面所成的角
1.射影
p O
自一点向平面引垂线,垂足叫做 这点在这个平面上的射影;
这个点与垂足间的线段叫做这点 到这个平面的垂线段。
2、斜线
一条直线和一个平面 A 相交,但不和这个平面垂 直,这条直线叫做这个平 面的斜线,斜线和平面的 B C 交点叫做斜足。 斜线上任意一点在 斜线上一点与斜足间 平面上的射影,一定在 的线段叫做这点到这个平 斜线的射影上。 面的斜线段。 过斜线上斜足以外的一点向平面引垂线,过垂 足和斜足的直线叫做斜线在这个平面上的射影;
思想: 直线与平面垂直
直线与直线垂直
典型例题
例2 如图,已知 a // b, a ,求证 b .
证明:在平面 内作 两条相交直线m,n. 根据直线与平面垂直的定义知 因为直线 a ,
a m, a n.
a
b
m
n
又因为 b // a 所以 b m, b n. 又 m , n , m, n 是两条相交直线, 所以 b .
例 如图,已知A、B是120的二面角 —l—棱l上的两点,线段AC,BD分别 在面,内,且AC⊥l,BD⊥l ,AC=2, BD=1,AB=3,求线段CD的长。 ∠OAC =120
2 2
B C
l
D
A O
AO=BD=1, AC=2
2
CO AC AO 2 AO AC COS120 7
2.3.1直线与平面垂直的判定
2.3直线、平面垂直的判定及其性质(新课知识讲解)
从一条直线出发的两个半平面所组 成的图形叫做二面角
思考:下列两个二面角在摆放上有什 么不同?
β l l
α
α
β
思考:一个二面角是由一条直线和两 个半平面组成,其中直线l叫做二面 角的棱,两个半平面α 、β 都叫做 二面角的面,二面角通常记作“二 面角α -l-β ”.那么两个相交平面共 组成几个二面角?
β
面
棱
l
α
二面角的 画法与记法 2、二面角的记法: 面1-棱-面2 (1)、以直线l 为棱,以 a , 为半平面的二面角记为:
a l
a, (2)、以直线AB 为棱,以 为半平面的二面角记为:
a AB
a
l
A
B
a
二面角的 平面角的定义、范围及作法 1、二面角的平面角: 以二面角的棱上任意一点为端点,在两个面上分别引 垂直于棱的两条射线,这两条射线所成的角叫做二面角的 平面角。 ? AOB AOB== a 注:(1)二面角的平面角与点的位置 等角定理:如果一个角的两边和另 无关,只与二面角的张角大小有关。 A 一个角的两边分别平行,并且方向相 O (2)二面角是用它的平面角来度 同,那么这两个角相等。) B l 量的,一个二面角的平面角多大,就 说这个二面角是多少度的二面角。 B O (3)平面角是直角的二面角叫做 A 直二面角。 (4)二面角的取值范围一般规定 为(0,π)。 观看动画演示
4.总结反思—提高认识
(1)通过本节课的学习,你学会了
哪些判断直线与平面垂直的方法?
(2)在证明直线与平面垂直时应注
意哪些问题?
(3)本节课你还有哪些问题?
直线与平面垂直的判定方法 1. 定义:如果一条直线垂于一个平面内的任何一条 直线,则此直线垂直于这个平面. 2.判定定理:如果一条直线垂直于一个平面内的两条 相交直线,那么此直线垂直于这个平面。 3. 如果两条平行直线中的一条垂直于一个平面,那 么另一条也垂直于同一个平面。
2.3直线平面垂直的判定及其性质-线面垂直和面面垂直的性质定理3
一条直线与平面 垂直,所以直线 a应与直线 b重合 a
a P a p a a c P
C
c
例1;已知平面 、, ,直线a满足a , a ,试判断直线 a与的位置关系 .
解;在 内作垂直于 与交线的直线 b 因为 ,所以 b,因为 a , 所以 a // b ,又因为 a ,所以 a // , 即直线 a与平面 平行
C A D E B F
1 2 2 2 6 4 8 268 68 2 CD 2 17
本讲到此结束,请同学们课 后再做好复习. 谢谢!
再见!
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
王新敞
奎屯
新疆
复习内容 直线和平面垂直的判定定理: 如果一条直线和一个平面内的两条相交直线都垂直, 那么这条直线垂直于这个平面。(线不在多重在相交)
l m, ln . 已知: m , mn B , n ,
求证: l .
l P g B m
l′
α
n
1.直线与平面垂直的性质定理
如果两条直线同垂直于一个平面,那么这两条 直线平行。 已知: a , b 求证: a // b b b a 证明:
α A β O B A B
讲授新课
2.两个平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这 两个平面互相垂直。 条件: A B , A B ( 如图 )
结论:
a D A
B C
E
讲授新课
3.两个平面垂直的性质定理: 如果两个平面垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。
§2.3.5 直线、平面垂直的判定及其性质(小结)
§2.3.5 直线、平面垂直的判定及其性质(小结)
线线垂直
面面垂直 面面平行
二、典型例题
例1 已知四边形P ABC 为空间四边形,∠PCA =90°,△ABC 是边长为32的正三角形,PC =2,D 、E 分别是P A 、AC 的中点,BD =10.试判断直线AC 与平面BDE 的位置关系,并且求出二面角P-AC-B 的大小.
例2 如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . ⑴求证:PC ⊥AB ;
⑵求二面角B-AP-C 的正切值;
⑶求点C 到平面APB 的距离.
A
B C D E
F 例 3. 如图,在ABC ∆中,90B =°,AC =7.5,,D E 两点分别在,AB AC 上,使AD :DB =AE :EC =2,DE 3=,现将ABC ∆沿DE 折成直二角角,求: ⑴异面直线AB 与CE 所成角的大小; ⑵二面角A EC B --的正切值
.
例4 如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,∠BCF=∠CEF=︒90,AD=3,EF=2.
⑴求证:AE ∥平面DCF ;
⑵当AB 的长为何值时,二面角A EF C --的大小为︒60?
例5设A 在平面B C D 内的射影是直角三角形B C D 的斜边BD 的中点O
,
1,AC BC CD ==
(1)AC 与平面BCD 所成角的大小; (2)二面角A BC D --的大小;
(3)异面直线AB 和CD 所成角的大小。
2.3直线、平面垂直的判定及其性质
D′
C′ B′
A′
D A B
C
例3 在三棱锥P-ABC中,PA⊥平面ABC, AB⊥BC,PA=AB,D为PB的中点,求证:AD⊥PC.
P D A B
C
探究 如图,直四棱柱 A′B′C ′D′ − ABCD (侧棱与底面垂 直的棱柱称为直棱柱)中,底面四边形 ABCD 满足 什么条件时,A′C ⊥ B′D′ ?
平面 α的垂线 垂足lP来自直线 l 的垂面α
平面内任意一 条直线
思考4 思考4 如果一条直线垂直于一个平面内的无数条直线, 那么这条直线是否与这个平面垂直?
l α
探究
如图,准备一块三角形的纸片,做一个试验:
A A
D
C
B
D
C
α
B
过∆ABC的顶点A翻折纸片,得到折痕AD,将翻折后 的纸片竖起放置在桌面上(BD,DC于桌面接触). (1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在平面α垂直.
例1
在正方体ABCD-A1B1C1D1中.
(1)求直线A1B和平面ABCD所成的角; (2)求直线A1B和平面A1B1CD所成的角. D1 A1 B1 O D A B C C1
例2 如图,AB为平面α的一条斜线,B为斜足, AO⊥平面α,垂足为O,直线BC在平面α内,已知 ∠ABC=60°,∠OBC=45°,求斜线AB和平面α所 成的角. A
A
A
D
C
B
D
C
α
B
边上的高时, 当且仅当折痕AD 是BC 边上的高时,AD 所在 直线与桌面所在平面α垂直 垂直. 直线与桌面所在平面 垂直.
思考5 思考 (1)有人说,折痕AD所在直线与桌面所在平面α 上的一条直线垂直,就可以判断AD 垂直平面α ,你 同意他的说法吗? (2)如图,由折痕 AD ⊥ BC ,翻折之后垂直关系 不变, AD ⊥ CD , AD ⊥ BD .由此你能得到什么结 论?
直线、平面垂直的判定与性质
题组三 易错排查 4.若 l,m 为两条不同的直线,α 为平面,且 l⊥α,则“m∥α”是“m⊥l”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:由 l⊥α 且 m∥α 能推出 m⊥l,充分性成立; 若 l⊥α 且 m⊥l,则 m∥α 或者 m⊂α,必要性不成立, 因此“m∥α”是“m⊥l”的充分不必要条件,故选 A.
解析:(1)如图 1,连接 OA,OB,OC,OP, 在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PC=PB, 所以 OA=OB=OC,即 O 为△ABC 的外心.
(2)如图 2,延长 AO,BO,CO 分别交 BC,AC,AB 于点 H,D,G. ∵PC⊥PA,PB⊥PC,PA∩PB=P,PA,PB⊂平面 PAB, ∴PC⊥平面 PAB,又 AB⊂平面 PAB,∴PC⊥AB, ∵AB⊥PO,PO∩PC=P,PO,PC⊂平面 PGC, ∴AB⊥平面 PGC,又 CG⊂平面 PGC, ∴AB⊥CG,即 CG 为△ABC 边 AB 上的高. 同理可证 BD,AH 分别为△ABC 边 AC,BC 上的高, 即 O 为△ABC 的垂心. 答案:(1)外 (2)垂
题组二 教材改编 2.下列命题中错误的是( ) A.如果平面 α⊥平面 β,那么平面 α 内一定存在直线平行于平面 β B.如果平面 α 不垂直于平面 β,那么平面 α 内一定不存在直线垂直于平面 β C.如果平面 α⊥平面 γ,平面 β⊥平面 γ,α∩β=l,那么 l⊥平面 γ D.如果平面 α⊥平面 β,那么平面 α 内所有直线都垂直于平面 β
跟踪训练 1 (2020·贵阳模拟)如图,在三棱锥 ABCD 中,AB⊥AD,BC⊥BD,平 面 ABD⊥平面 BCD,点 E,F(E 与 A,D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.
2.3直线、平面垂直的判定及其性质
互动课堂疏导引导一、直线与平面垂直的判定1.直线与平面垂直的定义如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直.疑难疏引 (1)定义中的“任意一条直线”这一词组,它与“所有直线”是同义语,但与无数条直线不同,定义是说这条直线和平面内所有直线垂直.但不能说一条直线垂直于一个平面内的无数条直线,它就和这个平面垂直.(2)和平面垂直的直线是直线和平面相交的一种特殊形式.(3)虽然这样的定义给线面垂直的判定带来困难,但在直线和平面垂直时,却可以得到直线和平面内的任何一条直线都垂直,给判定两条直线垂直带来方便,如若a ⊥α,b ⊂α,则a ⊥b ,简述之,即“线面垂直,则线线垂直”,这是我们判定两条直线垂直时,经常使用的一种重要方法.画直线和水平平面垂直时,要把直线画成和表示平面的平行四边形的横边垂直.如果直线l 和平面α垂直,则记作l ⊥α.(4)在平面几何中,我们有命题:经过一点,有且只有一条直线与已知直线垂直,在本节,也有类似的命题.命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面.用符号表示为ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l n l m l B n m n m ,,.疑难疏引 关于定理的理解必须注意以下几点:(1)判定定理的条件中,“平面内的两条相交直线”是关键性词语,一定要抓牢.(2)命题1:如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面. 命题2:如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面.以上两个命题都是错误的,因为对于这两个命题,都没有体现出两直线相交这一特性,无数条直线可以是一簇平行线,并不一定具备有两条相交直线和已知直线垂直,因此,也就不一定得出这一直线垂直于这个平面这一结论.(3)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.(4)直线与平面垂直的判定与证明方法:①用线面垂直定义:若一直线垂直于平面内任一直线,这条直线垂直于该平面.②用线面垂直判定定理:若一直线与平面内两相交直线都垂直,这条直线与平面垂直. ③用线面垂直性质:两平行线之一垂直平面,则另一条也必垂直这个平面.④用面面垂直性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一平面. ⑤用面面平行性质:一直线垂直于两平行平面之一,则必垂直于另一平面.⑥用面面垂直性质:两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面. 这六条线面垂直的判定方法其实质仍是转化思想,它们是线线、线面、面面垂直的转化. 案例1 如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.(1)试举出一直线与一平面相互垂直的例子(不少于4例);(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.【探究】在正方体中,所有的棱都和与它相交的面垂直,利用中点也可产生与棱垂直的面.(1)例如AB⊥平面BCKJ〔如图(1)〕;例如EF⊥平面MPON〔如图(1)〕;例如NF⊥平面ADKJ〔如图(2)〕;例如IC⊥平面AJL〔如图(3)〕.(2)正方体的棱有12条,而每一条棱都与3个平面垂直,如图(1)中棱IJ与平面ID、平面NP 与平面JC都垂直,所以与正方体的棱相关的“垂直关系组”的个数是12×3=36.【规律总结】挖掘正方体本身潜藏的特征,将每一条棱的情况分析清楚,做到不重不漏.案例2 如图,已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.【探究】根据判定定理,要证线面垂直,需证直线和平面内的两条相交直线垂直,根据H 是△ABC的垂心,可知BC⊥AH,又PA、PB、PC两两垂直,得PA⊥面PBC,于是PA⊥BC,由此可知BC垂直于平面PAH内的相交直线PA和AH,结论得证.证明:∵H是△ABC的垂心,∴AH⊥BC.①∵PA⊥PB,PA⊥PC,∴PA⊥平面PBC.又∵BC 平面PBC,PA⊥BC,②由①②知,BC⊥PH,同理,AB⊥PH,∴PH⊥平面ABC.【规律总结】根据所求证的结论,寻求所需的已知条件,看题目是否已经直接给出,或者从题目所给条件,经过推理能够得出,这是分析问题的重要方法,称为执果索因;也可从条件出发,将这一条件可能得出的结论一一列出,从中选出我们证题所需要的结论,这种分析问题的方法称为由因导果,发散性较强.二、平面与平面垂直的判定1.二面角从一条直线出发的两个半平面所组成的图形,叫二面角.以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.疑难疏引 (1)二面角的平面角,则是用来刻画二面角大小的一个概念.它和两条异面直线所成的角以与直线和平面所成的角一样,都化归为用平面内两条相交直线所成的角来表示.但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内.而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a 上的位置无关.(2)二面角的计算方法①用定义作二面角的平面角——在棱上取一点,分别在两个面内作棱的垂线,这两条射线组成二面角的平面角.利用定义作二面角的平面角,关键在于找棱与棱上的特殊点.学习时要特别注意平移和补形方法的灵活运用.②用垂面法作二面角的平面角——作垂直于二面角的棱或二面角的两个半平面的垂面,则该垂面与二面角的两个半平面交线所成的角就是二面角的平面角.③面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则cosθ=原多边形面积射影多边形面积S S .案例3 已知四边形PABC 为空间四边形,∠PCA=90°,△ABC 是边长为32的正三角形,PC=2,D 、E 分别是PA 、AC 的中点,BD=10.试判断直线AC 与平面BDE 的位置关系,并且求出二面角P-AC-B 的大小.解:∵D 、E 分别是PA 、AC 的中点,∴DE ∥PC 且DE=21PC=1. ∵∠PCA=90°,∴AC ⊥DE.∵△ABC 是边长为32的正三角形,并且E 是AC 的中点,∴AC ⊥BE ,并且BE=3.∵DE∩BE=E ,∴直线AC 与平面DEB 垂直.∴∠DEB 为二面角P-AC-B 的平面角.在△BDE 中,由DE=1,BE=3,BD=10得DE 2+BE 2=BD 2,∴∠DEB=90°.综上所述,直线AC 与平面BDE 垂直,二面角P-AC-B 的大小为90°.【规律总结】 与二面角的棱垂直的平面和二面角的两个面相交的两条射线构成的角就是这个二面角的平面角.利用作与棱垂直的平面得到二面角的方法称为“垂面法”.案例4 已知△ABC 是正三角形,PA ⊥平面ABC ,且PA=AB=a ,求二面角A-PC-B 的正切值.【探究】 要求二面角的正切值,首先要在图形中构造出二面角的平面角,利用其平面角度量二面角的大小,过棱上一点,分别在两个面内作或证棱的垂线,即可产生二面角的平面角,充分利用三角函数定义求得正切值.解:取AC 的中点M ,连结BM ,作MN ⊥PC 于N ,连结BN.∵PA ⊥平面ABC ,∴平面PAC ⊥平面ABC.易证BM ⊥AC ,AC=平面PAC∩平面ABC.∴BM ⊥平面PAC(面面垂直的性质).∵MN ⊥PC ,∴NB ⊥PC.∴∠MNB 是二面角A-PC-B 的平面角.易知MN=a 42,BM=a 23. ∴tan ∠MNB=64223==a a MN BM . ∴二面角的正切值为6【规律总结】 度量二面角的大小是通过其平面角进行,所以在图形中构造出二面角的平面角,就能将空间问题转化为平面问题,利用直角三角形中锐角三角函数定义,有些问题也可用斜三角形中的直角三角形加以处理.2.两个平面互相垂直的判定常用的判定方法有:(1)定义法,即说明这两个平面所成的二面角是直二面角;(2)判定定理,即一个平面经过另一个平面的一条垂线,则这两个平面互相垂直;(3)两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.疑难疏引 两平面垂直的判定定理的特征:线面垂直面面垂直.它说明了线面垂直与面面垂直的密切关系,用符号表示为:若l ⊥α,l β,则α⊥β.利用判定定理证明两个平面垂直,关键是在其中的一个平面内寻找另一平面的垂线.案例5 如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°.求证:平面ABC ⊥平面BSC.【探究】 本题可以用两种方法来证明,一是作平面的垂线而后证明它在另一个平面内(证法一);二是在一个平面内找一条线段,证明它与另一个平面垂直(证法二).证法一:作AD ⊥平面BSC ,D 为垂足.∵∠ASB=∠ASC=60°,SA=SB=SC ,则AS=AB=AC ,∴D 为△BSC 的外心.又∠BSC=90°,∴D 为BC 的中点,即AD 在平面ABC 内.∴平面ABC ⊥平面BSC.证法二:取BC 的中点D ,连结AD 、SD ,易证AD ⊥BC.又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD=SD.∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD ,∴AD ⊥平面BSC.又AD ⊂平面ABC ,∴平面ABC ⊥平面BSC.【规律总结】 本题是证明面面垂直的典型例题,关键是将证明“面面垂直”的问题转化为证明“线面垂直”的问题.三、直线与平面垂直的性质直线与平面垂直的性质有:(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线;(2)性质定理:垂直于同一平面的两条直线平行;(3)两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;(4)垂直于同一直线的两个平面平行.对于性质定理,它提供了一种证明线线平行的方法,揭示了“平行”与“垂直”的内在联系. 案例6 如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱AB 、BC 的中点,若点M 为棱B 1B 上的一点,当MBM B 1的值为多少时,能使D 1M ⊥平面EFB 1?并给出证明. 【探究】 本题属开放型问题,一般先猜后证.由于E 、F 为中点,所以猜想M 也是中点. 解:当11=MBM B 时,能使D 1M ⊥平面EFB 1,证明如下: 当M 为B 1B 中点时,在平面AA 1B 1B 内有△A 1MB 1≌△B 1EB ,∴∠B 1A 1M=∠BB 1E.而∠B 1MA 1+∠B 1A 1M=90°,∴∠B 1MA 1+∠BB 1E=90°.∴A 1M ⊥B 1E.∵D 1A 1⊥平面AA 1B 1B ,B 1E ⊂平面AA 1B 1B,∴D 1A 1⊥B 1E.由于A 1M∩D 1A 1=A 1,∴B 1E ⊥平面A 1MD 1.∵D 1M ⊂平面A 1MD 1,∴B 1E ⊥D 1M.同理,连结C 1M ,可证明B 1F ⊥D 1M.∵B 1E∩B 1F=B 1,∴D 1M ⊥平面EFB 1.【规律总结】 (1)猜想要和题目中的点的性质相联系.(2)平面内证两线垂直的方法可通过三角形中某两个角的和为直角来判断.四、两个平面垂直的性质两个平面垂直的性质有:(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直;(2)两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内. 疑难疏引 性质定理(1)成立要有两个条件:一是线在面内,二是线垂直于交线,才能线面垂直,这一定理也可简述为“面面垂直,则线面垂直”,它反映了面面垂直与线面垂直的密切关系;对于第二条性质,只要在其中一个平面内通过一点作另一平面垂线,那么这条垂线必在这个平面内,对点的位置,它既可以在交线上,也可以不在交线上.(2)运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.案例7 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l.求证:l ⊥γ.【探究一】在γ内取一点P ,作PA 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则PA ⊥α,PB ⊥β.∵l=α∩β,∴l ⊥PA,l ⊥PB.∵α与β相交,∴PA 与PB 相交.又PA ⊂γ,PB ⊂γ,∴l ⊥γ.【探究二】在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n.又n ⊂β,∴m ∥β.∴m ∥l,∴l ⊥γ.【探究三】在l 上取一点P ,过点P 作γ的垂线l′,l l l l l P P P l l P '=⋂⇒⎭⎬⎫⎩⎨⎧⊂'⊂'⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=''∈⊥⊥⎩⎨⎧∈∈⇒⎭⎬⎫=⋂∈βαβαγγβγαβαβα. 但α∩β=l,∴l 与l′重合.∴l ⊥γ.【规律总结】 探究一、探究二都是利用“两平面垂直时,在一个平面内垂直于两平面的交线的直线垂直于另一个平面”这一性质,添加了在一个平面内垂直于交线的直线这样的辅助线.这是两种证法的关键.探究三是利用“如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内”这一性质,添加了l′这条辅助线,这是关键.通过此例,应仔细体会两平面垂直时,添加辅助线的方法.五、几种转化关系1.线线垂直、线面垂直、面面垂直的相互转化.线线垂直、线面垂直、面面垂直是立体几何中的核心内容之一.首先由线面垂直的定义可知,若线面垂直则线和面内任何直线都垂直;根据线面垂直判定定理,若线垂直于面内的两条相交直线,则线面垂直,然后根据面面垂直的判定定理,若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,我们可以简证为,线面垂直则面面垂直;同样根据面面垂直的性质定理,我们还可证得,若面面垂直则线面垂直.由上可得,利用线面垂直,可以证明线线垂直,也可以实现面面垂直的证明.因此,我们可以说线面垂直关系是线线垂直、面面垂直关系中的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化,即直线与直线垂直直线与平面垂直平面与平面垂直.2.空间直线、平面的平行与垂直的相互转化(1)线线、线面、面面平行与垂直位置关系的判定与证明是考查空间想象能力、逻辑推理能力的重点,这是我们作进一步的比较、串联、综合、力求达到巩固、提高的目的.(2)理解线线、线面、面面关系的转化.①不同层次的平行关系的转化.②不同层次的垂直关系的转化③平行与垂直的转化案例8 如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.【探究】(1)要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M,N分别为AB,PC的中点,可取PD的中点E,从而只须证明MN∥AE即可,证明如下:证明:取PD的中点E,连结AE 、EN.则EN 21CD 21AB AM , 故AMNE 为平行四边形,∴MN ∥AE.∵AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD.(2)要证MN ⊥CD ,可证MN ⊥AB.由问(1)知,需证AE ⊥AB.∵PA ⊥平面ABCD.∴PA ⊥AB ,又AD ⊥AB ,∴AB ⊥平面PAD ,∴AB ⊥AE ,即AB ⊥MN.又CD ∥AB ,∴MN ⊥CD.(3)由问(2)知,MN ⊥CD ,即AE ⊥CD ,再证AE ⊥PD 即可.∵PA ⊥平面ABCD ,∴PA ⊥AD.又∠PDA=45°,E 为PD 的中点.∴AE ⊥PD,即MN ⊥PD.又MN ⊥CD.∴MN ⊥平面PCD.【规律总结】 本题是涉与线面垂直、线面平行、线线垂直诸知识点的一道综合题.题(1)的关键是选取PD 的中点E ,所作的辅助线使问题处理方向明朗化.线线垂直←线面垂直←线线垂直是转化规律.活学巧用1.判断题:正确的在括号内打“√”,不正确的打“×”.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解析:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”.(2)该命题的关键是这无数条直线具有怎样的位置关系.若为平行,则该命题应打“×”;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内这无数条直线的位置关系,则该命题应打“×”.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必须垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”.(5)三条共点直线两两垂直,设为a,b,c 有a,b,c 共点于O.∵a ⊥b,a ⊥c,b∩c=o,且b 、c 确定一平面,设为α,则a ⊥α.同理可知b 垂直于由a 、c 确定的平面,c 垂直于a 、b 确定的平面,∴该命题应打“√”.答案:(1)× (2)× (3)√ (4)√ (5)√2.直线l ⊥平面α,直线m ⊂α,则有()A.l 和m 异面B.l 和m 相交C.l ∥mD.l 不平行于m解析:直线l ⊥平面α,则l 和平面α有且只有一个交点即垂足P ,平面α内任一直线m 经过P 时,l 和m 相交,直线m 不经过P 时,由异面直线的判定定理知,l 和m 异面,故l 和m 不会平行.答案:D3.如图(1),在正方形SG 1G 2G 3中,E 、F 分别是边G 1G 2,G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 与EF 把这个正方形折成一个几何体如图(2),使G 1、G 2、G 3三点重合于点G ,这样,下面结论成立的是( )A.SG ⊥平面EFGB.SD ⊥平面EFGC.GF ⊥平面SEFD.GD ⊥平面SEF解析:(1)(直接法)在图(1)中,SG 1⊥G 1E ,SG 3⊥G 3F ,右图(2)中,SG ⊥GE ,SG ⊥GF ,∴SG ⊥平面EFG.(2)(排除法)GF 即G 3F 不垂直于SF ,∴可以否定C ;在△GSD 中,GS=a(正方形边长),GD=a 42,SD=a 423, ∴SG 2≠SD 2+GD 2,∠SDG≠90°,从而否定B 和D.答案:A4.已知m 、n 为异面直线,m ∥平面α,n ∥α,直线l ⊥m,l ⊥n,则( )A.l ⊥αB.l 和α不垂直C.l 可能与α垂直D.以上都不对解析:在α内取一点P ,则m 和P 确定一个平面β,设β∩α=m′.∵m ∥α,∴m ∥m′.∵l ⊥m,∴l ⊥m′.n 和P 确定一个平面γ,设γ∩α=n′,∵n ∥α,∴n ∥n′. ∵l ⊥n,∴l ⊥n′.∵m 和n 是异面直线,∴m′和n′相交于P.∴l ⊥α.答案:A5.如图,BC 是Rt △ABC 的斜边,AP ⊥平面ABC ,连结PB 、PC ,作PD ⊥BC 于点D ,连结AD ,则图中共有直角三角形__________个.解析:Rt △PAB 、Rt △PAC 、Rt △ABC 、Rt △ADP.可证BC ⊥平面APD ,由BC ⊥AD ,BC ⊥PD可证Rt △PBD 、Rt △PDC 、Rt △ADB 、Rt △ADC 共8个.答案:86.如图,α∩β=CD,EA ⊥α,垂足A ,EB ⊥β,垂足B.求证:CD ⊥AB.解析:∵EA ⊥α,CD ⊆α,根据直线和平面垂直的定义,则有CD ⊥EA.同样∵EB ⊥β,CD ⊆β,则有EB ⊥CD.又EA∩EB=E ,根据直线和平面垂直判定定理,则有CD ⊥平面AEB.又∵AB ⊆平面AEB , ∴CD ⊥AB.7.在正方体ABCD-A 1B 1C 1D 1中,P 为DD 1的中点,O 为ABCD 的中心,求证:B 1O ⊥平面PAC.解析:使B 1O 垂直于平面PAC 中的两条相交直线.证明:连结AB 1、CB 1,设AB=1.因为AB 1=CB 1=2,AO=CO ,所以B 1O ⊥AC.连结PB 1.因为OB 12=OB 2+BB 12=23,PB 12=PD 12+B 1D 12=49,OP 2=PD 2+DO 2=43, 所以OB 12+OP 2=PB 12.所以B 1O ⊥PO.所以B 1O ⊥平面PAC.8.(1)二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角(2)下列说法错误的是( )A.过二面角的棱上某一特殊点,分别在两个半平面内引垂直于棱的射线,则这两条射线所成的角即为二面角的平面角B.和二面角的棱垂直的平面与二面角的两个半平面的交线所成的角即为二面角的平面角C.在二面角的一个面内引棱的垂线,该垂线与其在另一面内的射影所成的角是二面角的平面角D.二面角的平面角可以是一个锐角、一个直角或一个钝角解析:(1)根据二面角的定义讨论,故选C.(2)一一判断,可以发现应该选C.因为按C 中所给的方法,当二面角是一个锐角时,得到的确实是二面角的平面角;但当二面角是一个直二面角时,得到的是一个零度角;当二面角是一个钝角时,得到的是二面角平面角的一个补角.即C 中方法不具有普遍适用性.答案:(1)C (2)C9.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的大小关系是( )A.相等B.互补C.相等或互补D.大小关系不确定解析:如下图答案:C10.已知D 、E 分别是正三棱柱ABC —A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面A 1B 1C 1所成的二面角的大小.解析:如图,在平面AA 1B 1B 内延长DE 和A 1B 1交于点F ,则F 是面DEC 1与面A 1B 1C 1的公共点,C 1F 为这两个平面的交线,∴所求二面角就是D C 1F A 1的平面角.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1C 1=A 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥A 1B 1C 1,FC 1⊂面A 1B 1C 1,∴FC 1⊥面AA 1C 1C ,而DC 1⊂面AA 1C 1C ,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角,由已知A 1D=B 1C 1=A 1C 1,∴∠DC 1A 1=4π. 故所求二面角的大小为4π. 11.河堤斜面与水平面所成的二面角为60°,堤面上有一条直道CD ,它与堤脚的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走1033 m 时人升高了_________米( ) B.5.5 C解析:取CD 上一点E ,设CE=103 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.作EF ⊥AB 于F ,则EG=EFsin60°=CE·sin30°sin60° =5.72152321310==⨯⨯ (m).答案:D12.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直解析:在平面PAB中,∵AD⊥AB,AD⊥PA且AB,PA⊂面PAB∴AD⊥面PAB∴面PAD⊥面PAB∵BC∥AD∴BC⊥面PAB∴面PBC⊥面PAB答案:A13.已知m、l是直线,a、β是平面,给出下列命题:(1)若l垂直于α内两条相交直线,则l⊥α;(2)若l平行于α,则l平行于α内的所有直线;(3)若m⊂α,l⊂β,且l⊥m,则α⊥β;(4)若l⊂β,且l⊥α,则α⊥β;(5)若m⊂α,l⊂β,且α∥β,则l∥m.其中正确的命题的序号是( )解析:本题考查线与线、线与面、面与面的位置关系.命题(1)是线面垂直的判定定理,所以正确;命题(2),l∥α,但l不能平行于α内所有直线;命题(3),l⊥m,不能保证l⊥α,即分别包含l与m的平面α、β可能平行也可能相交而不垂直;命题(4),为面面垂直的判定定理,所以正确;命题(5),α∥β,但分别在α、β内的直线l与m可能平行,也可能异面.答案:(1)、(4)14.在空间,下列哪些命题是正确的( )①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于同一个平面的两条直线互相平行A.仅②不正确B.仅①④正确C.仅①正确D.四个命题都正确解析:①该命题就是平行公理,因此该命题是正确的.②如图(1),直线a⊥平面α,b⊆α,c⊆α,且b∩c=A,则a⊥b,a⊥c,即平面α内两条相交直线b,c都垂直于同一条直线a,但b,c的位置关系并不是平行,另外,b,c的位置关系也可以是异面,如果把直线b平移到平面α外,此时,与a的位置关系仍是垂直,但此时b,c的位置关系是异面.③如图(2),在正方体ABCD—A1B1C1D1中,易知A1B1平面ABCD,A1D1∥平面ABCD,但A1B1∩A1D1=A1,因此该命题是错误的,④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.(1) (2)答案:B15.课本在证明直线与平面垂直的性质定理时采用的方法是反证法.请思考在什么情况下我们要使用反证法,它的步骤是什么?答:反证法一般用于从正面入手很难考虑的时候,如题目中有“不可能”、“没有”、“至少”、“至多”等词语时,很难直接应用定理或公式,这时它们的反面往往只有一种情况,只要将这一种情况否定了,命题便得到证明.反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确.16.判断下列命题的真假①两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面;②两个平面垂直,分别在这两个平面内且互相垂直的两直线,一定分别与另一平面垂直;③两平面垂直,分别在这两个平面内的两直线互相垂直.解析:①若该点在两个平面的交线上,则命题是错误的,如图(1),正方体AC1中,平面AC⊥平面AD1,平面AC∩平面AD1=AD,在AD上取点A,连结AB1,则AB1⊥AD,即过棱上一点A的直线AB1与棱垂直,但AB1与平面ABCD不垂直,其错误的原因是AB1没有保证在平面ADD1A1内.可以看出:线在面内这一条件的重要性.②该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图(2),在正方体AC1中,平面AD1⊥平面AC,AD1⊆平面ADD1A1,AB⊆平面ABCD,且AB⊥AD1,即AB与AD1相互垂直,但AD1与平面ABCD不垂直;③如图(2),正方体AC1中,平面ADD1A1⊥平面ABCD,AD1⊆平面ADD1A1,AC⊂平面ABCD,AD1与AC所成的角为60°,即AD1与AC不垂直.答案:①假②假③假17.在下列命题中,假命题是( )A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥βB.若平面α内任一直线平行于平面β,则α∥βC.若平面α⊥平面β,任取直线l⊂α,则必有l⊥βD.若平面α∥平面β,任取直线l⊂α,则必有l∥β解析:A中,直线l⊥β,l⊂α,所以α⊥β,A为真命题;B中,在α内取两相交直线,则此二直线平行于β,则α∥β,B为真命题;D为两平面平行的性质,为真命题;C为假命题,l。
2.3.1用线面垂直的判定定理
B
C C
当且仅当折痕 AD 是 BC 边上的高时,AD所在直 线与桌面所在平面 垂直.
问:直线与平面垂直应具有什么条件?
直线与平面垂直的判定定理
如果直线l和平面 内的两条相交直线 m,n都垂直,那么直线 l垂直平面 l m , 即: n , l mn P m P l m, l n n 线线垂直 线面垂直
B,AQ⊥
l 于Q,求证:BQ⊥ l
.
P
提示:
A
欲证BQ⊥l ⇔l⊥平面BPQ ⇔ l⊥PQ ⇔l⊥平面PAQ
Q
l
作业
1.如图, M是菱形ABCD所在平面外一点,满
足MA=MC,求证: AC 平面 BDM
2.如图,在空间四边形ABCD中, DA⊥面ABC, AC⊥BC, 若AE D ⊥ DB,AF ⊥ DC E 求证:EF⊥DB
例题示范,巩固新知 例1.在下图的长方体中,请列举与平面ABCD 垂直的直线。并说明这些直线有怎样的位置 关系?
D′
C′
A′
D
B′
C
A
B
典型例题
例2 如图,已知
a // b, a ,求证 b .
b
n
证明:在平面 内作 a 两条相交直线m,n. 因为直线 a , 根据直线与平面垂直的定义知
平面 的垂线 垂足
l
直线l 的垂面
P
l
P
α
性质:直线 l 垂直于平面α ,则直线 l 垂直于平面α中的任意一条直线
线线垂直
线面垂直
思考:
1.如果一条直线 l 和一个平面内的无数条直线都垂 直,则直线 l 和平面 α互相垂直( )
第五讲 线面、面面垂直的判定与性质常见题型与方法归纳
2 第五讲 线面、面面垂直的判定与性质常见题型与方法归纳考点一 直线与平面垂直的判定与性质一.直线与平面垂直定义1.(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直;(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;2.直线、平面垂直的判定方法:(1)利用判定定理;(2)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(3)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.(4)利用面面垂直的性质。
二.直线与平面垂直判定题型讲解题型一 概念巩固【例1-1】设,是两条不同的直线,是一个平面,则下列命题正确的是( )(A )若,,则 (B )若,,则(C )若,,则 (D )若,,则题型二 线面垂直的判定【例1-2】如图,P 为△ABC 所在平面外一点,P A ⊥平面ABC ,∠ABC =90°,AE ⊥PB 于E ,AF ⊥PC 于F .求证: (1)BC ⊥平面P AB ;(2)AE ⊥平面PBC ;(3)PC ⊥平面AEF .图1-2 图1-3 图1-3【例1-3】如图,在△ABC 中,∠ABC =90°,D 是AC 的中点,S 是△ABC 所在平面外一点,且SA =SB =SC .(1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC .【例1-4】如图,在棱长均为1的直三棱柱ABC -A 1B 1C 1中,D 是BC 的中点.(1) 求证:AD ⊥平面BCC 1B 1;(2)求直线AC 1与平面BCC 1B 1所成角的正弦值.三 直线与平面垂直的性质 性质:垂直于同一个平面的两条直线互相平行。
题型一 利用线面垂直的性质证明平行问题【总结】当题中垂直条件很多,但又需证两直线平行关系时,考虑线面垂直的性质定理【例1-5】如图,正方体A 1B 1C 1D 1-ABCD 中,EF 与异面直线AC 、A 1D 都垂直相交.求证:EF ∥BD 1.图1-5 练习1【练习1】如图,已知平面α∩平面β=l ,EA ⊥α,垂足为A ,EB ⊥β,B 为垂足,直线a ⊂β,a ⊥AB .求证:a ∥l .题型二 利用线面垂直的性质证明垂直问题 方法: 线面垂直性质判定线线垂直.【例1-6】已知α∩β=AB ,PQ ⊥α于Q ,PO ⊥β于O ,OR ⊥α于R .求证:QR ⊥AB .l m αl m ⊥m α⊂l α⊥l α⊥l m //m α⊥l α//m α⊂l m //l α//m α//l m //2题型三 等体积法在垂直中的应用【例1-7】如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC 的体积为312,求线段CE 的长. 1-7图考点二.直线和平面所成的角一.直线和平面所成的角概念(1)斜线在平面上的射影 (2)直线与平面所成角范围 02πθ≤≤方法:关键是求斜线在平面内的射影,最终转化为找面的垂线二 典型例题题型(一)概念理解【例2-1】(1)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论中,可能成立的个数是( )(A )1个 (B )2个 (C )3个 (D )4个(2)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线条数不可能是( )(A )0条或 (B )0条或无数条(C )1条或2条 (D )0条或1条或无数条(3)若P 为⊿ABC 所在平面外一点,且PA =PB =PC ,求证P 在⊿ABC 所在平面内的射影是⊿ABC 的 心题型(二) 求直线和平面所成的角 方法一:利用定义。
2023高考数学二轮复习专题复习31 直线、平面垂直的判定与性质(解析版)
③若 ,则 ;④若 ,则 .
其中所有真命题的序号是()
,而 与 所成角为 ,所以显然 与 不垂直,故C错误;
显然 与 不垂直,而 平面 ,所以 与平面 不垂直,故D错误.
故选:B.
例5.(2023·全国·高三专题练习(文))如图,正方体 中, 是 的中点,则下列说法正确的是()
A.直线 与直线 垂直,直线 平面
B.直线 与直线 平行,直线 平面
C.直线 与直线 异面,直线 平面
(1)证明线线垂直的方法
①等腰三角形底边上的中线是高;
②勾股定理逆定理;
③菱形对角线互相垂直;
④直径所对的圆周角是直角;
⑤向量的数量积为零;
⑥线面垂直的性质 ;
⑦平行线垂直直线的传递性( ).
(2)证明线面垂直的方法
①线面垂直的定义;
②线面垂直的判定( );
③面面垂直的性质( );
平行线垂直平面的传递性( );
C.若 , ,则
D.若 , ,则
【答案】C
【解析】A:由 , ,则 或 相交,错误;
B:由 , ,则 或 或 相交,错误;
C:由 ,则存在直线 且 ,而 则 ,根据面面垂直的判定易知 ,正确;
D:由 , ,则 或 ,错误.
故选:C
例4.(2022·全国·高三专题练习(理))已知 是正方体 的中心O关于平面 的对称点,则下列说法中正确的是()
专题31直线、平面垂直的判定与性质
【考点预测】
知识点1:直线与平面垂直的定义
如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.
知识点2:判定定理(文字语言、图形语言、符号语言)
文字言
直线与平面垂直的性质平面与平面垂直的性质
如图,在△ABC 中,∠ABC=90° ,D 是 AC 的中点,S 是 △ABC 所在平面外一点,且 SA=SB=SC.
(1)求证:SD⊥平面 ABC; (2)若 AB=BC,求证:BD⊥平面 SAC.
• [解析] (1)因为SA=SC,D是AC的中点,
• • • • • • • 所以SD⊥AC.在Rt△ABC中,AD=BD, 由已知SA=SB,所以△ADS≌△BDS, 所以SD⊥BD,又AC∩BD=D, 所以SD⊥平面ABC. (2)因为AB=BC,D为AC的中点, 所以BD⊥AC,由(1)知SD⊥BD, 又因为SD∩AC=D,所以BD⊥平面SAC.
4.正三棱锥的底面边长为 2,侧面均为直角三角形,则此 三棱锥的体积是________.
[ 答案]
2 3
[ 解析]
如图,由已知得 PA⊥PB,PA⊥PC,PB∩PC=P,
∴PA⊥平面 PBC. 又 PB⊥PC, PB=PC, BC=2, ∴PB=PC= 2. 1 ∴ VP - ABC = VA - PBC = 3 PA· S △ PBC 1 1 2 =3× 2×2× 2× 2= 3 .
• (3)判定定理
文字 语言 图形 语言 符号 语言 作用
垂线 ,则这两 一个平面过另一个平面的________
个平面垂直
l⊂β l⊥α,_______ ⇒α⊥β 垂直 判断两平面________
1.直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能 ( A.平行 C.异面 B.相交 D.垂直
)
• [答案] A • [解析] ∵直线l⊥平面α,∴l与α相交,
• 又∵m⊂α,∴l与m相交或异面,由直线与平 面垂直的定义,可知l⊥m.故l与m不可能平 行.
线面垂直、面面垂直知识点总结、经典例题与解析、高考题练习与答案
直线、平面垂直的判定与性质【考纲说明】1、能够认识和理解空间中线面垂直的有关性质和判定定理。
2、能够运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
【知识梳理】一、直线与平面垂直的判定与性质 1、 直线与平面垂直(1)定义:如果直线l 与平面α的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。
如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。
(2)判定定理:一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直。
结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα⎫⇒⊥⎬⊥⎭(3)性质定理:垂直于同一个平面的两条直线平行。
即,//a b a b αα⊥⊥⇒.由定义知:直线垂直于平面的任意直线。
2、 直线与平面所成的角平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角。
一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面,则此直线与平面所成的角是00的角。
3、 二面角的平面角从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。
其作用是衡量二面角的大小;围:00180θ<<.二、平面与平面垂直的判定与性质1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。
简述为“线面垂直,则面面垂直”,记作l l βαβα⊥⎫⇒⊥⎬⊂⎭.3、性质:两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直,记作l m m m lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭I .【经典例题】【例1】(2012文)设l 是直线,a,β是两个不同的平面( )A .若l ∥a,l ∥β,则a ∥βB .若l ∥a,l ⊥β,则a ⊥βC .若a ⊥β,l ⊥a,则l ⊥βD .若a ⊥β, l ∥a,则l ⊥β 【答案】B【解析】利用排除法可得选项B 是正确的,∵l ∥a,l ⊥β,则a ⊥β.如选项A:l ∥a,l ∥β时, a ⊥β或a ∥β;选项C:若a ⊥β,l ⊥a,l ∥β或l β⊂;选项D:若若a ⊥β, l ⊥a,l ∥β或l ⊥β.【例2】(2012文)下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确. 【例3】(2012)已知直线m 、n 及平面α,其中m ∥n ,那么在平面α到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集.其中正确的是 ( )A .①②③B .①④C .①②④D .②④ 【答案】C【解析】如图1,当直线m 或直线n 在平面α时有可能没有符合题意的点;如图2,直线m 、n 到已知平面α的距离相等且所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m 、n 所在平面与已知平面α平行,则符合题意的点为一条直线,从而选C.【例4】(2012理)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________. 【答案】90ºN MB 1A 1C 1D 1BD C【解析】方法一:连接D1M,易得DN⊥A1D1 ,DN⊥D1M,所以,DN⊥平面A1MD1,又A1M⊂平面A1MD1,所以,DN⊥A1D1,故夹角为90º方法二:以D为原点,分别以DA, DC, DD1为x, y, z轴,建立空间直角坐标系D—xyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A1(2,0,2)故,),(),(2,121,2,01-==MADN所以,cos<|MA||DN|111MADNMADN•=〉〈,= 0,故DN⊥D1M,所以夹角为90º【例5】(2012大纲理)三棱柱111ABC A B C-中,底面边长和侧棱长都相等,1160BAA CAA∠=∠=︒,则异面直线1AB与1BC所成角的余弦值为_____________.【答案】66【解析】设该三棱柱的边长为1,依题意有1111,AB AB AA BC AC AA AB=+=+-u u u r u u u r u u u r u u u u r u u u r u u u r u u u r,则22221111||()222cos603AB AB AA AB AB AA AA=+=+⋅+=+︒=u u u r u u u r u u u r u u u r u u u r u u u r u u u r2222211111||()2222BC AC AA AB AC AA AB AC AA AC AB AA AB=+-=+++⋅-⋅-⋅= u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r而1111()()AB BC AB AA AC AA AB⋅=+⋅+-u u u r u u u u r u u u r u u u r u u u r u u u r u u u r1111111111112222AB AC AB AA AB AB AA AC AA AA AA AB=⋅+⋅-⋅+⋅+⋅-⋅=+-++-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r11111116cos,6||||23AB BCAB BCAB BC⋅∴<>===⋅u u u r u u u u ru u u r u u u u ru u u r u u u u r【例6】(2011·)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.【答案】 2【解析】∵EF∥面AB1C,∴EF∥AC.又E是AD的中点,∴F是DC的中点.∴EF =12AC = 2.【例7】(2012年文)如图,几何体EABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(1)求证:BE DE =;(2)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .【解析】(1)设BD 中点为O ,连接OC ,OE ,则由BC CD =知CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(2)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°, 所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,又DM ⊂平面MND ,故DM ∥平面BEC .另证:延长BC AD ,相交于点F ,连接EF.因为CB=CD,090=∠ABC . 因为△ABD 为正三角形,所以090,60=∠=∠ABC BAD ,则030=∠AFB , 所以AF AB 21=,又AD AB =, 所以D 是线段AF 的中点,连接DM,又由点M 是线段AE 的中点知EF DM //,而⊄DM 平面BEC , ⊂EF 平面BEC ,故DM ∥平面BEC . 【例8】(2011)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值.【解析】(1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM . (2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角,在Rt △DAO 中,AD =1,AO =12,所以DO=52,从而AN =12DO =54.在Rt △ANM 中, tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.【例9】(2012文)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,底面ABCD 是等腰梯形,AD ∥BC,AC ⊥BD.(1)证明:BD ⊥PC;(2)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.D【解析】(1)因为,,.PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以又,,AC BD PA AC ⊥是平面PAC 的两条相较直线,所以BD ⊥平面PAC, 而PC ⊂平面PAC,所以BD PC ⊥.(2)设AC 和BD 相交于点O,连接PO,由(Ⅰ)知,BD ⊥平面PAC, 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=o . 由BD ⊥平面PAC,PO ⊂平面PAC,知BD PO ⊥. 在Rt POD V中,由DPO ∠30=o ,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC V V 均为等腰直角三角形,从而梯形ABCD 的高为111(42)3,222AD BC +=⨯+=于是梯形ABCD 面积 1(42)39.2S=⨯+⨯=在等腰三角形AOD 中,2ODAD == 所以2 4.PD OD PA ===故四棱锥P ABCD -的体积为11941233V S PA =⨯⨯=⨯⨯=.【例10】(2012新课标理)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1 (1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒【课堂练习】1.(2012理)已知矩形ABCD ,AB =1,BC =2.将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 2.(2012理)下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 3.(2011)到两互相垂直的异面直线的距离相等的点( )A .只有1个B .恰有3个C .恰有4个D .有无穷多个 4.(2012)已知空间三条直线l ,m ,n 若l 与m 异面,且l 与n 异面,则 ( )A .m 与n 异面.B .m 与n 相交.C .m 与n 平行.D .m 与n 异面、相交、平行均有可能. 5.(2011)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中正确命题的个数为( ) A .1 B .2 C .3 D .4 6.(2011潍坊)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若n ⊥α,n ⊥β,则α∥β 7.(2010全国卷文)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )A .30°B .45°C .60°D .90°8.(2010全国卷)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )A .3B .3C .23D .39.(2010全国Ⅱ卷理)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )A .1BC .2D .310.(2010全国Ⅰ卷)已知在半径为2的球面上有A .B .C .D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )A .B C . D . 311.(2010理)过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作( )A .1条B .2条C .3条D .4条12.(2012大纲)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为___ _.13.(2010文)已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .α•AB•β14.(2010卷)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 . 15.(卷文)长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,BC =A ,B 两点间的球面距离为16.(2010理)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点。
2.3直线、平面垂直的判定及其性质
2.3 直线、平面垂直的判定及性质例题1.下列命题中正确的个数是( )(1)如果直线l 与平面α内的无数条直线垂直,则l ⊥α;(2)如果直线l 与平面α内的一条直线垂直,则l ⊥α;(3)如果直线l 不垂直于α,则α内没有与l 垂直的直线;(4)如果直线l 不垂直于α,则α内也可能有无数条直线与l 垂直。
A 、0B 、1C 、2D 、3例题2.如图,在正方体ABCD-A 1B 1C 1D 1中,O 为底面ABCD 的中心,F 为CC 1的中点,求证:A 1O ⊥平面BDF 。
例题3.已知平面α外两点A 、B 到平面α的距离分别为1和2,A 、B 两点在平面α内的摄影之间的距离为3,求直线AB 和平面α所成的角。
例题4.下列命题中:(1)两个相交平面组成的图形叫做二面角;(2)异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;(3)二面角的平面角是从棱上一点出发,分别在两个面内的射线所成角的最小角;(4)二面角的大小与其平面角的顶点在棱上的位置没有关系。
其中正确的是( ) A 、(1)(3) B 、(2)(4) C 、(3)(4) D (1)(2)例题5.已知直二面角α-l-β,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )A 、32 B 、33 C 、36 D 、1例题6.如图,⊙O 在平面α内,AB 是⊙O 的直径,PA ⊥α,C 为圆周上不同于A 、B 的任意一点。
求证:平面PAC ⊥平面PBC 。
例题7.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( )(1)a ⊥α,b ∥α⇒a ⊥b ;(2)a ⊥α,a ⊥b ⇒b ∥α;(3)a ∥α,a ⊥b ⇒b ⊥α;(4)a ⊥α,b ⊥α⇒a ∥bA 、1B 、2C 、3D 、4例题8.已知:如图,直线a ⊥α,直线b ⊥β,且AB ⊥a ,AB ⊥b ,平面α∩β=c ,求证:AB ∥c例题9.已知:α∩β=AB ,PQ ⊥α与Q ,PO ⊥β于O ,OR ⊥α于R ,求证:QR ⊥AB例题10.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE=CA=2BD ,M 是EA 的中点,求证:(1)DE=DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA例题11.如图,三棱柱ABC-A 1B 1C 1的底面是边长为6cm 的正三角形,且A 1A=33cm ,过AB 1且平行于BC 1的平面与底面ABC 所成二面角大小为β,求β的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3直线、平面垂直的判定及其性质题型全归纳与垂直相关的几个重要结论1.直线与平面垂直的定义常常逆用,即a ⊥α,b ⊂α⇒a ⊥b . 2.若两平行直线中一条垂直于平面,则另一条也垂直于该平面. 3.垂直于同一条直线的两个平面平行. 4.过一点有且只有一条直线与已知平面垂直. 5.过一点有且只有一个平面与已知直线垂直.垂直关系的转化1.线面垂直证明的核心证明线面垂直的核心是证明线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.2.线线垂直的隐含条件证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)直角梯形等等.3.利用面面垂直的判定定理,其关键是寻找平面的垂线. (1)若这样的直线在图中存在,则可通过线面垂直来证明面面垂直.(2)若这样的直线不存在,则可通过作辅助线来解决,而作辅助线则应有理论根据并有利于证明,不能随意添加.注意:证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的.4.三种垂直关系的证明方法 (1)证明线面垂直的方法①线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; ②判定定理1:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; ③判定定理2:a ∥b ,a ⊥α⇒b ⊥α; ④面面平行的性质:α∥β,a ⊥α⇒a ⊥β;⑤面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (2)证明线线垂直的方法①定义:两条直线所成的角为90°; ②平面几何中证明线线垂直的方法; ③线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; ④线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . (3)证明面面垂直的方法①利用定义:两个平面相交,所成的二面角是直二面角; ②判定定理:a ⊂α,a ⊥β⇒α⊥β.题型一、直线与平面垂直的判定与性质1.(2012·湖南高考)如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD . 证明:BD ⊥PC ;2.(2014·福建高考)如图所示,三棱锥 A -BCD 中,AB ⊥平面BCD ,CD ⊥BD . (1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积.3.如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)证明:EF ⊥平面P AB .题型二、平面与平面垂直的判定与性质4.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点. 求证:(1)平面BDM⊥平面ECA;(2)平面DEA⊥平面ECA.5.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若P A=PD,求证:平面PQB⊥平面P AD;(2)点M在线段PC上,PM=tPC,试确定实数t的值,使P A∥平面MQB.6.已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.如图所示,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD =AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB的体积V.1.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中点.(1)求证:AB∥平面SCD;(2)求证:SN⊥平面ABCD;2.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E 和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.3.如图所示,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.4.如图所示,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.1.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:AC ⊥平面BDEF ; (2)求证:平面BDGH ∥平面AEF .2.在如图的多面体中,AE ⊥底面BEFC ,AD ∥EF ∥BC ,BE =AD =EF =12BC ,G 是BC 的中点.求证:(1)AB ∥平面DEG ;(2)EG ⊥平面BDF .3.如图,已知P A ⊥平面ABCD ,且四边形ABCD 为矩形,M ,N 分别是AB ,PC 的中点. (1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD .4.如图,在正三棱锥ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ; (2)求证:平面A 1EC ⊥平面ACC 1A 1.5.(2012·新课标全国卷)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.直线、平面垂直的判定及其性质题型全归纳答案题型一、直线与平面垂直的判定与性质1.(2012·湖南高考) 【证明】(1)因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又AC ⊥BD ,P A ∩AC =A , 所以BD ⊥平面P AC .而PC ⊂平面P AC ,所以BD ⊥PC .2.(2014·福建高考)【证明】(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD ,∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD , ∴三棱锥C -ABM 的高h =CD =1,因此三棱锥A -MBC 的体积V A -MBC =V C -ABM=13S △ABM ·h =112. 3.(1)由线面垂直的判定及性质证明PH ⊥平面ABCD ;(2)作出P A 的中点G ,证明DG ⊥平面P AB ,进而由EF 与DG 的关系证明EF ⊥平面P AB . 【证明】(1)由于AB ⊥平面P AD ,PH ⊂平面P AD ,故AB ⊥PH .又PH 为△P AD 中AD 边上的高,故AD ⊥PH . ∵AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴PH ⊥平面ABCD .(2)过E 作EG ∥AB 交P A 于点G ,连接DG . ∵E 为PB 的中点,∴G 为P A 的中点.∵AD =PD ,故△DP A 为等腰三角形,∴DG ⊥AP . ∵AB ⊥平面P AD ,DG ⊂平面P AD ,∴AB ⊥DG . 又∵AB ∩P A =A ,AB ⊂平面P AB ,P A ⊂平面P AB , ∴DG ⊥平面P AB .又∵GE ∥AB ,DF ∥AB ,且GE =12AB ,DF =12AB∴GE ∥DF ,且GE =DF .∴四边形DFEG 为平行四边形,故DG ∥EF . ∴EF ⊥平面P AB .题型二、平面与平面垂直的判定与性质4.【证明】(1)取CA 的中点N ,连结MN ,BN ,则MN ∥EC ,且MN =12EC.∴MN ∥BD ,∴点N 在平面BDM 内. ∵EC ⊥平面ABC ,∴EC ⊥BN . 又CA ⊥BN ,∴BN ⊥平面ECA . ∵BN ⊂平面BDM , ∴平面BDM ⊥平面ECA . (2)∵DM ∥BN ,BN ⊥平面ECA . ∴DM ⊥平面ECA . 又DM ⊂平面DEA , ∴平面DEA ⊥平面ECA .5.【证明】(1)连接BD ,因为四边形ABCD 为菱形,且∠BAD =60°,所以△ABD 为正三角形,又Q 为AD 的中点,所以AD ⊥BQ . 又因为P A =PD ,所以AD ⊥PQ . 又BQ ∩PQ =Q ,所以AD ⊥平面PQB , 又AD ⊂平面P AD ,所以平面PQB ⊥平面P AD .【解析】(2)若P A ∥平面MQB ,连接AC 交BQ 于N ,连接MN .由AQ ∥BC 可得,△ANQ ∽△CNB , 所以AQ BC =AN NC =12,因为P A ∥平面MQB ,P A ⊂平面P AC , 平面P AC ∩平面MQB =MN ,所以P A ∥MN , 因此,PM PC =AN AC =13,即t 的值为13.6. 【证明】(1)如图,取BC 中点O ,连接AO ,因为三角形ABC 是等边三角形,所以AO ⊥BC ,又平面BCC ′B ′⊥底面ABC ,AO ⊂平面ABC ,平面BCC ′B ′∩平面ABC =BC , 所以AO ⊥平面BCC ′B ′, 又BB ′⊂平面BCC ′B ′, 所以AO ⊥BB ′.又BB ′⊥AC ,AO ∩AC =A ,AO ⊂平面ABC ,AC ⊂平面ABC , 所以BB ′⊥底面ABC .(2)如图,显然M不是A′,B′;棱A′B′上若存在一点M,使得C′M∥平面BEF,过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥C′F,即C′M和FN共面,所以C′M∥FN,所以四边形C′MNF为平行四边形,所以MN=2,所以MN是梯形A′B′BE的中位线,M为A′B′的中点.【解】(1)∵矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,∴CB⊥平面ABEF,又AF⊂平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,∴AF2+BF2=AB2,得AF⊥BF,又BF∩CB=B,∴AF⊥平面CFB,又∵AF⊂平面ADF;∴平面ADF⊥平面CBF.(2)连接OM延长交BF于H,则H为BF的中点,又P为CB的中点,∴PH∥CF,又∵CF⊂平面AFC,PH⊄平面AFC,∴PH∥平面AFC,连接PO,则PO∥AC,又∵AC⊂平面AFC,PO⊄平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,又∵PM⊂平面POH,∴PM∥平面AFC.(3)【解】多面体CD-AFEB的体积可分成三棱锥C-BEF与四棱锥F-ABCD的体积之和.在等腰梯形ABEF中,计算得EF=1,两底间的距离EE1=3 2.所以V C-BEF=13S△BEF×CB=13×12×1×32×1=312,V F-ABCD=13S矩形ABCD×EE1=13×2×1×32=33,所以V=V C-BEF+V F-ABCD=53 12.1.【证明】(1)因为底面ABCD是矩形,所以AB∥CD,又因为AB⊄平面SCD,CD⊂平面SCD,所以AB ∥平面SCD .(2)因为AB ⊥SA ,AB ⊥AD ,SA ∩AD =A , 所以AB ⊥平面SAD ,又因为SN ⊂平面SAD , 所以AB ⊥SN .因为SA =SD ,且N 为AD 中点, 所以SN ⊥AD . 又因为AB ∩AD =A ,所以SN ⊥平面ABCD .2.【证明】(1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE . 所以四边形ABED 为平行四边形. 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形, 所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD . 所以P A ⊥CD . 所以CD ⊥平面P AD . 从而CD ⊥PD .又E ,F 分别是CD 和PC 的中点, 所以PD ∥EF .故CD ⊥EF ,CD ⊂平面PCD ,由EF ,BE ⊂平面BEF ,且EF ∩BE =E . 所以CD ⊥平面BEF . 所以平面BEF ⊥平面PCD .3.【证明】(1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF , 所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8, 所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .4.【解析】(1)线段AB 上存在一点K, 且当AK =14AB 时,BC ∥平面DFK ,证明如下:设H 为AB 的中点,连接EH ,DK ,KF ,则BC ∥EH , 又∵AK =14AB ,F 为AE 的中点,∴KF ∥EH ,∴KF ∥BC ,∵KF ⊂平面DFK ,BC ⊄平面DFK , ∴BC ∥平面DFK .【证明】(2)∵在折起前的图形中E 为CD 的中点,AB =2,BC =1,∴在折起后的图形中,AE =BE =2, 从而AE 2+BE 2=4=AB 2, ∴AE ⊥BE .∵平面ADE ⊥平面ABCE ,平面ADE ∩平面ABCE =AE , ∴BE ⊥平面ADE ,∵BE ⊂平面BDE ,∴平面BDE ⊥平面ADE .1.【证明】(1)因为四边形ABCD 是正方形,所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)在△CEF 中,因为G ,H 分别是CE ,CF 的中点,所以GH ∥EF , 又因为GH ⊄平面AEF ,EF ⊂平面AEF ,所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF .2.【证明】(1)∵AD ∥EF ,EF ∥BC ,∴AD ∥BC .又∵BC =2AD ,G 是BC 的中点,∴AD ∥BG ,且AD =BG ,∴四边形ADGB 是平行四边形,∴AB ∥DG .∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴AB ∥平面DEG .(2)连接GF ,四边形ADFE 是矩形,∵DF ∥AE ,AE ⊥底面BEFC ,∴DF ⊥平面BCFE ,EG ⊂平面BCFE ,∴DF ⊥EG .∵EF ∥BG ,且EF ∥BG ,EF =BE ,∴四边形BGFE 为菱形,∴BF ⊥EG ,又BF ∩DF =F ,BF ⊂平面BFD ,DF ⊂平面BFD ,∴EG ⊥平面BDF .3.【证明】(1)如图所示,取PD 的中点E ,连接AE ,NE ,∵N 是PC 的中点,E 为PD 的中点,∴NE ∥CD ,且NE =12CD ,而AM ∥CD ,且AM =12AB =12CD ,∴NE ∥AM ,且NE =AM ,∴四边形AMNE 为平行四边形,∴MN ∥AE .又P A ⊥平面ABCD ,∴P A ⊥CD ,又∵ABCD 为矩形,∴AD ⊥CD .而AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥AE .又AE ∥MN ,∴MN ⊥CD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AD ,又∠PDA =45°,∴△P AD 为等腰直角三角形.又E 为PD 的中点,∴AE ⊥PD ,又由(1)知CD ⊥AE ,PD ∩CD =D ,∴AE ⊥平面PCD .又AE ∥MN ,∴MN ⊥平面PCD .4.【证明】(1)连接AC 1交A 1C 于点O ,连接OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1.又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1. 因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1. 所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A1EC ,OE ⊂平面A 1EC ,所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点,所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC ,所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC ,所以平面A 1EC ⊥平面ACC 1A 1.5.(2012·新课标全国卷)【证明】(1)由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC . 又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.。