复变函数与积分变换第6章共形映射
第06章共形映射
即 Arg f (z0 ) Argw(t0 ) Argz(t0)
即 (1)
y (z) C : z z(t)
v
(w)
: w f [z(t)]
z0
o
w f (z)
T
w0
x
o
T'
u
本科生公共课程: 复变函数与积分变换 (73L152Q) Xiaoming Huang, BJTU
~~~~~~~~~~~
的不变性.
~~~~~~~~~~~~~
本科生公共课程: 复变函数与积分变换 (73L152Q) Xiaoming Huang, BJTU
- 11 -
设Ci (i 1, 2)在点z0 的夹角为 ,Ci (i 1, 2)在
变换w f (z)下映射为相交于点w0 f (z0 )的曲 线i (i 1, 2), 1, 2的夹角为。
《复变函数与积分变换》课程 (70L148Q)
(Complex Functions and Integral Transform)
复变函数与积分变换
Xiaoming Huang
xmhuang@
北京交通大学理学院
-1-
第6章
共形映射
本科生公共课程: 复变函数与积分变换 (73L152Q) Xiaoming Huang, BJTU
本科生公共课程: 复变函数与积分变换 (73L152Q) Xiaoming Huang, BJTU
-4-
1. 曲线的切线
设连续曲线 C : z z(t), t [, ],它的正向取
t 增大时点 z 移动的方向。
若z(t0 ) 0, t0 (, ),取P0, P C, P0, P对应的参数
(2)若 曲 线C1与 曲 线
复变函数-共性映射
8
y
z0
(z)
v
(w)
w0
O
x
O
u
通过z0点的可能的曲线有无限多条, 其中的每 一条都具有这样的性质, 即映射到w平面的曲 线在w0点都转动了一个角度Arg f '(z0).
9
y
(z) C2 z0
v
(w)
Γ2
α
C1 w0
Γ1
O O x u 相交于点z0的任何两条曲线C1与C2之间的夹 角, 在其大小和方向上都等同于经w=f(z)映射 后C1与C2对应的曲线Γ1与Γ2之间的夹角, 所 以这种映射具有保持两曲线间夹角与方向不 变的性质.这种性质称为保角性
29
因此, 映射w=1/z将方程 a(x2+y2)+bx+cy+d=0 变为方程 d(u2+v2)+bu−cv+a=0 当然, 可能是将圆周映射为圆周(当a≠0,d≠0); 圆周映射成直线(当a≠0,d=0); 直线映射成圆周 (当a=0,d≠0)以及直线映射成直线(当a=0,d=0). 这就是说, 映射w=1/z把圆周映射成圆周. 或者 说, 映射w=1/z具有保圆性.
13
2. 共形映射的概念 定义 设函数w=f(z)在z0的邻域内是一一对应 的, 在z0具有保角性和伸缩率不变性, 则称映 射w=f(z)在z0是共形的, 或称w=f(z)在z0是共形 映射. 如果映射w=f(z)在D内的每一点都是共 形的, 就称w=f(z)是区域D内的共形映射.
14
定理二 如果函数w=f(z)在z0解析, 且f '(z0)≠0, 则映射w=f(z)在z0是共形的, 而且Arg f '(z0)表 示这个映射在z0的转动角, |f '(z0)|表示伸缩率. 如果解析函数w=f(z)在D内处处有f '(z)≠0, 则映 射w=f(z)是D内的共形映射 z0
复变函数与积分变换第6章共形映射
定义6.4 设单位圆周C:|z|=1,如果p与p′同时位于以圆心为起点的射线上
,且满足:|op|·|op′|=12,则称p与p′为关于单位圆周的对称点.规定: 无穷远点∞与圆心O是关于单位圆周的对称点.
设p在圆周C内,则过点p作Op的垂线交圆周C于A,再过A作圆周C的切线交射
线Op于p′,那么p与p′即互为对称点(图6.7(a)).
不少实际问题要求将一个指定的区域共形映射成另一个区域
予以处理,由定理6.3和定理6.5可知,一个单叶解析函数能 够将其单叶性区域共形映射成另一个区域.相反地,在扩充复
平面上任意给定两个单连通区域D与G,是否存在一个单叶解
析函数,使D共形映射成G?下述的黎曼存在与唯一性定理和 边界对应定理(证明从略)肯定地回答了此问题.
的切线与u轴正方向的夹角.于是有
故
页
退出
复变函数与积分变换
出版社 理工分社
其中α ′-α 是C和C′在点z0的夹角(经过z0的两条有向曲线C与C′的切线
方向所构成的角,称为两曲线在该点的夹角)(反时针方向为正),β ′- β 是Γ 和Γ ′在点w0=f(z0)的夹角(反时针方向为正).式(6.2)表明映射 w=f(z)在点z0既保持了夹角的大小,又保持夹角的方向(图6.2). 这种性质 称为映射的保角性.
w=z称为关于实轴的对称变换.
图6.7
页
退出
复变函数与积分变换
出版社 理工分社
6.2.2分式线性映射的性质 (1)保角性
首先讨论映射
由于
因此映射在z≠0与
z≠∞的各处是共形的,从而具有保角性。至于在z=0与z=∞ 处映射是否保角就需要先对两曲线在无穷远点处的夹角进行定义.
页
共形映射知识点总结
共形映射知识点总结1. 共形映射的定义共形映射是指一个保角映射,即保持角度不变的映射。
设f(z)是复平面上的一个函数,如果存在一个映射关系g(z),使得对于任意z1和z2,它们的连线与x轴的夹角相等,则称f(z)是一个共形映射。
一个映射f(z)在z处保持共形,如果它在z处可微且其导数不为0,且满足下面的Cauchy-Riemann条件:\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partialu}{\partial y} = -\frac{\partial v}{\partial x}\]其中f(z) = u(x, y) + iv(x, y)是复平面上的一个函数,u和v是实数函数。
2. 共形映射的性质(1)共形映射保持曲线的角度不变。
设f(z)是一个共形映射,若曲线C经过f(z)映射后变为C',则曲线C与C'在每个点处的切线夹角相等。
(2)共形映射保持比例不变。
设曲线C经过f(z)映射后变为C',则C'的任意两点之间的距离与C的对应两点之间的距离之比在每个点处相等。
(3)共形映射不存在全纯的双全纯函数。
3. 共形映射的应用共形映射在多个领域有着广泛的应用,包括:(1)在解析几何中,共形映射可以用来描述复平面上的曲线和曲面,它可以将复平面上的各种曲线映射到圆盘上的圆或者半平面上的线段,从而简化对曲线和曲面的研究。
(2)在物理学中,共形映射被广泛应用于流体力学、电磁学和热力学等领域,因为共形映射保持角度和比例不变,它可以帮助研究者简化复杂的物理问题,得到更简洁的物理模型。
(3)在工程领域中,共形映射可以用来处理复杂的结构和材料的问题,比如用共形映射可以将一个复杂结构的材料映射为一个简单的结构,从而方便分析和计算。
(4)在计算机科学和计算机图形学中,共形映射可以用来处理和分析复杂的图形和图像,比如可以利用共形映射将一个图形映射到另一个图形,从而方便比较和分析。
复变函数第六章共形映射习题ppt课件
在 z平面上任意给定三个相异的点z1, z2, z3,
在 w 平面上也任意给定三 个相异的点w1, w2, w3, 那么就存在唯一的分式线性映射, 将 zk (k 1,2,3) 依次映射成 wk (k 1,2,3).
即w az b (ad bc 0)可由下式给出: cz d
w w1 : w3 w1 z z1 : z3 z1 . w w2 w3 w2 z z2 z3 z2
故命题得证.
[证毕]
29
例6 试将如图所示的区域映射到上半平面.
解
取分式线性映射w1
z z
i i
,
将切点i映射为w1 ,并将
z i映射为w1 0.
y i
•
O
1x
由分式线性映射的保圆性知:
i
w1将两相切的圆周映射为两平行的直线(且w1(1) i).
取旋转变换
w2
i
e 2 w1
iw1
将铅直带形域
3) 当二圆交点中的一个映射成无穷远点时, 这 二圆周的弧所围成的区域映成角形区域.
14
5. 几个初等函数所构成的映射
1) 幂函数 w zn(n 2). 映射特点: 把以原点为顶点的角形域映射成以原 点为顶点的角形域, 但张角变成为原来的 n 倍.
(z)
0
0
w zn zn w
(w)
n 0
0
15
的一条有向光滑曲线 w f [z(t)], z , 且
4
1) 导数f (z0 ) 0的幅角Arg f (z0 )是曲线C经过 w f (z)映射后在z0处的转动角. 2) 转动角的大小与方向跟曲线C的形状与方向 无关.
3)保角性 相交于点z0 的任意两条曲线C1与 C2之间的
复变函数第6章
第六章 共形映射1. 共形映射的概念(1)夹角:如图6.1所示,过z 0点的两条曲线C 1,C 2,它们在交点z 0处的切线分别为T 1,T 2,我们把从T 1到T 2按逆时针方向旋转所得的夹角定义为这两条曲线在交点z 0处 从C 1到C 2的夹角.对于两条曲线的夹角不仅要指出角度的大小,还要指出角的旋转方向.因此在z 0处从C 2到C 1的夹角不等于从C 1到C 2的夹角.图6.1(1)保角映射:若在映射w =f (z )的作用下,过点z 0的任意两条光滑曲线的夹角的大小与旋转方向都是保持不变的,则称这种映射在z 0处是保角的.(2)伸缩率的不变性:若极限00limz z w w z z →--000limz z w w z z →--存在且不等于零,则这个极限称为映射w =f (z )在z 0处的伸缩率.并称w =f (z )在z 0具有伸缩率的不变性.(3)共形映射:定义6.1 设函数w =f (z )在z 0的邻域内是一一的,在z 0具有保角性和伸缩率的不变性,那么称映射w =f (z )在z 0是共形的,或称w =f (z )在z 0是共形映射.如果映射w =f (z )在区域D 内的每一点都是共形的,那么称w =f (z )是区域D 内的共形映射. 2.解析函数与共形映射定理6.1 如果函数w =f (z )在z 0解析,且f '(z 0)≠0,那么映射w =f (z )在z 0是共形的,而且Arg f '(z 0)表示这个映射在z 0的转动角,|f '(z 0)|表示伸缩率.如果解析函数w =f (z )在区域D 内处处有f '(z )≠0,那么 映射w =f (z )是D 内的共形映射.3.分式线性变换(1)定义:形如 , (0).az bw ad bc cz d+=-≠+ (6.3) 的映射称为分式线性变换,其中a ,b ,c ,d 为复常数. (2)逆变换:d , (()()0),w bz a d cb cw a-+=---≠- (6.5)(3)复合:两个分式线性变换复合,仍是一个分式线性变换.事实上,(0),(0).z w z αξβαβαδγβξαδβγγξδγδ''++''''=-≠=-≠''++把后式代入前式得az b w cz d+=+ 其中()()0.ad bc αδγβαδβγ''''-=--≠(4)分解:根据这个事实,我们可以把一个一般形式的分式线性变换分解成一些简单映射的复合.不妨设c ≠0,于是.()az b a bc adw cz d c c cz d +-==+++令,a bc adA B c c-==则上式变为 .Bw A cz d=++ 它由下列三个变换复合而成;1;,z cz d z z w A Bz '=+''='''=+ (6.5) 其中(6.5)中的第一和第三式为整线性变换. 4.分式线性变换性质1° 共形性定理6.2 分式线性变换在扩充复平面上是一一对应的,且是共形的. 2°保圆性定理6.3 分式线性变换将扩充z 平面上的圆映射成扩充w 平面上的圆,即具有保圆性. 在扩充复平面上把直线看成是半径为无穷大的圆周.推论6.1 在分式线性变换下,圆C 映射成圆C '.如果在C 内任取一点z 0,而点z 0的象在C '的内部,那么C 的内部就是映射到C '的内部;如果z 0的象在C '的外部,那么C 的内部就映射成C '的外部.3° 保对称性先引进对称点的概念.定义6.2 设C 为以z 0点为中心,R 为半径的圆周.如果点z ,z *在从z 0出发的射线上,且满足|z -z 0|·|z *-z 0|=R 2, (6.6)则称z ,z *关于圆周C 是对称的.如果C 是直线,则当以z 和z *为端点的线段被C 平分时,称z ,z *关于直线C 为对称的.我们规定: 无穷远点关于圆周的对称点是圆心.定理6.4 设点z ,z *是关于圆周C 的一对对称点,那么在分式线性变换下,它们的象点w 及w *也是关于C 的像曲线C '的一对对称点.5. 确定分式线性变换的条件定理6.5 在z 平面上任意给定三个不同点z 1,z 2,z 3,在w 平面上也任意给定三个不同点w 1,w 2,w 3,那么就存在分式线性变换,将z k 依次映射成w k (k =1,2,3),且这种变换是唯一的.推论6.2 z 1,z 2,z 3所在的圆C 的象C ′是w 1,w 2,w 3所在的圆.且如果C 依z 1→z 2→z 3 的绕向与C ′依w 1→w 2→w 3的绕向相同时,则C 的内部就映射成C ′的内部(相反时,C 的内部就映射成C ′的外部)图6.8例6.1 求将上半平面映射为单位圆,且将上半平面的定点z 0映射为圆心w =0的分式线性变换.所求映射的一般形式为00, Im 0.i z z w e z z z θ-=>- (6.8) 例6.2 求将单位圆|z |<1映射为单位圆|w |<1的分式线性变换. 所求映射的一般形式为00 (1)1i z z w e z z zθ-=<-. 6. 几个初等函数所构成的映射(1) 幂函数:w =zn(n ≥2)作用: 1° 圆|z |=r 映射成|w |=r n ,即在以原点为中心的圆有保圆性.2°射线0θθ=映射成射线0n ϕθ=,特别地,正实轴θ=0映成正实轴ϕ=0; 3°将角形域02π0()nθθ<<<映射成角形域00n ϕθ<<.(a) 公式图6.10(2)指数函数:w =e z作用: 1° 平面上的直线x =常数,被映射成w 平面上的圆周ρ=常数;而y =常数,被映射成射线ϕ=常数.2° 把水平带形域0Im (2π)z a a <<≤映射成角形域0arg w a <<.(如图6.12(a)) 3° 带形域0Im 2πz <<映射成沿正实轴剪开的w 平面:0arg 2πw <<(如图6.12(b)).3.求2w z =在z =i 处的伸缩率和旋转角,问:2w z =将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面 上哪一个方向?并作图.例6.5 求将|z |<1,Im z >0映为|w |>1的一个共形映射.。
15第六章共形映射
第六章 共形映射§1. 共形映射的概念 补充概念:映射的概念映射的定义:一. 导数的几何意义. , ,, , , 的点集之间的对应关系上必须看成是两个复平面的几何图形表示出来因而无法用同一平面内之间的对应关系和由于它反映了两对变量对于复变函数y x v u ).()( * )( )( , , 或变换的映射函数值集合平面上的一个点集变到定义集合平面上的一个点集是把在几何上就可以看作那末函数值的平面上的点表示函数而用另一个平面的值平面上的点表示自变量如果用G w G z z f w w w z z =. )( 所构成的映射函数这个映射通常简称为由z f w =1. 伸缩率与旋转角若极限z w limz ∆∆∆0→存在,则称此极限值为曲线C 经过映射()z f w =下在0z 点的伸缩率,称角00θϕ-为曲线C 经过映射()z f w =下在0z 点的旋转角. 2. 伸缩率不变性3. 旋转角不变性与保角性例1. 求函数3z w =在z =i 与z =0处的导数,并说明几何意义., ,)(0内一点为内解析在区域设函数D z D z f w =.)(,0)(0的伸缩率不变在那末映射且z z f w z f =≠' , ,)(0内一点为内解析在区域设函数D z D z f w =.)(,0)(0的旋转角不变在那末映射且z z f w z f =≠'部分缩小?哪一平面的哪一部分放大?转动角,并说明它将处的在试求映射z i z z z z f w 212)(2+-=+==例2二. 共形映射的概念定义: 对于定义在区域D 内的映射()z f w =,如果它在D 内任意一点都具有保角性及伸缩率不变性,则称()z f w =为第一类保角映射;如果它在D 内任意一点都保持曲线的交角的大小不变但方向相反,且伸缩率不变,则称()z f w =为第二类保角映射.定理1 若函数()z f w =在区域D 内解析,且()0≠'z f 恒成立,则它所构成的映射为第 一类保角映射.例2. 考察映射z w =.定义 设()z f w =是区域D 内的第一类保角映射,且对于任意21z z ≠,有()()21z f z f ≠成立,则称()z f w =为共形映射.例3. 判断ze w =是否为共形映射.§2. 共形映射的基本问题一. 解析函数的保域性与边界对应原理定理2 (保域性定理)设函数()z f w =在区域D 内解析,且不恒为常数,则像集合()D f G =为区域.定理3 (边界对应原理)设区域D 的边界为简单闭曲线C ,函数()z f w =在C D D =上解析,且将C 双方单值地映射成简单闭曲线Γ.当z 沿着C 的正向绕行时,相应的w 的绕行方向定为Γ的正向,并令G 是以Γ为边界的区域,则()z f w =将D 共形映射成G .例4. 设区域⎭⎬⎫⎩⎨⎧<<<<=10,2arg 0|z z z D π,求D 在映射3z w =下的像集.二. 共形映射的存在惟一性定理4 (黎曼存在惟一性定理)设D 和G 是任意给定的两个单连域,它们的边界至少包含两个点,则一定存在解析函数()z f w =把D 保形地映射为G .如果在D 内和G 内再分别任意指定两个点0z 和0w ,并任给一个实数0θ()πθπ≤<-0,要求函数()z f w =满足()(),z f arg ,w z f 0000θ='=则映射()z f w =是惟一的.§3. 分式线性映射由分式线性函数()0,,,≠-++=bc ad d c b a dcz baz w 为复常数, 构成的映射称为分式线性映射.其逆映射也为分式线性映射.特别地,当0=c 时,则称为(整式)线性映射.一. 分式线性映射的分解 结论:任意一个分式线性映射都可以分解为以下四种映射.()()()()()()()zw r rz w zew b b z w i 14032100=>==+=反演映射相似映射为实数旋转映射为复常数平移映射θθ例5. 将分式线性映射i z z w +=2分解.1. 平移、旋转与相似映射2. 反演映射结论 反演映射是由单位圆对称映射与实轴对称映射复合而成.二.分式线性映射的保形性定理5 分式线性函数在扩充复平面上是共形映射.三. 分式线性映射的保圆性定理6 在扩充复平面上分式线性函数把圆映射为圆.例6. 求实轴在映射i z z w +=2下的像曲线.例7. 求区域{}21,21|<+<-=z z z D在映射i z i z w +-=下的像.四. 分式线性映射的保对称点性引理 扩充复平面上的两点21,z z 关于圆C 对称的充要条件是通过1z 与2z 的任意圆都与圆C 正交.定理7 (保对称点定理)设21,z z 关于圆C 对称,则在分式线性映射下,它们的像点21,w w 关于C 的像曲线Γ对称.例8 求一分式线性映射d cz b az w ++=,将单位圆内部变为上半个平面.五.惟一决定分式线性映射的条件定理8 在z 平面上任给三个不同的点321,,z z z ,在w 平面上任给三个不同的点321,,w w w ,则存在惟一的分式线性映射d cz b az w ++=,把321,,z z z 分别依次地映射为321,,w w w .231321231321::z z z z z z z z w w w w w w w w ----=----(对应点公式)推论1 如果k z 或k w 中有一个是∞,则只需将对应点公式中含∞的项换为1。
共形映射
第六章共形映射(The Conformal mapping)第一讲授课题目:§6.1共形映射的概念;§6.2共形映射的基本问题教学内容:导数的几何意义、共形映射的概念、解析函数的保域性与边界对应原理、共形映射的存在唯一性.学时安排:2学时.教学目标:1、理解导数的几何意义;2、弄清共形映射的概念;3、掌握解析函数的保域性与边界对应原理、共形映射的存在唯一性;教学重点:解析函数的保域性与边界对应原理;教学难点:解析函数的保域性与边界对应原理;教学方式:多媒体与板书相结合.P习题六:1-3作业布置:164板书设计:一、导数的几何意义;二、共形映射的概念;三、解析函数的保域性与边界对应原理;四、共形映射的存在唯一性参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月课后记事:1、基本掌握共形映射的概念;2、不能灵活运用解析函数的保域性与边界对应原理;教学过程:§6.1共形映射的概念(The conception of conformal mapping)一、导数的几何意义(Geometric meaning of derivative )1、解析变换的保域性(Transform domain of security analysis )解析函数所确定的映射是共形映射.它是复变函数论中最重要的概念之一,与物理中的概念有密切的联系,而且对物理学中许多领域有重要的应用.如应用共形映射成功地解决了流体力学与空气动力学、弹性力学、磁场、电场与热场理论以及其他方面的许多实际问题.我们主要研究单叶解析函数的映射性质.注1:单叶函数是一个单射的解析函数.例 1 函数α+=z w 及z w α=是z 平面上的单叶解析函数它们把z 平面映射成w 平面,其中α是复常数,并且对于第二个映射0≠α.例 2 z e w =在每个带形,2Im π+<<a z a 内单叶解析,并且把这个带形区域映射成w 平面上除去从原点出发的一条射线而得的区域,,其中a 是任意实常数.引理(Lemma ):设函数)(z f 在0z z =解析,并且)(00z f w =.设...)3,2,1(0)(,0)(...)('')('0)(0)1(00=≠====-p z f z f z f z f p p ,那么0)(w z f -在0z 有p 阶零点,并且对充分小的正数ρ,存在着一个正数μ,使得当μ<-<||00w w 时,w z f -)(在ρ<-<||00z z 内有p 个一阶零点.证明:由已知条件可知0)(w z f -在0z 有p 阶零点.由于)(z f 不恒等于零,作以0z 为心的开圆盘ρ<-|:|0z z D ,其边界为C ,使得)(z f 在C D D ⋃=上解析,并且使得0)(w z f -及)(z f '除去0z z =外在D 上无其它零点.有0|)(|min 0>=-∈μw z f Cz 取w ,使μ<-<||00w w .由儒歇定理,比较w z f -)(及0)(w z f -在内D 的零点的个数.由于),())(()(00w w w z f w z f -+-=-而当C z ∈时,0|||)(|00>->≥-w w w z f μ可见w z f -)(及0)(w z f -在D 内的零点个数同为p (每个n 阶零点作n 个零点).因为0w w ≠,所以0z z ≠,而0]')([0≠-≠z z w z f . 所以w z f -)(在D 内的每个零点都是一阶的.由此引理可证明下面定理定理(Theorem)6.1、设函数)(z f 在区域D 内单叶解析,则D z ∈∀,有 .0)('≠z f注2:这个定理的逆定理不成立,例如z e w =的导数在z 平面上任意一点不为零,而z e w =在整个z 平面上不是单叶的.定理(Theorem)6.2设函数)(z f w =在0z z =解析,并且0)('0≠z f ,那么)(z f 在0z 的一个邻域内单叶解析.定理(Theorem)6.3设函数)(z f w =在区域D 内解析,并且不恒等于常数,则)(1D f D =是一个区域.注3:如果)(z f w =在区域D 内单叶解析,根据定理6.3,它把区域D 双射成区域)(D f .于是)(z f 有一个在)(D f 内确定的反函数)(w z ϕ=.定理(Theorem)6.4设函数)(z f 在区域D 内单叶解析,则)(z f w =在)(D f 内存在单叶解析的反函数)(w z ϕ=,且 .)('1)('z f w =ϕ 证明:考虑以下思路:)(0D f w ∈∀,有D z ∈∀0,1)()(000000z z w w w w z z w w w w --=--=--ϕϕ 因为当0w w →时,)()(00z z w z ϕϕ=→=,所以,)('1)()(lim 1lim 1)()(lim 0000000000z f z z z f z f z z w w w w w w z z z z w w =⎪⎪⎭⎫ ⎝--=⎪⎪⎭⎫ ⎝⎛--=--→→→ϕϕ即可给出定理的证明.2、导数的几何意义(Geometric meaning of derivative)设函数)(z f w =是区域D 内的单叶解析函数.)(,000z f w D z =∈.则有0)('0≠z f .过0z 作一条简单光滑曲线C : ),()()()(b t a t iy t x t z z ≤≤+==]),[()(000b a t z t z ∈=.)(')(')('t iy t x t z dtdz +== 则)(0t z '存在,且0)(0≠'t z作过曲线C 上点)(00t z z =及)(11t z z =的割线,割线的方向向量为0101t t z z --,当1t 趋近于0t 时,向量0101t t z z --与实轴的夹角0101arg t t z z --存在极限,即为曲线C 在0z z =的切线的位置.已知,0)('lim 0010101≠=--→t z t t z z t t 所以,有),('arg arg lim 0010101t z t t z z t t =--→ 这就是曲线C 在)(00t z z =处切线与实轴的夹角,在这里幅角是连续变动的,并且极限式两边幅角的数值是相应地适当选取的. 函数)(z f w =把简单光滑曲线C 映射成一条简单曲线Γ: ),())((1t t t t z f w o ≤≤=由于())('))(('000t z t z f t w =',可见Γ也是一条光滑曲线;它在0w 的切线与实轴的夹角是()),('arg ))(('arg )('))(('arg arg 00000t z t z f t z t z f t w +==' 因此,Γ在0w 处切线与实轴的夹角及C 在0z 处切线与实轴的夹角相差)('arg 0t z .注4:这里的)('arg 0t z 与曲线C 的形状及在0z 处切线的方无关.另外在D 内过0z 另有一条简单光滑曲线)(:11t z z C =,函数)(z f w =把它映射成一条简单光滑曲线))((:11t z f w =Γ.和上面一样,1C 与1Γ在0z 及0w 处切线与实轴的夹角分别是)('arg 01t z 及),('arg ))(('arg )('))(('arg 01010101t z t z f t z t z f +=所以,在0w 处曲线Γ到曲线1Γ的夹角恰好等于在0z 处曲线C 到曲线1C 的夹角:),('arg )('arg )('))(('arg )('))(('arg 001000101t z t z t z t z f t z t z f -=-因此,用单叶解析函数作映射时,曲线间的夹角的大小及方向保持不变,我们称这个性质为单叶解析函数所作映射的保角性.下面再说明它的模的几何意义.因为,|||)()(|lim |)('|0000z z z f z f z f z z --=→ 由于|)('|0z f 是比值|||)()(|00z z z f z f --的极限,它可以近似地表示这种比值.在)(z f w =所作映射下,||0z z -及|)()(|0z f z f -分别表示z 平面上向量0z z -及w 平面上向量)()(0z f z f -的长度,这里向量0z z -及)()(0z f z f -的起点分别取在0z 及)(0z f .当较小||0z z -时,|)()(|0z f z f -近似地表示通过映射后,|)()(|0z f z f -对||0z z -的伸缩倍数,而且这一倍数与向量0z z -的方向无关.我们把|)('|0z f 称为在点0z 的伸缩率.从几何直观上来看.设)(z f w =是在区域D 内解析的函数,0)(',),(,00000≠∈=∈z f D z z f w D z ,那么)(z f w =把z 平面上半径充分小的圆ρ=-||0z z 近似地映射成w 平面上圆),0(|)('|||00+∞<<=-ρρz f w w因此,解析函数在导数不为零的地方具有旋转角不变性和伸缩率不变性.二、共形映射的概念(The concept of conformal mapping) 定义(Definition)6.1对于区域D 内的映射)(z f w =,如果它在区域D 内任意一点具有保角性和伸缩率不变性,则称映射)(z f w =是第一类保角映射;如果它在区域D 内任意一点保持曲线的交角的大小不变,则称映射)(z f w =是第二类保角映射.定理(Theorem)6.5如)(z f w =在区域D 内解析,且0)(≠'z f 则)(z f w =所构成的映射是第一类保角映射. 定义(Definition)6.2设)(z f w =是区域D 内的第一类保角映射,如果当21z z ≠时,有()21)(z f z f ≠,,则称)(z f 为共形映射.例1z e w =在复平面上解析,且0)(≠='z z e e ,因此z e 在任何区域内都构成第一类保角映射,但它在复平面上不是共形映射,而在区域π4Im 0<<z 内,z e w =构成共形映射.§6.2共形映射的基本问题(The basic problem of conformal mapping)一、共形映射的基本问题(The basic problem of conformalmapping)对于共形映射,我们主要研究下列两个方面的问题.问题一 对于给定的区域D 和定义在D 上的解析函数()z f =ω,求像集()D f G =,并讨论()z f 是否将D 共形的映射为G .问题二 给定两个区域D 和G ,求一解析函数()z f =ω,使得()z f 将D 共形的映射为G .对于问题二,我们只需考虑能把D 变为单位圆内部即可.这是因为若存在函数()z f =ξ把D 变为1<ξ,而函数()ωξg =把G 变为1<ξ,则()()z f g 1-=ω把D 映射为G (下图).二、 解析函数的保域性与边界对应原理(Analytic functions of protection domain and the boundary correspondence principle )对于问题一,有下面两个定理.定理(Theorem)6.6(保域性定理) 设函数()z f 在区域D 内解析,且不恒为常数,则像集合()D f G =是区域.定理(Theorem)6.7 (边界对应原理)设区域D 的边界为简单闭曲线C ,函数()z f =ω在C D D Y =上解析,且将C 双方单值的映射成简单闭曲线Γ.当z 沿C 正向绕行时,相应的ω的绕行方向定为Γ的正向,并令G 是以Γ为边界的区域,则()z f =ω将D 共形的映射为G .注1:定理6.6说明了解析函数把区域变为区域, 注2:定理6.7为像区域的确定给出了一个一般性的方法. 注3:是Γ的方向.(如下图),区域D 在曲线C 的内部,在C 上沿逆时针方向取三个点321,,z z z ,函数()z f =ω将C 于321,,z z z 分别映射为Γ和321,,ωωω.若321,,ωωω也按逆时针方向排列,则像区域G 在Γ的内部.例1 设区域⎭⎬⎫⎩⎨⎧<<<<=10,2arg 0:z z z D π,求区域D 在映射3z =ω下的像区域G .解:(如下图),设区域D 的边界为321C C C ++,其中1C 的方程为θi e z =(θ从0到2π),相应的像曲线1Γ的方程为 ϕθωi i e e ==3(ϕ从0到23π); 2C 的方程为iy z =(y 从1到0),相应的像曲线2Γ的方程为()iv y i =-=3ω (v 从-1到0)3C 的方程为x z =(x 从0到1),相应的像区线3Γ的方程为u x ==3ω(u 从0到1).因此像区域为()b⎭⎬⎫⎩⎨⎧<<<<=23arg 0,10:πωωωG .三、 共形映射的存在唯一性(Conformal mapping of the existence and uniqueness)1、问题二函数的存在性:当区域D 是下面两种情况之一时,将不存在解析函数,使之保形地映射为单位圆内部.第一,区域是扩充复平面;第二,区域是扩充复平面除去一点(不妨设为∞点,如果是有限点z ,只需做一映射01z z -=ξ即可).无论哪一种情况,如果存在函数)(z f =ω将它们共形映射为1<ω,则)(z f 在整个复平面上解析,且1)(<z f .根据刘维尔定理(见§3.4))(z f 必恒为常数.这显然不是我们所要求的映射.2、问题二函数的唯一性: 一般说来是不唯一的,例如,对任意给定的常数0θ,映射0θωi ze =均把单位圆内部映射为单位圆内部.那么,到底在什么情况下,共形映射函数存在且唯一呢?黎曼(Riemann )在1851年给出了下面的定理,它是共形映射的基本定理.定理(Theorem)6.8(黎曼存在唯一性定理) 设D 与G 是任意给定的两个单连域,它们的边界至少包含两点,则一定存在解析函数)(z f =ω 把D 保形的映射为G .如果在D 和G 内在再分别任意指定一点0z 和0ω,并任給一实数)(00πθπθ≤<-,要求函数)(z f =ω满足00)(ω=z f 且00)(arg θ='z f 则映射)(z f =ω是唯一的.注4:黎曼存在唯一性定理肯定了满足给定条件的函数的存在唯一性,但没有给出具体的求解方法.2 1§6.3 分式线性映射分式线性函数及其分解、分式线性映射的保圆性、保行性、保对称点性、唯一决定分式线性映射的条件、两个典型区域间的映射.1、理解分式线性函数所构成的映射2、掌握分式线性映射的性质3、切实掌握两个典型区域间的映射分式线性映射的保圆性、保行性解析函数的保域性与边界对应原理分式线性映射的保对称点性、唯一决定分式线性映射的条件讲授法多媒体与板书相结合P习题六:4-9164一、分式线性函数及其分解二、分式线性映射的保圆性三、分式线性映射的保行性四、分式线性映射的保对称点性五、两个典型区域间的映射[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008. 基本掌握分式线性函数所构成的映射第二讲授课题目:§6.3 分式线性映射;教学内容:分式线性函数及其分解、分式线性映射的保圆性、保行性、保对称点性、唯一决定分式线性映射的条件、两个典型区域间的映射.学时安排:2学时.教学目标:1、理解分式线性函数所构成的映射;2、掌握分式线性映射的性质;3、切实掌握两个典型区域间的映射;教学重点:分式线性映射的保圆性、保行性;教学难点:分式线性映射的保对称点性、唯一决定分式线性映射的条件;教学方式:多媒体与板书相结合.P习题六:4-9作业布置:164板书设计:一、分式线性函数及其分解;二、分式线性映射的保圆性;三、分式线性映射的保行性;四、分式线性映射的保对称点性;五、两个典型区域间的映射参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月;4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月;课后记事:基本掌握分式线性函数所构成的映射;教学过程:§6.2 分式线性映射(The fraction linearity mapping )形如:dz c baz w ++=的函数,称为分式线性函数.其中d c b a ,,,是复常数,而且0≠-bc ad .在0=γ时,我们也称它为整式线性函数. 一、 分式线性函数及其分解(Fractional linear function and its decomposition) 一般分式线性函数总可以分解为下列四种简单函数复合: (1)α+=z w (α为一个复数); (2)z e w i θ=(θ为一个实数); (3)rz w =(0>r ); (4)、zw 1=. 例2 将分式线性函数iz zw +=2分解为四种简单函数复合 解:⎪⎭⎫ ⎝⎛++=+-+=+=-i z e i z ii z z w i 1222222π,其复合过程为w z z z z z z z ez z iz i −−→−−→−−−→−−→−−→−++-242321143221π1、平移、旋转与相似映射 (1) 平移映射:α+=z w令iy x z +=,21ib b b +=,iv u w +=,则有1b x u +=,2b y v +=,它将曲线C 沿b 的方向平移到曲线γ(2)旋转映射:z e w i θ=令0θi e z =,则有)(0θθ+=i e w ,它将曲线C 绕原点旋转到曲线γ. (3 ) 相似映射:rz w =令θρi e z =,则有θρi e r w =,它将曲线C 放大(或缩小)到曲线γ 2、反演映射:zw 1=令θi re z =,则有)(1θ-=i e r w 即zw 1=,zw arg arg -=由zw 1=可知,当1<z 时,1>w ;当1>z 时,1<w 因此反演映射zw 1=的特点是将单位圆内部(或外部)的任一点映射到将单位圆外部(或内,部)且辐角反号.反演映射zw 1=可以分两步进行,第一步,将z 映射为z w 11=:zw 11=,且 z w arg arg 1=再将1w 映射为w 满足: 1w w=,且11arg arg w w -=定义 6.3设某圆的半径为B A R ,,为两点在从圆心出发地射线上,且2R B o A o =⋅,则称B A 与是关于圆周对称的.即设已给圆)0(|:|0+∞<<=-R R z z C ,如果两个有限点1z 及2z 在过0z 的同一射线上,并且20201||||R z z z z =--,那么我们说1z 及2z 是关于圆C 的对称点.因此,zw 1=可由单位圆对称映射与实轴对称映射复合而成. 二、分式线性映射的保行性(Fractional linear maps preserving feasibility)规定:在扩充复平面上,任一直线看成半径是无穷大的圆. 定理(Theorem)6.8 在扩充复平面上,分式线性函数把圆映射成圆.证明:由于分式线性函数所确定的映射是平移、旋转、相似映射及zw 1=型的函数所确定的映射复合而得,但前三个映射显然把圆映射成圆,所以只用证明映射z w 1=也把圆映射为圆即可. 由此可得如下定理定理(Theorem)6.9分式线性函数在扩充复平面上是共形映射.三、分式线性映射的保圆性(Fractional linear maps preserving circle of)定理(Theorem)6.10扩充 z 平面上任何圆,可以用一个分式线性函数映射成扩充 w 平面上任何圆. 证明:由映射zw 1=把圆映射为圆可证明此定理. 注1:圆C 上的点是它本身关于圆C 的对称点;注2:规定0z 及∞是关于圆C 的对称点;注3 :利用此定理也可以解释关于直线的对称点.例1 求实轴在映射iz i w +=2下的像曲线. 解:在实轴上取三点∞=1z ,02=z ,13=z ,则对应的三个像点为01=w ,22=w ,i w +=13,所以像曲线为11=-w ,上半平面被映射到圆的内部,而下半平面被映射到圆的外部.四、分式线性映射的保对称点性(Fractional linear maps of symmetric point of)引理:不同两点1z 及2z 是关于圆C 的对称点的必要与充分条件是通过1z 及2z 的任何圆与圆C 直交.定理(Theorem)6.11设点1z 及2z 关于圆C 的对称,则在分式线性映射下,它们的像点1w 及2w 关于圆C 的像曲线Γ对称.证明:设Γ'是过1w 及2w 的任意一个圆,则其原像C '是过1z 及2z 的圆.由1z 及2z 是关于圆C 对称,有C '与C 正交,由保角性Γ'与Γ正交,即过1w 与2w 的任意圆Γ'与Γ正交,因此1w 及2w 关于圆C 的像曲线Γ对称.五、唯一决定分式线性映射的条件(The only decision the conditions of fractional linear maps)定理(Theorem)6.12 在z 平面上任意三个不同的点321,,z z z 以及扩充 w 平面上任意三个不同的点321,,w w w ,存在唯一的分式线性函数,把321,,z z z 分别映射成321,,w w w .证明:在z 平面上,考虑已给各点都是有限点的情形.设所求分式线性函数(也称为分式线性变换)是d cz b az w ++=那么,由dcz b az w d cz b az w d cz b az w ++=++=++=222222111,, 得))(())(())((1111d cz d cz d cz b az d cz b az w w ++++-++=-))(())((11d cz d cz bc ad z z +++-= 同理,有:))(())((131313d cz d cz bc ad z z w w +++-=-,))(())((232323d cz d cz bc ad z z w w +++-=-,))(())((222d cz d cz bc ad z z w w +++-=-, 因此,有231321231321::z z z z z z z z w w w w w w w w ----=----, 将上式整理后可以解出形如dcz b az w ++=的分式线性函数.显然得这样的分式线性函数是唯一的. 由此,我们可以解出分式线性函数.由此也显然得这样的分式线性函数也是唯一的.推论1:如果k z ,或k w 中有一个为∞,则只需要将对应点公式中含有∞的项换为1.推论2:设)(z f w =是一分式线性映射,且)(11z f w =及)(22z f w =,则它可表示成2121z z z z k w w w w --=-- (k 为复常数) 特别:当01=w ,∞=2w 时,有 21z z z z k w --= (k 为复常数) 六、 两个典型区域间的映射(Mapping between the twotypical regions)例1 求一分式线性映射把上半平面0Im >z 保形映射成单位圆盘内部1<w .解:所求映射一方面把0Im >z 内某一点0z 映射成0=w ,另一方面把0Im =z 映射成1=w .由于线性映射把关于实轴0Im =z 的对称点映射成为关于圆1=w 的对称点,所求映射不仅把0z 映射成0=w ,而且把0z 映射成∞=w .因此这种映射形如:0z z z z k w --= (k 为待定的复常数) 当z 是实数时,有,1||00=--z z z z 对应1=w ,所以,1||=k 于是θi e k =,其中θ是一个实常数.因此所求的映射一般为:,00z z z z e w i --=θ 由于z 是实数时,1=w ,因此它把直线0Im =z 映射成圆1=w ,从而把上半平面0Im >z 映射成1<w ,取i z -0,0=θ,得所求映射为:iz i z w +-= 例2 求一分式线性映射把单位圆内部1<z 保形映射成单位圆盘内部1<w .解:在|z |<1内任取一点0z ,映射成00=w ,并且把1=z 映射成1=w .由于0z 与01z 关于圆1=z 对称,所以这种映射把01z 映射成∞=w .因此这种映射形如:01001/1z z z z k z z z z k w --=--= (01z k k -=为待定的复常数) 当|z|=1时,有),(1000z z z z z z z z z -=-=- 于是,1|||1|||||1001==--=k z z z z k w 因此θi e k =1,其中θ是一个实常数.所求的映射为:,100z z z z e w i --=θ2 1§6.4几个初等函数构成的共形映射幂函数、指数函数、综合举例1、掌握幂函数构成的共形映射2、掌握指数函数构成的共形映射函数构成的共形映射指数函数构成的共形映射讲授法多媒体与板书相结合P习题六:4-9164一、幂函数构成的共形映射二、指数函数构成的共形映射三、综合举例[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008. 基本掌握幂函数构成的共形映射,指数函数构成的共形映射掌握不好第三讲授课题目:§6.4几个初等函数构成的共形映射;教学内容:幂函数、指数函数、综合举例学时安排:2学时.教学目标:1、掌握幂函数构成的共形映射;2、掌握指数函数构成的共形映射;教学重点:函数构成的共形映射;教学难点:指数函数构成的共形映射;教学方式:多媒体与板书相结合.P习题六:4-9作业布置:164板书设计:一、幂函数构成的共形映射;二、指数函数构成的共形映射;三、综合举例;参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月;4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月;课后记事:基本掌握幂函数构成的共形映射,指数函数构成的共形映射掌握不好;§6.4几个初等函数构成的共形映射(Conformal mapping composed of several elementary functions)一、 幂函数(Power function)()整数2≥=n z w n容易得到:函数n z w =将角形域)2(000nπθθθ≤<<共形映射为角形域00θϕn <<(如下图).因此通俗地讲,幂函数的特点是扩大角形域.相应地,根式函数n z w =作为幂函数的逆映射,则是将角形域)2(000nπθθθ≤<<共形映射为角形域00θϕ<<.同样,我们也通常说,根式函数的特点是缩小角形域.注意:如果是扇形域(即模有限),则模要相应的扩大或缩小,这一点往往容易忽略.例1 区域{}0Re ,0Im ,1:>><=z z z z D 求一共形映射,将D 变为上半平面.解: 如下图,首先由21z z =将D 变为上半单位圆域.接着由分式线形映射11211z z z -+=将其变为第一象限,最后由映射22z =ω将其变为上半平面.因此所求映射为22211⎪⎪⎭⎫ ⎝⎛-+=z z ω. 二、指数函数(Exponential function)z e w =容易得到 :函数z e w =将带形域()π2Im 0≤<<h h z 共形映射为角形域h w <<arg 0(图6.20).因此可以简单的说,指数函数的特点是将带形域变成角形域.相应的,对数函数z w ln =作为指数函数的逆映射,则是将角形域()π2arg 0≤<<h h w 变成带形域h z <<Im 0.例2 求一共形映射,将带形域⎭⎬⎫⎩⎨⎧<<=ππz z D Im 2:映射为上半平面.解: 如下图,首先由平移映射i z z 21π-=将带形域D 变为带形域2Im 01π<<z ,再由相似映射122z z =变为带形域2Im 02π<<z ,最后由指数函数2z e w =变为上半平面.因此所求的映射为⎪⎭⎫⎝⎛-=i z ew 22π.三、综合举例(Comprehensive example )例3 设区域{}0Im ,1:><=z z z D ,求一个共形映射,将区域D 保形映射成上半平面.解: 作一分式线性映射11'-+=z z w 把-1及+1分别映射成w '平面上的0及∞两点,于是把1=z 及0Im =z 映射成w '平面上在原点互相直交的两条直线.z 平面上的实轴映射成w '平面上的实轴; 0=z 映射成1-='w ,半圆的直径AC 映射成w '平面上的负半实轴;平面-z O)1(-B )(i D -)0(A C平面-'w C)1(-D )1(B )0(A C平面-w圆1=z 映射成w '平面上的虚轴;又由于i z =映射成i i i w -=-+=11'半圆ADC 映射成w '平面上的下半虚轴.由在保形映射下区域及其边界之间的对应关系,已给半圆盘映射到w '平面上的的区域:第三象限23'arg ππ<<w . 作映射2'w w =当w '在第三象限中变化时,w arg 在π2及π3之间变化.因此w '平面上的第三象限就映射成w 平面上的上半平面. 因此,所求共形映射为:22)11('-+==z z w w . 例4 求一个共形映射,把z 平面上的带形π<<z Im 0保形映射成w 平面上的单位圆1<w .解:由于指数函数z e w ='把w 平面上的已给带形保形映射成w '平面上的上半平面. 取w '平面上关于实轴的对称点-i 及i ,那么函数iw iw w +-='', 把的w '平面上的上半平面保形映射成w 平面上的单位圆1<w . 因此,所求共形映射为:ie i e w z z +-=Oi-i平面-'w 平面-z。
第六共形映射演示文稿
第13页,共93页。
逆映射为:z= -dw+b ( a )( d ) bc 0 ) cw-a
分式线性映射的复合亦是分式线性映射
w ; z . w az b
z
cz d
分解为: w =( ) 1 +
第14页,共93页。
1
,
2
1
第4页,共93页。
1.解析函数导数的几何意义
w f (z) , z0 D , f (z) 0
C光滑曲线:z z(t)(, t )
w f (z)将C映射为w平面过点w0 f (z0 )
的光滑曲线 : w f (z(t)), t ,方向: t
y
(z
) z(t0 )
s
p
z(t0 t)
第27页,共93页。
区域对应:
在分式线性变换下:c内部映射为c内部或外部. 不可能将c内部的一部分映射为c内部的一部分 而c内部的另一部分映射为c外部的一部分.
理由如下 : 设z1, z2为c内的任意两点.连z1z2, z1z2的像为 圆弧w1w2(或直线),且w1在c外, w2在c内, 弧w1w2必交c于一点Q,Q点在c所以必是c 上一点的像.因而有两个不同的点q1,q2被映 为同一点Q, 这与分式线性映射的唯一性矛 盾.故得证.
w
z
o
3)
反演
w
1 z
w1
=
1 z
w = w1
第16页,共93页。
要用几何方法由z作出w,首先定义关于圆的对称点的概念 :
T
c
r Oz0
z1
p
z2
p
设c为以z0为圆心, r为半经的圆周, 以圆心为起点的半直线上,若p与p满
复变函数与积分变换第06章 共形映射
C : z z(t) t [ , ] 取t0 ( , ) z0 z(t0 ) z'(t0 ) 0 则
w f (z)
z平面上C : z z(t) w平面上 : w f [z(t)]
~~~~~~~~~~
(2)补 充 定 义 使 分 式 线 性 函数 在 整 个 扩 充 平 面
上 有 定 义: 当c 0时,w a / c
z d / c z
当c 0时, 在z 时 , 定 义w .
(3)w az b z dw b (d )(a) bc 0
由(1)式 仅与映射w f (z)及点 z0的值有关。
② 转动角的大小及方向与曲线C的形状与
方向无关,这种性质称为映射具有转动角
~~~~~~~~~~~
的不变性.
~~~~~~~~~~~~~
设Ci (i 1,2)在 点z0的 夹 角 为 , Ci (i 1,2)
在 变 换w f (z)下 映 射 为 相 交 于 点w0 f (z0 )
(ii)w az
设z re i a ei ,则w rei( )
把z先转一个角度再将z 伸长(或缩短) a
倍后就得w, w az是旋转和伸缩合成的映射.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
名词介绍: 关于圆的对称点(见图) y
o
x
割线方向p0 p的极限位置:
z'(t0
)
lim
t 0
z(t0
t ) t
z(t0
)
—曲线C在p0处的切向量且方向与C正向一致.
复变函数与积分变换—复变函数6.6
第六节 施瓦茨-克里斯托费尔映射
1
施瓦茨-克里斯托费尔映射的引入 施瓦茨-克里斯托费尔映射的概念
(z) (w )
2
3
应用举例
.
. .
. O 4
z x1 x 2
x3
小结与思考 1 π 1
O
. 3 w . 1 2 w
π 3
. π 2
w2
一、施瓦茨-克里斯托费尔映射的引入
问题: z 平面上的上半平面如何
难. 充分了解本课内容.
Thank You!
再见!
N
P
y S x z
1 ) 当 z 未达到 x 1之前 (即 z x 1 ) : Argd w 不变 2 ) 当 z 经过 x 1时 (即 z x 1 z x 1 ) :
z 是w欲沿下一条边移动所必须转过的角 , x 1由负变正 Arg ( z x 1 )变化 π
而其它项不变, Argd w π 1
令 x 常数 , 得以 y 为参数的电力线方程 令 y 常数 , 得以 x 为参数的等位线方程 : :
u e cos y 1 , v y e sin y
u x e x cos 1 x v e sin
1
.
上式表示把 z 平面上的上半平面映射成 t 平
面上的一个内角为 i ( i 1 , 2 , , n )的多角形区域
的映射. 因此: 上半平面 ? 已知多角形域
t [ ]d z
w Kt c
与已知多角形域相似的多角形域
补充: 在实际问题中, 常见的多角形是变态多角
说明: 除了在 z x i 外 ,
复变函数与积分变换第二版本6.1 共形映射概念
第 附:保角映射的来历
六 章 1777年 欧拉(Euler)就曾遇到过所谓的保角映射,他把
共
这种映射称为“小范围里的相似映射”。
形 映
1779年 拉格朗日(Lagrange)创建了从旋转曲面到平面上
射
的保角映射理论。
1788年 保角映射这一术语最早出现在俄罗斯科学院院士
舒别尔特(
)的制图学著作中。
1822年 高斯( Gauss )创建了由复变函数出发的一般的保 角映射理论。
(2) 伸缩率不变性,
则称函数 wf(z)为区域 D 内的 第二类保角映射。
C1
10
C0 z0
0 1
(z)
wf(z)
Γ0 1 0
Γ1
w0 1 0
(w)
11
§6.1 共形映射的概念
第 三、共形映射
六 章
1. 第一类保角映射
共 2. 第二类保角映射 形 3. 共形映射
映 射 定义 若函数wf(z)为区域 D 内的第一类保角映射,且当
映
(1) 在 z1i 点, f(i)2i2e2 ,
射 因此,函数 wf(z)在 z1i 处
(z)
Γ保角性,
其伸缩率为 2,旋转角为 /2.
(2) 在 z20点, f(0)0,
wf(z)
(w)
Γ1
因此,函数的保角性不成立。
2
C1
13
§6.1 共形映射的概念
第
P138 例6.2
六 章 解 (1) 由于 lim
| w | lim | z | 1,
z 0 | z | z0 | z |
共 形
因此,它具有伸缩率不变性;
映 射
复变函数与积分变换学习指导(第六章)
第七章保形变换前几章主要是用分析的方法,也就是用微分、积分和级数等,来讨论解析函数的性质和应用。
内容主要涉及所谓柯西理论;这一章主要是用几何方法来揭示解析函数的特征和应用。
保形变换现审定名为“共形映射”或“共性映照”。
它在数学本身以及在流体力学、弹性力学、电学等学科的某些实际问题中,都是一种使问题化繁为简的主要方法。
第一节解析变换的特性一.保域性1.定理7.1(保域定理)设在区域内解析且不恒为常数,则的象也是一个区域。
证先证的每一个点都是内点。
,使,则为的一个零点,由解析函数的零点孤立性知,,使,且在上无异于的零点。
令,则。
下证。
,考察,当时,,由Rouché定理,即在内有解,从而。
再证内任两点,可用全含于内的折线连接起来。
由于是区域,在内有折线,,连接,其中。
函数把折线映射成内连接的逐段光滑曲线。
由于为内紧集,根据有限覆盖定理,可被内有限个开圆盘所覆盖,从而在内可作出连接的折线。
综合,知为区域。
2.推论7.2设在区域内单叶解析,则的象也是一个区域。
证因为在区域内单叶,故在内不恒为常数。
3.定理还可推广为:在扩充平面的区域内除可能有极点外处处解析,且不恒为常数,则的像为扩充平面上的区域。
4.单叶解析函数的性质定理6.11若在区域内单叶解析,则在内。
定理7.3(局部单叶性) 设在解析且,则在的某个邻域内单叶解析。
(证明类似于和)二.解析变换的保角性——导数的几何意义1.导数辐角的几何意义设为过的光滑曲线,,则且是在处的切线的辐角。
设,故也是光滑的,。
若内过还有一个光滑曲线。
设,则即处曲线与的夹角恰好等于处曲线与的夹角。
单叶解析函数作为映射时,曲线间夹角(即切线的夹角)的大小及方向保持不变,这一性质称为旋转角不变性。
称为变换在的旋转角,仅与有关,与过的曲线的选择无关。
象曲线在处的切线正向可由原象曲线在的切线正向旋转一个旋转角得到。
2.导数模的几何意义由于,故象点间的无穷小距离与原象点间无穷小距离之比的极限是,称为变换在的伸缩率。
复变函数与积分变换课件6.2 共形映射的基本问题
证明 (略) 14
§6.2 共形映射的基本问题 第 二、问题二(基本问题) 六 对给定的区域 D 和 G ,求共形映射 w f (z ) , 使 G f (D) . 章 共 2. 基本问题的简化 P139 形 对给定的单连域 D , 求共形映射,使得 D 映射为单位圆域。 映 射 事实上,由此即可求得任意两个单连域之间的共形映射。
ei ,
Γ
(w )
G
1
π π 2π . 其中 : 2 2
即得象区域 G 如图所示。
12
§6.2 共形映射的基本问题 第 六 章 共 解 设区域 D 的边界为 C ,则 C 的方程为 形 z e i , 其中 : 0 2π . 映 射 1 w z 的映射下, (2) 在 曲线 C 对应的 象曲线 Γ 的方程为
§6.2 共形映射的基本问题 第 附:关于存在性与唯一性的补充说明 六 2. 关于唯一性 P142 章 一般说来是不唯一的。 共 0 , 函数 w z ei 0 将单位圆域 形 比如 对于任意给定的实常数 映 仍然映射为单位圆域。 射
(港饼)
18
§6.2 共形映射的基本问题 第 附:关于存在性与唯一性的补充说明 六 3. 黎曼存在唯一性定理 章 定理 设 D 和 G 是任意给的的两个单连域,在它们各自的边界 共 形 上至少含有两个点,则一定存在解析函数 w f (z ) , 将区 至少含有两个点 映 域 D 双方单值地映射为 G。如果在区域 D 和 G 内再分别 射 任意指定一点 z0 和 w0 , 并任给一个实数 0 ( π π ) , 要求函数 w f (z ) 满足 f ( z0 ) w0 且 arg f ( z0 ) 0 , 则 映射 w f (z ) 的函数是唯一的。
2022年复变函数与积分变换第六章共形映射练习题及答案
第六章 共形映射一、选择题:1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( )(A )21<z (B )211<+z (C )21>z (D )211>+z 2.映射iz iz w +-=3在i z 20=处的旋转角为( ) (A )0 (B )2π (C )π (D )2π-3.映射2iz ew =在点i z =0处的伸缩率为( )(A )1 (B )2 (C)1-e (D )e4.在映射ieiz w 4π+=下,区域0)Im(<z 的像为( )(A)22)Re(>w (B )22)Re(->w (C )22)Im(>z (D )22)Im(->w 5.下列命题中,正确的是( )(A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43+=在0=z 处的伸缩率为零(C ) 若)(1z f w =与)(2z f w =是同时把单位圆1<z 映射到上半平面0)Im(>w 的分式线性变换,那么)()(21z f z f =(D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(22=-+-y x 的对称点是( )(A )i +6 (B )i +4 (C )i +-2 (D )i7.函数iz iz w +-=33将角形域3arg 0π<<z 映射为 ( )(A)1<w (B )1>w (C ) 0)Im(>w (D )0)Im(<w 8.将点1,,1-=i z 分别映射为点0,1,-∞=w 的分式线性变换为( )(A ) 11-+=z z w (B )zz w -+=11(C )z z e w i-+=112π(D) 112-+=z z e w i π9.分式线性变换zz w --=212把圆周1=z 映射为( ) (A ) 1=w (B) 2=w (B ) 11=-w (D) 21=-w10.分式线性变换zz w -+=11将区域:1<z 且0)Im(>z 映射为( ) (A )ππ<<-w arg 2(B ) 0arg 2<<-w π(C )ππ<<w arg 2(D )2arg 0π<<w11.设,,,,d c b a 为实数且0<-bc ad ,那么分式线性变换dcz baz w ++=把上半平面映射为w 平面的( )(A )单位圆内部 (B )单位圆外部 (C )上半平面 (D )下半平面12.把上半平面0)Im(>z 映射成圆域2<w 且满足1)(,0)(='=i w i w 的分式线性变换)(z w 为( )(A )z i z i i+-2 (B )i z i z i +-2 (C )z i z i +-2 (D )iz iz +-2 13.把单位圆1<z 映射成单位圆1<w 且满足0)0(,0)2(>'=w iw 的分式线性变换)(z w 为( )(A)iz i z --22 (B )iz z i --22 (C )iz i z +-22 (D )izzi +-22 14.把带形域2)Im(0π<<z 映射成上半平面0)Im(>w 的一个映射可写为( )(A )z e w 2= (B )z e w 2= (C )z ie w = (D )ize w =15.函数ie ie w z z +---=11将带形域π<<)Im(0z 映射为( )(A )0)Re(>w (B )0)Re(>w (C )1<w (D )1>w 二、填空题1.若函数)(z f 在点0z 解析且0)(0≠'z f ,那么映射)(z f w =在0z 处具有 . 2.将点2,,2-=i z 分别映射为点1,,1i w -=的分式线性变换为 .3.把单位圆1<z 映射为圆域11<-w 且满足0)0(,1)0(>'=w w 的分式线性变换=)(z w 4.将单位圆1<z 映射为圆域R w <的分式线性变换的一般形式为 .5.把上半平面0)Im(>z 映射成单位圆1)(<z w 且满足31)21(,0)1(=+=+i w i w 的分式线性变换的)(z w = .6.把角形域4arg 0π<<z 映射成圆域4<w 的一个映射可写为 .7.映射z e w =将带形域43)Im(0π<<z 映射为 . 8.映射3z w =将扇形域:3arg 0π<<z 且2<z 映射为 .9.映射z w ln =将上半z 平面映射为 . 10.映射)1(21zz w +=将上半单位圆:2<z 且0)Im(>z 映射为 . 三、设2222211111)(,)(d z c b z a z w d z c b z a z w ++=++=是两个分式线性变换,如果记⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-δγβα11111d c b a ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛d c b a d c b a d c b a 22221111 试证1.)(1z w 的逆变换为δγβα++=-z z z w )(11;2.)(1z w 与)(2z w 的复合变换为dcz baz z w w ++=)]([21.四、设1z 与2z 是关于圆周R a z =-Γ:的一对对称点,试证明圆周Γ可以写成如下形式λ=--21z z z z 其中Ra z a z R-=-=12λ.五、求分式线性变换)(z w ,使1=z 映射为1=w ,且使i z +=1,1映射为∞=,1w . 六、求把扩充复平面上具有割痕:0)Im(=z 且0)Re(≤<∞-z 的带形域ππ<<-)Im(z 映射成带形域ππ<<-)Im(w 的一个映射.七、设0>>a b ,试求区域a a z D >-:且b b z <-到上半平面0)Im(>w 的一个映射)(z w .八、求把具有割痕:0)Im(=w 且1)Re(21<≤z 的单位圆1<z 映射成上半平面的一个映射.九、求一分式线性变换,它把偏心圆域⎭⎬⎫⎩⎨⎧<->2511:z z z 且映射为同心圆环域R w <<1,并求R 的值.十、利用儒可夫斯基函数,求把椭圆1452222=+y x 的外部映射成单位圆外部1>w 的一个映射.第六章 共形映射一、1.(B ) 2.(D ) 3.(B ) 4.(A ) 5.(D )6.(C ) 7.(A ) 8.(C ) 9.(A ) 10.(D ) 11.(D ) 12.(B ) 13.(C ) 14.(B ) 15.(C ) 二、1.保角性与伸缩率的不变性 2. 236--=iz iz w 3.z +14.az a z w i --=θ1Re(θ为实数,1<a ) 5.iz iz +---11 6.λ-λ-=ϕ444z z ew i (ϕ为实数,0)Im(>λ) 7.角形域43arg 0π<<w8.扇形域π<<w arg 0且8<w 9.带形域π<<)Im(0w 10.下半平面0)Im(<w 五、)1(1)1(i z z i w ++-+-=. 六、)1ln(-=ze w .七、⎭⎬⎫⎩⎨⎧--π=z a z a b i b w 2exp . 八、221212121⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+=z z z z w . 九、θ++=i e z z w 414(θ为实数),2=R . 十、)9(912-+=z z w .答案。
北京邮电大学复变函数第六章解读
立.
综上所述, 有 定理一
设函数w f (z)在区域 D内解析, z0 为 D内一点, 且 f (z) 0, 那末映射w f (z)在 z0 具有两个性 质: (1)伸缩率不变性; (2)保角性.
二、共形映射的概念
定义 设映射w f (z)在区域D内任意一点 具有保角性和伸缩率不变性,那末称 w f (z) 是第一类保角映射.
曲线在w0处的切线倾角为0 ,则0 0称为
曲线C经函数ω=f (z)映射后在z0处的旋转角.
y (z)
w f (z) y (w)
. 0
C
z0
. 0
w0
0
x0
x
2.伸缩率不变性
设 w f (z)在区域 D内解析, z0 D,且 f (z0 ) 0.
因为
f
(z0 )
lim
z z0
f (z) f (z0 ) lim w ,
z z0
z0 z
令 z z ei , w w ei .
y (z)
w f (z) y (w)
. z0
zC z
0
x
.
w
. w0
w
0
x
w z
w ei z ei
w w0 z z0
ei( ) ,
所以
f (z0 )
lim
z0
w z
lim z z0
w w0 z z0
为曲线C 在 z0 的伸缩率
z 平面
平面
f (z)
D
| | 1
g(w)
w g1( )
w 平面
G
w g 1( f (z))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页
退出
复变函数与积分变换
出版社 理工分社
综上所述,我们得出定理6.1.
定理6.1设函数w=f(z)在区域D内解析,点z0∈D且f′(z0)≠0,则映射w=f(z)
在z0点具有以下两个性质: ①保角性:过z0的任意两条曲线间的夹角在映射w=f(z)下,既保持大小,又
保持方向.
②伸缩率不变性. 由此可见,若w=f(z)在区域D内解析,z0∈D且f′(z0)≠0,w0=f(z0),则
页
退出
复变函数与积分变换
出版社 理工分社
于是结合6.1.1节的讨论,可得到定理6.2.
定理6.2如果函数w=f(z)在z0点解析,且f′(z0)≠0,则映射w=f(z)
在z0点是共形的;如果函数w=f(z)在D内解析且处处有f′(z)≠0,则 映射w=f(z)是D内的共形映射.
定理6.3如果w=f(z)在D内单叶解析,则w=f(z)是D内的共形映射.
的切线与u轴正方向的夹角.于是有
故
页
退出
复变函数与积分变换
出版社 理工分社
其中α ′-α 是C和C′在点z0的夹角(经过z0的两条有向曲线C与C′的切线
方向所构成的角,称为两曲线在该点的夹角)(反时针方向为正),β ′- β 是Γ 和Γ ′在点w0=f(z0)的夹角(反时针方向为正).式(6.2)表明映射 w=f(z)在点z0既保持了夹角的大小,又保持夹角的方向(图6.2). 这种性质 称为映射的保角性.
复变函数与积分变换
出版社 理工分社
第6章 共版社 理工分社
我们已知道,复变函数w=f(z)在几何上可以看成是z平面上一个点集到w平面 上一个点集的映射,自然地,单叶解析函数也是两个平面点集之间的映射,
被称之为共形映射.理论上或实际中,往往可通过建立恰当的共性映射,把
仅与z0有关,而与过z0的曲线C的形状和方向无关,这种 称为映射w=f(z)在z0处的转
图6.1
页
退出
复变函数与积分变换
出版社 理工分社
下面讨论区域D内过点z0的两条有向光滑曲线C及C′的情形:设C及C′
在w平面的像曲线分别为Γ 及Γ ′,以α 及α ′分别记C及C′在z0点 的切线与x轴正方向的夹角,而用β 及β ′分别表示Γ 及Γ ′在w0点
页
退出
复变函数与积分变换
出版社 理工分社
函数w=f(z)把z平面上的曲线C变为w平面上过点w0=f(z0)的曲线Γ :
因为
故曲线Γ 在点w0也有切线,切向量为
w′(t0),它与w平面上u(实)轴的夹角为
于是
页
退出
复变函数与积分变换
出版社 理工分社
如果把z平面与w平面叠放在一起,使点z0与点w0重合,使两实轴同向平行, 则C在点z0的切线与Γ 在点w0的切线之间的夹角φ -θ 就是 ).换句话说,就是Γ 在点w0的切线可由C在点z0的切线转动一个角 到.显然 性质称为转动角的不变性.而导数辐角 动角.这也就是导数辐角的几何意义. (图6.1 后得
页
退出
复变函数与积分变换
出版社 理工分社
例6.1试求映射f(z)=ln(z-1)在点z0=-1+2i处的旋转角,并说明映射将 z平面的哪一部分放大了,哪一部分缩小了. 解 在 处有
当|f′(z)|<1时,即在区域(x-1)2+y2>1内时图形缩小,当|f′(z)|>1时, 即在区域 内时图形放大.
页
退出
复变函数与积分变换
出版社 理工分社
6.1.2共形映射的概念
定义6.1设w=f(z)在Nδ (z0)内是一一对应的,且在z0具有保角性
和伸缩率不变性,则称映射w=f(z)在z0点是共形的,或称w=f(z) 在z0点是共形映射.如果映射w=f(z)在区域D内的每一点都是共形
的,则称w=f(z)是区域D内的共形映射.
w=f(z)把某Nδ (z0)内的无穷小曲边三角形映射为某Nε (w0)内的一个无穷小曲
边三角形,由于保持了曲线间的夹角大小和方向,故这两个小三角形近似地 “相似”.
此外,由于近似地有
则w=f(z)把某Nδ (z0)内的一个半径
充分小的圆周|z-z0|=δ 近似地映射为w平面上某Nε (w0)内的圆周|w- w0|=|f′(z0)|δ .
,而w=f(ξ )把区域E共形映射成w平面上的区域G,则复合函数w=f [g(z)] 是一个把D映射为G的共形映射.这一事实在求具体的共形映射时将经常用到.
解析函数所确定的映射还具有保域性,即下面的定理(证明从略).
页
退出
复变函数与积分变换
出版社 理工分社
定理6.5(保域性)设w=f(z)在区域D内解析,且不恒为常数,则D的像 G=f(D)也是一个区域. 定义6.2具有伸缩率不变性与保角性的共形映射称为第一类共形映射;如果 映射w=f(z)具有伸缩率不变性,但只保持夹角的大小不变而方向相反,则称 映射为第二类共形映射. 例6.2函数f(z)=z2+2z在z平面处处解析,f′(z)=2z+2,显然当z≠-1时,
复杂区域上的问题转化到简单区域上去讨论,这种思想方法在数学本身以及 在流体力学、弹性力学、电学和地球物理学等学科中都有着非常重要的应用
.
页
退出
复变函数与积分变换
出版社 理工分社
6.1共形映射的概念 6.1.1导数的几何意义 在实分析中,f′(x0)表示曲线C={(x,y):y=f(x),x∈I}上过点 线斜率.人们自然会问,在复分析中f′(z)表示什么? 设函数w=f(z)在区域D内解析,点 条有向光滑曲线C: ∈D且 ≠0.在D内通过z0任意引一 处的切
图6.2
页
退出
复变函数与积分变换
出版社 理工分社
其次,我们讨论导数的模|f′(z0)|的几何意义.由于|Δ z|和|Δ w|分别是向
量Δ z和Δ w的长度,故
这说明像点间的无穷小距离与原
像点间的无穷小距离之比的极限是|f′(z0)|,这可以看成是曲线C经w=f(z) 映射后在z0点的伸缩系数或伸缩率.它仅与z0有关,而与曲线C的形状和方向 无关,这个性质称为映射w=f(z)在z0点的伸缩率的不变性.当|f′(z0)|>1时 ,从z0点出发的任意无穷小距离经w=f(z)映射后都被伸长了;当 ,从z0点出发的任意无穷小距离经w=f(z)映射后都被压缩了. 时
证若f(z)在区域D内单叶解析,由定理5.13,对 则由定理6.2知,w=f(z)在区域D内是共形的. z∈D有 f′(z)≠0,
页
退出
复变函数与积分变换
出版社 理工分社
由定理6.1及复合函数的求导公式立即可得: 定理6.4(保复合性)两个共形映射的复合仍然是一个共形映射.
定理6.4说明,如果ξ =g(z)把z平面上的区域D共形映射成ξ 平面上的区域E