回顾目前人类干细胞的基因不稳定性及未来展望

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简明回顾:人类干细胞中的基因组不稳定性:目前的情况及将来的挑战

ABSTRACT

人们已经认识到,基因组的不稳定性是基于干细胞的疗法进行扩展的最重要障碍之一。最近几年,不断积累的证据表明人类干细胞在体外培养条件下经历了多种生物学变化程序,包括染色体数量和结构上的异常,点突变端粒长度的变异,以及表观遗传上的不稳定。随着这一领域向前发展,对与人类基因组可塑性有关的风险因素的认识,非常有力地支持将广泛基因组筛查作为质控平台的一部分,以证明基于干细胞产品的安全性。本文中,我们做了一次及时而广泛的回顾,回顾这一领域的现状及正在出现的趋势,最终,强调了采用新调控标准的必要性,这种调控标准可以使治疗性应用的开发途径更为安全有效。

INTRODUCTION

再生医学的广阔天地为使用干细胞和/或其子代来替代被疾病损伤的组织带来了令人兴奋的前景,这种取代要么是通过细胞整合(移植成活)到目标组织中,以及/或者是利用细胞产生可溶性信号分子的能力。干细胞可以源自多种组织,也就是可以来自胚胎组织及成体组织。首先从胚球内侧细胞团中分离出了人类胚胎干细胞(hESCs)[1],已知的是它自我更新的能力以及它的多能性,它可以产生胚胎的三个胚层(内胚层,中胚层,外胚层)能产生的所有细胞类型。hESCs为替换治疗,疾病建模,以及药物筛查带来了巨大的希望,但最近几年人们发现了相当多的关于染色体畸变的令人心烦意乱的数据,这些数据还伴有显著的伦理争议,它们妨碍了对这些细胞的研究及临床应用。2006年Takahashi与Yamanaka揭示了用异位共表达已知的转录因子将体细胞重编程为胚胎样状态的可行性[2]。这种方法避免了子宫外胚胎损伤,对获取这些被称为诱导性多能干细胞(iPSCs)的热情,一定程度上掩盖了与重编程过程相关的高突变率[3]。按现有的了解情况,hESCs和人iPSCs(hiPSCs)在基因,表观遗传,以及转录水平上有微妙的区别。不过,这种区别是意味深长的,或仅仅是,打个比方说,不同培养环境所造成的结果,这个问题还悬而未决。

此外,最近几年里,人类成体干细胞,比如造血干细胞(HSCs),间质干/基质细胞(MSCs),神经干细胞(NSCs),表皮干细胞或皮肤干细胞,在整个成年期的组织里不同的微环境中被发现,为能够支持组织的维持与再生的静止期祖细胞提供了另一种来源。这些多能干细胞中的某些类型,比如HSCs或MSCs,也可在新生组织中发现,比如胎盘或是脐带血。但是,如同在多能干细胞中的那样,不断出现的证据表明这些细胞在体外培养扩张期间,基因异常和转换表现出时间依赖性累积现象。

在这种情况下,非常值得注意的是,不考虑细胞类型,体外扩张期间的质量控制对干细胞治疗方面在临床上更安全地实施十分关键。欧洲药品管理局在其“对基于干细胞药物的反思”一文中强调了与操作步骤及多能细胞和体细胞培养有关的致癌潜能,并做了一份关于进行细胞遗传学分析以及评估参数的建议,这些评估参数包括端粒酶活性,增殖能力,以及衰老状态[4]。关于国际干细胞银行的提议要解决同样的议题[5],它设想建立一个关于标准化优良操作的全球性网络,以便干细胞的存储与分配。在这件事上,美国食品与药品管理局(FDA)的失职情况还在不断恶化,越来越多的诊所往往在没有什么控制力的司法权下进行操作,并用一些未经证明的疗法来应对无数的病理情况(见[6])。在某些例子中,缺乏健全

而可靠的科学追踪,引起了致命的后果[7]。

这里,我们对评估基因完整性的方法做了一个简要总结,然后对已经报道的各种发现做了一个最新的,全面的回顾,因此深入关注了hESCs,hiPSCs以及人类成体干细胞中的基因组不稳定性问题。我们也讨论了研究的瓶颈以及未来的趋势。

评估基因组完整性的常用方法——简要回顾

最常用来评估基因组完整性的技术,从本质上都是基于细胞遗传学分析和DNA分析的。传统的核型被认为是发现非整倍体(异倍体),多倍体,以及其它大型染色体失衡。通常这涉及到对有丝分裂中期静止的染色体进行吉姆萨染色显带,然后可以用普通光镜进行分析。吉姆萨染色的染色体的核型可以根据人类遗传学国际命名体系(ISCN)来描述[8]。尽管已经对传统的核型方法进行了一些优化,但这些步骤仍然十分漫长,需要熟练的人员来进行,受限于较低的平均分辨率(一般>3Mb),这种黑白染色方式难以解析复杂的重组,并且这种方法需要获取数量很多的中期细胞。除此之外,现在已经清楚某些亚核型变异不可忽视,因为从临床角度来看它们可以有严重的含义。综合起来考虑,这些缺点促使,特别是通过使用高分辨率非同位素技术,促使了分子细胞遗传领域的重大进步。一个例子就是原位杂交荧光技术(FISH)。FISH技术出现于20世纪80年代早期[10],从本质上来说它依赖于使用直接或间接探针,通过对有丝分裂中期的染色体(分辨率1~2Mb),间期核(50kb到1Mb),或DNA 纤维(10~500kb)进行荧光测量,来发现特定的DNA目标序列。由于其高敏感性,高性价比,以及高度可重复性,FISH在生物和医学中迅速获得了广泛的承认,并证明了其对各种目的而言的巨大价值[11]。其中一些例子包括非分裂细胞中的染色体畸变分析,3D染色体组织研究,基因图谱绘制,DNA复制/重组研究,疾病特征及诊断。但是,FISH有一个主要的缺陷就是只能发现已知的基因畸变,限制了它在基因组范围上的应用,这使得它不能对染色体畸变做广泛的筛查。通过与受到不同标记的DNA探针杂交并成像,使得人们可以观察到人类所有的24条染色体(22条常染色体,X和Y染色体),每条染色体都是一种单独的颜色,并且只用一步完成,这种性质极大地克服了上述的FISH缺陷。这使人们开发出了一些新的基于FISH的技术,比如光谱分型(SKY)[12],以及多重FISH(M-FISH)[13]。这两种技术的成像获取模式都与FISH不同:SKY依赖于通过特制的多频光滤波器来进行单步成像获取,而M-FISH用的是一套荧光染料特异性光滤波器。这些技术的限制包括必须要有中期细胞,一般分辨率较低(大约1~3Mb),不能发现染色体内重组。

另一种很受欢迎的技术是比较基因组杂交(CGH)[14],这项技术近些年在肿瘤学研究和发现胚胎期与新生期基因组畸变方面提供了无与伦比的认识。CGH使用测试基因组和对照基因组,它们用不同的荧光染料标记(比如,测试组染成绿色,对照组染成红色),然后与中期染色体完全杂交。然后对每条染色体,检测测试基因组相对于对照组的荧光率,得到关于基因材料得到DNA区域(绿红比上升)或丢失DNA区域(绿红比下降)的信息。但是,CGH有一些限制,也就是它的分辨率较低(5~10Mb),它无法发现平衡重组,比如倒位,或对等重组(reciprocal),或罗伯逊易位。CGH的原理也与微阵列技术联合(阵列-CGH),利用细菌人造染色体(BACs)(150~200kb大小),cDNAs(0.5~2kb),聚合酶链式反应(PCR)产物(0.1~1.5kb),以及寡核苷酸(25~80bp)充当调查探针[15~18]。阵列-CGH技术的最大分辨率是一个与长度,分布及探针间空位有关的函数,使用BACs的分辨率在50~100kb,使用寡核苷酸探针的分辨率在1~10kb。其它基于阵列的平台使人们可以发现单核苷酸多态性(SNP),并且除了可以提供拷贝数量变异(CNVs)的信息,还有一个好处就是显示杂合性的丧失,或是片段性单亲二倍体。

我们现在处于一个节点,下一代测序技术正在成熟,那将使得人们可以在bp精度上测

相关文档
最新文档