图形的旋转(北师大版)
第3讲 图形的运动(教师版)(知识梳理+典例分析+举一反三+巩固提升)北师大版
![第3讲 图形的运动(教师版)(知识梳理+典例分析+举一反三+巩固提升)北师大版](https://img.taocdn.com/s3/m/f196e80d28ea81c758f578ef.png)
第3讲图形的运动知识点一:图形的旋转1. 图形旋转的含义及三要素旋转中心、旋转方向、旋转角度2. 在方格纸上画简单图形绕其顶点旋转90°后的图形图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转了相同的度数,对应点到旋转点的距离相等,对应线段相等,对应角相等。
3.旋转的特点旋转不改变图形的形状和大小,只改变图形的位置。
知识点二:图形的运动1.在方格纸上图形的平移、旋转(1)图形平移时,先确定移动的方向,再确定移动的格数;(2)旋转应找准旋转中心、旋转方向以及旋转角度;(3)作轴对称图形要先确定对称轴。
图形经过平移、旋转、轴对称变换后,图形大小不变。
2. 记录图形位置的“还原”过程用平移或旋转进行图形运动时,要先观察变化前后各部分的位置,再确定如何通过平移或旋转得到。
知识点三:欣赏与设计利用平移、旋转和轴对称设计美丽的图案一个图形通过平移、旋转或轴对称变换可以得到不同的图案。
复杂的图案是由一个或几个简单的基本图形变换而来的。
考点一:图形的旋转例1.(2020春•綦江区期末)画一画,填一填.(1)画出把长方形绕0点顺时针方向旋转90°后的图形.(2)旋转前A点的位置是(4,3),旋转后A点的位置是(2,5).(3)画出把三角形向下平移4格后的图形.(4)画出三角形的各边缩小为原来的后的图形.【分析】(1)根据旋转的特征,长方形绕点O顺时针旋转90°,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
(2)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,及长方形旋转前、后A所在的列与行即可分别用数对表示出来。
(3)根据平移的特征,把三角形的各顶点分别向下平移4格,依次连结即可得到平移后的图形。
(4)图中三角形是两直角边分别为4格、2格的直角三角形,根据图形放大与缩小的意义,缩小后的图形是两直角分别为(4×)格、(2×)格的直角三角形。
八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件
![八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件](https://img.taocdn.com/s3/m/d0a6f9d765ce05087732133a.png)
后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.
八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件
![八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件](https://img.taocdn.com/s3/m/8441cf54b9f3f90f76c61bc7.png)
2. 旋转的性质: 一个图形和它经过旋转所得的图形中,对应
点到旋转中心的距离相等.任意一组对应点与旋 转中心的连线所成的角都等于旋转角;对应线段 相等,对应角相等.
知1-练
4 如图,△ABC和△ADE均为等边三角形,则图中 可以看成是旋转关系的三角形是( C ) A.△ABC和△ADE B.△ABC和△ABD C.△ABD和△ACE D.△ACE和△ADE
知1-练
5 在俄罗斯方块游戏中,已拼好的图案如图所示,现 又出现一小方格体正向下运动,为了使所有图案消 失,你必须进行以下哪项操作,才能拼成一个完整 图案,使其自动消失( A ) A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移 C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移
(来自《教材》)
知2-练
2 如图,你能绕点O旋转,使得线段AB与线段CD 重合吗?为什么?
解:不能,不符合旋转的概 念和特征.
(来自《教材》)
知2-练
3 【2017·青岛】如图,若将△ABC绕点O逆时针旋 转90°,则顶点B的对应点B1的坐标为( B ) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)
知1-导
知1-导
这个定点称为旋转中心,转动的角称为旋转角.
A
B
旋转角
o 旋转中心
例1 下列运动属于旋转的是( B ) A.篮球的滚动 B.钟摆的摆动 C.气球升空的运动 D.一个图形沿某条直线对折的过程
导引:按旋转的定义判断.知1-讲 Nhomakorabea总结
九年级数学《图形的旋转》教案北师大版
![九年级数学《图形的旋转》教案北师大版](https://img.taocdn.com/s3/m/766a3a6ea22d7375a417866fb84ae45c3b35c2f5.png)
九年级数学《图形的旋转》教案北师大版第一章:图形的旋转概念1.1 学习目标1. 了解旋转的定义及性质;2. 掌握图形旋转的表示方法;3. 能够运用旋转性质解决实际问题。
1.2 教学重点与难点1. 重点:旋转的定义及性质;2. 难点:旋转性质的应用。
1.3 教学过程1.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转过程,增强直观感受;3. 通过实际例子,培养学生的应用能力。
1.5 教学内容1. 引入旋转概念,讲解旋转的定义及性质;2. 引导学生探究图形旋转的表示方法;3. 利用几何画板展示图形旋转过程,让学生体会旋转性质;4. 举例说明旋转性质在实际问题中的应用。
1.6 课后作业1. 复习旋转的定义及性质,总结表示方法;2. 运用旋转性质解决实际问题;第二章:图形的旋转对称性2.1 学习目标1. 了解旋转对称性的概念;2. 掌握旋转对称性的性质及判定方法;3. 能够运用旋转对称性解决实际问题。
2.2 教学重点与难点1. 重点:旋转对称性的概念及性质;2. 难点:旋转对称性的判定方法。
2.3 教学过程2.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转对称性,增强直观感受;3. 通过实际例子,培养学生的应用能力。
2.5 教学内容1. 引入旋转对称性概念,讲解旋转对称性的定义及性质;2. 引导学生探究旋转对称性的判定方法;3. 利用几何画板展示图形旋转对称性,让学生体会旋转对称性;4. 举例说明旋转对称性在实际问题中的应用。
2.6 课后作业1. 复习旋转对称性的概念及性质,总结判定方法;2. 运用旋转对称性解决实际问题;第三章:图形的旋转作图3.1 学习目标1. 掌握旋转作图的方法及技巧;2. 能够运用旋转作图解决实际问题。
3.2 教学重点与难点1. 重点:旋转作图的方法及技巧;2. 难点:复杂图形旋转作图。
3.3 教学过程3.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转作图过程,增强直观感受;3. 通过实际例子,培养学生的应用能力。
第三章第02讲 图形的旋转(8类热点题型讲练)(原卷版)--初中数学北师大版8年级下册
![第三章第02讲 图形的旋转(8类热点题型讲练)(原卷版)--初中数学北师大版8年级下册](https://img.taocdn.com/s3/m/de41c99a6037ee06eff9aef8941ea76e58fa4afb.png)
第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
图形的旋转 PPT课件 56 北师大版
![图形的旋转 PPT课件 56 北师大版](https://img.taocdn.com/s3/m/e03024468e9951e79b892776.png)
•
67、心中有理想 再累也快乐
•
68、发光并非太阳的专利,你也可以发光。
•
69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。
•
70、当你的希望一个个落空,你也要坚定,要沉着!
•
71、生命太过短暂,今天放弃了明天不一定能得到。
•
72、只要路是对的,就不怕路远。
•
73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。
•
30、经验是由痛苦中粹取出来的。
•
31、绳锯木断,水滴石穿。
•
32、肯承认错误则错已改了一半。
•
33、快乐不是因为拥有的多而是计较的少。
•
34、好方法事半功倍,好习惯受益终身。
•
35、生命可以不轰轰烈烈,但应掷地有声。
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
23、天行健君子以自强不息;地势坤君子以厚德载物。
•
24、态度决定高度,思路决定出路,细节关乎命运。
•
25、世上最累人的事,莫过於虚伪的过日子。
•
26、事不三思终有悔,人能百忍自无忧。
•
27、智者,一切求自己;愚者,一切求他人。
•
28、有时候,生活不免走向低谷,才能迎接你的下一个高点。
•
29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。
第三章 图形的平移与旋转 3.2 图形的旋转(一)
柴门中学 王海梅
●理清学习目标
• 1.掌握旋转的有关概念,理解旋 转变换是图形的一种基本变换.
• 2.理解旋转的性质.
观察思考
《图形的旋转》教学设计(通用16篇)
![《图形的旋转》教学设计(通用16篇)](https://img.taocdn.com/s3/m/ae934aea3086bceb19e8b8f67c1cfad6195fe9c2.png)
《图形的旋转》教学设计(通用16篇)《图形的旋转》教学设计篇1教学内容:北师大版数学试验教材四班级上册第四单元"图形的变换"第一课时。
教学目标:1、通过实例观看,了解一个简洁的图形经过旋转制作简单图形的过程。
2、能在方格纸上将简洁图形旋转90°。
教学重难点:能在方格纸上将简洁图形旋转90°一、创设情境用数学书按老师的指令做平移或旋转运动。
师:大家做得这么好,老师请你们观赏几幅图案。
(课件出示)想知道它们是怎么设计出来的吗?(老师演示)请你们认真观看,你发觉了什么?(它们都是由简洁的图形通过旋转得到的。
今日我们就来讨论图形的旋转。
(出示课题:图形的旋转)二、探究学习1、活动一:课件出示转换前后的两幅图。
先让同学观看图a是如何变换成图b的,再让同学摆一摆,说一说。
结合课件和实物展台演示。
2、活动二:小组同学合作,利用两个三角形设计一个图形,然后利用旋转的学问进行变换,并说说它的变换过程。
强调绕哪一个点旋转的。
(板书:旋转点不动大小不变顺时针或逆时针)3、选择:教材55页说一说第1题。
操作并利用课件加以演示。
4、活动三:(教材54页风车)课件出示。
用手中的学具你能变换出这个图形吗?小组共同探究。
边打操作边说说你们是怎样做的?强调哪个图形绕哪一个点旋转,如何旋转,旋转多少度。
观看感悟,发觉规律。
师:从图形a旋转到图形b,图形b旋转到图形c,图形c旋转到图形d的过程中,你发觉了什么?(老师依据同学的回答板书:大小不变、点o是固定的,顺时针方向、旋转90度)5、活动四:教材55页说一说第2题。
把手中的三角形与方格纸上的三角形重合起来,接着以这个三角形的一个顶点o为中心进行旋转(旋转的角度是90度),最终在小组里面说一说从图形1到图形2,从图形2到图形4等旋转的角度。
师:在我们的生活中,有很多图案都是这样旋转得来的,你们能依据这个方法或用自己喜爱的方法来设6、活动五:请同学们自己剪一个任意的三角形,接着一边旋转,一边把旋转后所得的图形描绘下来,让孩子们自己去制造,老师作适当的指导。
北师大版初二(下)数学第9讲:图形的旋转
![北师大版初二(下)数学第9讲:图形的旋转](https://img.taocdn.com/s3/m/d9fc01b710661ed9ac51f351.png)
图形的旋转教学目标:1.掌握图形的旋转和中心对称的概念;2.掌握旋转的性质.知识梳理:一、图形的旋转1.旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做________,点O叫做__________,转动的角称为_________.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的______________.由于旋转前、后两个图形中,对应点与旋转中心的距离总相等,因此对应点必在以旋转中心为圆心,分别以对应点到旋转中心的距离为半径的一组同心圆上,且对应点与旋转中心的连线所成角相等,都等于旋转角.注意:在旋转过程中保持不动的点是旋转中心,保持不变的量是对应元素.2.旋转的三个要素:旋转中心、旋转的角度和旋转方向.3.旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.4.简单图形的旋转作图:(1)确定旋转________;(2)确定图形中的____________;(3)将关键点沿指定的方向旋转指定的角度;(4)连结各点,得到原图形旋转后的图形.5.旋转对称图形:一个平面图形绕着某一定点旋转一定角度(小于周角)后能与自身重合的图形.二、中心对称1.中心对称图形与对称中心:在平面内,某一图形绕某一点旋转180°后能与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做_________.举例:平行四边形、圆是中心对称图形.2.中心对称和对称中心:把一个图形绕着某一点旋转180°,如果它能够与另一个图形完全重合,那么说这两个图形关于这个点对称或成中心对称,这个点叫做对称中心.这两个图形中的对应点,叫做关于中心的对称点,3.中心对称和中心对称图形的关系:它们都是图形关于某点成中心对称,但中心对称图形是指一个图形,表示一个图形的特性;成中心对称是针对两个图形而言,表示两个图形之间的对称关系.二者是相对的.4.中心对称的特征:成中心对称的两个图形中,连结对称点的线段都经过__________,并且都被__________平分;反之,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成____________.5.对称中心的确定:将其中的两个关键点和它们的对称点的连线作出来,两条连线的交点就是_________.6.关于中心对称的作图:(1)确定对称中心;(2)确定关键点;(3)作关键点的关于对称中心的__________;(4)连结各点,得到所需图形.参考答案:一、1. 旋转, 旋转中心, 旋转角, 对应点4.(1) 中心(2) 关键点二、1. 对称中心,4. 对称中心, 对称中心, 中心对称5. 对称中心6. 对称点经典例题解析:1.图形的旋转【例1】如图,把一块砖ABCD直立于地面上,然后将其轻轻推倒,在这个过程中A点保持不动,四边形ABCD旋转到AD’C’B’位置。
图形的旋转课件北师大版初中数学八年级下册
![图形的旋转课件北师大版初中数学八年级下册](https://img.taocdn.com/s3/m/7454f73a49d7c1c708a1284ac850ad02de8007dd.png)
C.大风车运动的过程
D.传输带运输的玻璃瓶
课堂练习
课堂练习
2.如图,Rt △ ABC中,∠B=30°,∠C=90°,将Rt △ ABC绕点A按顺
时针方向旋转到 △ AB1C1 的位置,使得点C、A、B1在同一条直线上, 那么旋转角等于( ) C
A.60°
B.90°
C.120°
D.150°
课堂练习
旋转的性质: 一个图形和它经过旋转所得图形中,
(1)对应点到旋转中心的距离相等; (2)任意一对对应点与旋转中心的连线所成的角都等于旋转角; (3)对应线段相等,对应角相等。 (旋转不改变图形的形状和大小,旋转前后的图形全等)
旋转的性质
新课探究
课堂练习
课堂练习
1.下列运动属于旋转的是( C)
A.载人航天器升空的过程 B.橄榄球在草地上滚动
点P和P′叫做这个旋转的 对应.点
P
旋转中心是 O点 ,
o
旋转角度是 90° .
旋转角 P’
旋转的定义
新课探究 旋转中心
确定图形的旋转时, 必须明确
旋转角
注意:
旋转方向
①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋
转的三要素;
②旋转变换属于全等变换.
新课探究
旋转的性质
如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:
①旋转中心 点O , C
②旋转方向 顺时针 ,
③经过旋转,找出点A、B的对应点 D、、 E ,
A
④图中哪个角是旋转角 ∠COF或∠BOE或∠AOD ,
⑤四边形AOBC与四边形DOEF的形状 相同、大小 相等,
⑥ AO与DO的长度 相等 ,BO与EO的长度 相等 ,
六年级下册数学教案-3.1图形的旋转 (一) 北师大版
![六年级下册数学教案-3.1图形的旋转 (一) 北师大版](https://img.taocdn.com/s3/m/6942d7eed15abe23482f4dfd.png)
第三单元第一课时图形的旋转(一)教学设计
2、下面的图片是什么现象?
这节课我们就来研究图形的旋转。
一、认识顺时针和逆时针。
二、收费站横杆的运动。
1、观察下图中的横杆分别是怎样旋转的,与同伴交流。
(2)画出线段AB绕点A逆时针旋转90段。
四、说一说。
(2)画出线段AB绕点A逆时针旋转
线段。
3、填一填。
(1)从3时到6时,时针绕中心点(顺)时针旋转了(90)°。
(1)从3时到3时10分,分针绕中心点(顺)时针旋转了(60)°。
(2)从3时到3时20分,分针绕中心点顺时针
2、画一画:把线段AB绕它的中点C逆时针旋转45°。
3、填一填。
)
旋转后的位置和方向会发生改变,大小不变。
本课教学中紧紧抓住关键要素“位置、方向。
北师大版数学八下3.2图形的旋转(教案)
![北师大版数学八下3.2图形的旋转(教案)](https://img.taocdn.com/s3/m/2ad886ec68dc5022aaea998fcc22bcd126ff422f.png)
4.旋转在实际应用中的应用:通过实例分析,使学生了解旋转在现实生活中的应用,提高学生解决问题的能力。
5.练习与巩固:设计不同难度的练习题,帮助学生巩固所学知识,提高解题技巧。
二、核心素养目标
1.培养学生的空间观念:通过图形旋转的学习,使学生能够更好地观察和认识几何图形在空间中的位置关系,提高空间想象能力。
此外,课堂总结环节,我感觉到学生们对于今天的学习内容有了较好的掌握,但仍有个别学生对某些知识点存在疑惑。我会在课后及时跟进,确保每位学生都能理解并掌握图形旋转的相关知识。
举例:在讲解旋转中心时,可以用一个具体的图形,如一个矩形,围绕不同的点进行旋转,让学生观察并理解旋转中心的变化对图形旋转效果的影响。在处理旋转角度的难点时,可以通过制作旋转模型或者使用教学软件,让学生直观地看到不同角度旋转的效果,从而加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,玩转盘游戏时,转盘的旋转;或者是自行车的轮子转动。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
-确定旋转角度:学生可能在确定旋转角度时感到困惑,特别是在非整数角度的旋转时。教师应提供直观的工具,如量角器,帮助学生准确测量和确定旋转角度。
-旋转作图的准确性:在实际作图过程中,学生可能会遇到作图不准确的问题,如旋转后的图形位置和角度不正确。教师需要指导学生如何通过逐步调整和校准来提高作图的准确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版数学八年级下册3.2《图形的旋转》 课件(共21张PPT)
![北师大版数学八年级下册3.2《图形的旋转》 课件(共21张PPT)](https://img.taocdn.com/s3/m/a99407caa0116c175f0e4890.png)
(1)上面情景中的运动现象,有什么共 同的特征? (2)在运动过程中,摩天轮的座椅、钟 表的指针,风车的风叶其形状、大小、位 置是否发生变化呢?
“旋转”的定义:
在平面内,将一个图形绕( 一个定点 )按 ( 某个方向 )转动( 一个角度 ),这样的图形运
动称为旋转。
这个定点称为_旋__转___中__心___ 转动的角称为__旋__转__角____
总结归纳
“旋转”的基本性质:
(1)旋转不改变图形的_形__状__和___大__小___; (2)对应线段_相__等____,对应角_相__等___; (3)对应点到旋转中心的距离_相___等___;
(4)任意一对对应点与旋转中心的连线所成的角
都是__旋__转___角__。
练习3
下列(1)-(4)的四个三角形中,哪个不能由△ABC经过平移 或旋转得到?
如图,ABC是等边三角形,D是BC上一点, ABD经过旋转后到达 ACE的位置。
(1)旋转中心是哪一点?
A
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过
M.
上述旋转后,点M转到了什么位置4)连接DE,△ADE是什么三角形?
课堂小结
1、旋转的定义: “三要素” 一个定点 某个方向 一个角度
作业
1、基础作业:
课本P77习题3.4
2、提高作业:
学案练习题1、2
△ADE绕点A按_顺__时__针__方向旋转_9_0__度旋转到△ABE’
逆时针
270
思考:图形的旋转是由什么决定的?
旋转中心
旋转方向 旋转角度
三要素
△ABC绕点O按顺时针方向旋转一个
角度,得到△DEF。
H
H’
《图形的旋转(一)》教案(公开课获奖)北师大版小学数学教学设计
![《图形的旋转(一)》教案(公开课获奖)北师大版小学数学教学设计](https://img.taocdn.com/s3/m/50a0ff6a83d049649a6658a5.png)
第三单元图形的运动第1课时图形的旋转(一)教学目标:1、通过观察实例,了解一个简单图形经过旋转制作复杂图形的过程。
2、借助实例及操作活动,掌握在方格纸上将简单图形旋转的方法。
3、通过观察、合作讨论及小组交流认识体会图形平移或旋转的变化过程,培养合作、概括能力。
教学流程一、引入新课1、创设情境,打开风扇让学生观察其转动;演示体操里面的体转运动等提问学生:身体在做什么运动等,提炼出“旋转”一词。
由此引申到图形的若发生旋转会产生什么样的新图形?板书:图形的旋转2、多媒体演示美丽图案(一幅香港特别行政区区旗-紫荆花),让学生思考这些美丽的图案怎么设计的?激发学生探究兴趣3、小组前后桌讨论,点明其中许多图案是由简单的图形经过旋转得来的。
二、探索新课1、(多媒体展示图案)小组展开讨论,这个美丽的图案可以怎么设计出来?2、多媒体展示其旋转过程3、每一次旋转过程都提问其旋转的角度,位置方,向(补充顺时针逆时针的方向)4、提问从图形A-B-C-D,过程,你发现了什么?5、根据学生回答板书:大小不变点O(中心点)不变顺时针旋转90度。
6、提问:如果图形A是逆时针旋转90度?你能自己画出来吗?给时间让学生动手画图,教师巡视,展示部分学生成果引导学生思考刚才图形旋转过程,有哪几方面变化哪几方面不变(中心点旋转方向旋转角度)三、课堂巩固1、多媒体展示说一说1、2小题。
2、提问学生,让其说说旋转中心点,方向角度(注意学生回答方向相反,及时指出其旋转角度)3、多媒体展示课本试一试。
4、前后桌讨论并在纸上画出方块的旋转巡视并反馈结果让学生说说图形A如何通过旋转得到图形B。
5、让学生动手实践第2小题,在方格纸上画出图形绕O点按一定方向旋转得到新的图形并在展示台展示。
四、课堂小结、布置作业1、让学生说说本节课学到了什么知识?2、让学生制作一幅由简单图形旋转得到的新图形。
3、课本练习五。
本资源的设计初衷,是为全体学生的共同提高。
作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。
北师大版数学六年级下册《图形的旋转(二)》说课(附反思、板书)课件
![北师大版数学六年级下册《图形的旋转(二)》说课(附反思、板书)课件](https://img.taocdn.com/s3/m/4d7c5bcafbb069dc5022aaea998fcc22bcd14313.png)
师:谁愿意来展示一下你的作品?说说你是怎么画的? 生1:在画一个旋转图形时,首先要确定它的旋转点M。 生2:根据前面学习的线段的旋转方法,找到旗杆,在旗杆绕点M顺 时针旋转90°后的位置画出这条线段。 生3:最后根据小旗中旗杆与旗面的位置关系画出旋转后的图形。
2.三角形的旋转。 课件出示教材第36页第2个问题。 (画出三角形ABC旋转90°后的图形) 师:你能画出三角形绕点A顺时针旋转90°后的图形吗?剪一个三角形 标上各点转一转。 学生操作后小组交流,老师巡视、指导。
生3:最后画AC的对应线段A'C'。连接A'C',三角形B A'C'就是三 角形ABC绕点B逆时针旋转90°后的图形。 师:旋转后的图形发生了什么变化?
生1:图形的位置发生了变化。 生2:图形的形状、大小没有变。 生3:旋转点的位置没有变。 生4:对应线段的长度没有变。
板块三、课堂练习 1.观察图形并填空。
《图形的旋转(二)》说课
北师大版小学数学六年级下册
大家好,今天我说课的内容是北师大版小学数学六年 下册《图形的运动》单元的课时内容《图形的旋转(二)》。 下面我将从说教材、说学情、说教学目标、说教学重难点、 说教法、说教学过程和板书设计及教学反思这八个方面展 开。接下来开始我的说课。恳请大家批评指正。
生1:先画线段BA的对应线段BA'。以旋转点B为垂足,在BA的右侧 作线段BA的垂线。因为点A到点B的距离为2小格,所以以点B为起 点,在线段BA的垂线上数出2小格,此点即为点A的对应点A',线段 BA'就是线段BA的对应线段。
生2:再画线段BC的对应线段BC'。以旋转点B为垂足,在BC的上侧借 助直角三角板作线段BC的垂线(让三角板的一条直角边和线段BC重 合,直角顶点和点B重合,沿着另一条直角边画一条直线,即为线段BC 的垂线)。在线段BC的垂线上量出与线段BC相等长度,找到点C的对 应点C'。
北师大版数学六年级下册《图形的旋转》教学设计
![北师大版数学六年级下册《图形的旋转》教学设计](https://img.taocdn.com/s3/m/a3cfff76492fb4daa58da0116c175f0e7cd119bb.png)
北师大版数学六年级下册《图形的旋转》教学设计一. 教材分析北师大版数学六年级下册《图形的旋转》是本册教材中一个重要的内容。
通过学习图形的旋转,学生能够理解旋转的概念,掌握旋转的性质,并能够运用旋转的知识解决实际问题。
本节课的内容包括旋转的定义、旋转的性质以及旋转的应用。
教材通过丰富的图片和实例,引导学生探索和发现旋转的规律,培养学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的几何知识,对图形的变换有一定的了解。
他们在学习本节课之前,已经学习了图形的平移、对称等变换,对图形的变换有一定的认识。
但是,对于旋转的概念和性质,他们可能还不够熟悉。
因此,在教学过程中,需要通过具体的实例和操作,让学生直观地感受旋转的现象,理解旋转的性质。
三. 教学目标1.知识与技能目标:学生能够理解旋转的概念,掌握旋转的性质,并能够运用旋转的知识解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,学生能够培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与学习活动,对数学产生兴趣和自信心。
四. 教学重难点1.教学重点:学生能够理解旋转的概念,掌握旋转的性质。
2.教学难点:学生能够运用旋转的知识解决实际问题。
五. 教学方法1.情境教学法:通过具体的实例和图片,引导学生观察和操作,让学生在实际情境中感受旋转的现象。
2.探索教学法:通过问题和任务的设计,引导学生主动探索和发现旋转的规律。
3.合作学习法:通过小组讨论和合作,培养学生的交流能力和团队合作精神。
六. 教学准备1.教学课件:制作精美的课件,包括图片、实例和动画等,直观地展示旋转的现象。
2.学具:准备一些图形和教具,让学生进行观察和操作。
3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的旋转现象,如风扇、车轮等,引导学生观察和思考。
提问:这些物体有什么共同的特点?它们是如何运动的?通过观察和思考,学生能够初步理解旋转的概念。
北师大版八下3.2 图形的旋转 课件(共45张PPT)
![北师大版八下3.2 图形的旋转 课件(共45张PPT)](https://img.taocdn.com/s3/m/e6792dbfb4daa58da0114aef.png)
(1)求证:DA∥BC. (2)猜想线段DF,AF的数量关系,并证明你的猜想.
解:(1)∵AB=BD,∠ABD=α=60°, ∴△ABD是等边三角形,∴∠DAB=60°, ∵∠ABC=60°,∴∠DAB=∠ABC,∴AD∥BC. (2)结论:DF=2AF. 理由:∵△ABD是等边三角形, ∴AD=BD,在△ADF和△BDF中,
答案:6 150
【学霸提醒】 旋转的性质的两种应用
(1)根据旋转角相等,对应点与旋转中心的连线相等可 得线段或角相等. (2)根据旋转前后的图形与原来图形的形状、大小都相 同可得图形的对应线段、对应角相等.
【题组训练】 1.(2019·武汉黄陂区期中)如图, 小明坐在秋千上,秋千旋转了76°, 小明的位置也从A点运动到了A′点,则∠OAA′的度数 为 (B) A.28° B.52° C.74° D.76°
猜想,上面这些现象的共同特点是:都是在一个__平___ (“ 或“曲”)面内绕着一个___定____(“定”或 “动”)点旋转,在移动前后的__形__状_____和__大__小_____没
有发生变化.
归纳:旋转的有关概念
(1)旋转:把一个图形绕一个定点按某个方向转动 ___一__个__角__度____. (2)旋转中心:在旋转过程中,固定的点. (3)旋转角:在旋转过程中___转__动__的__角____. (4)对应点:如果图形上的点P经过___旋__转____变为点P′, 那么这两个点叫做这个旋转的对应点.
知识点一 有关旋转的计算(P77随堂练习T1拓展)
【典例1】如图,P是正△ABC内一点,且PA=6,
PB=8,PC=10,若将△PAC绕点A逆时
针旋转后,得到△P′AB,则点P与P′之间
的距离为PP′=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
3
4
2
O
1
图形2绕O点顺时针旋转900可
得到图形(
3)所在的位置。 精选ppt
16
3
4
2
O
1
图形2绕O点顺时针旋转( 18)00 可
4 得到图形
所在的位置。 精选ppt
17
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A顺时针旋精转选ppt 900形成图形B18 。
图形A如何形成
B
图形A顺时针旋精转选ppt 900形成图形B19 。
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A顺时针旋精转选ppt 900形成图形B20 。
图形A如何形成图形 B,并与同学
进行交流.
A
B
图形A逆时针旋精转选ppt 900形成图形B21 。
C
A o
B
精选ppt
22
精选ppt
A
精选ppt
6
A
C B C
A
精选ppt
7
A
C B C
A
精选ppt
8
精选ppt
9
C B
A C
B
精选ppt
10
C B
A C
B
精选ppt
11
精选ppt
12
A
B C B
A
精选ppt
13
3
4
2
O
1
精选ppt
14
3
4
2
O
1
图形1绕O点顺时针旋转900可
得到图形(
2 )所在的位置。 精选ppt
15
精选ppt
1
精选ppt
2
A O
AB O
图形B可以看作图形A绕O点顺
时针方向旋转 90得0 到。
精选ppt
3
A O
AB OC
图形C可以看作图形B绕O点顺
时针方向旋转 精选ppt
90得0 到。
4
A O
AB D OC
图形D可以看作图形C绕O点顺
时针方向旋转 精选ppt
90得0 到。
5
A
C B C