高性能混凝土的研究与发展
高性能混凝土讲稿—高性能混凝土的发展与应用
高性能混凝土讲稿—高性能混凝土的发展与应用高性能混凝土是一种结构性材料,它具有很高的强度、耐久性和耐久性等特点。
近年来,随着我国经济的快速发展和城市化进程的加速,高性能混凝土逐渐成为建筑行业重要的材料之一。
本文将从高性能混凝土的概念、特点、发展历程和应用领域等方面进行探讨。
一、高性能混凝土的概念和特点高性能混凝土是一种新型的混凝土材料,通常指强度等级在C50以上、特别是强度等级在C70以上的混凝土。
它具有优异的抗压强度、耐久性、渗透性、抗冻融性、防火性、耐酸碱性、抗腐蚀性等特点。
具体包括以下几个方面:1.强度高:高性能混凝土的抗压强度比通常的混凝土高出数倍,同时有很好的耐压性。
2.耐久性好:高性能混凝土具有很好的耐久性,不容易受到气候、环境等因素的损害。
3.渗透性低:高性能混凝土渗透性低,它可以避免水的渗透和钢筋腐蚀。
4.防火性好:高性能混凝土的耐火性能好,不易受到高温、火灾等因素的影响。
5.耐酸碱性好:高性能混凝土抗酸碱性和腐蚀性好,它可以适应不同的环境。
二、高性能混凝土的发展历程高性能混凝土的发展历程可以追溯到20世纪60年代初期。
当时,随着钢筋混凝土结构应用的不断扩大,要求混凝土的强度和耐久性都得到提高,为此,高强混凝土材料的研究逐步得到推广。
40年代末期,美国耐用材料协会ACC和美国铁路协会ARA两个机构先后提供了高强混凝土和高性能混凝土的定义和标准,并开始推广应用。
欧洲国家在20世纪70年代后期加入了这一研究。
高性能混凝土经过多年的发展,已经成为世界性的一个热点研究领域。
近年来,国内研究人员和企业也开展了大量的高性能混凝土试验和应用研究,逐步在高速公路、大桥、港口、地铁、商业建筑等领域得到了广泛应用。
三、高性能混凝土的应用领域1.公路和桥梁工程:高性能混凝土在公路和桥梁工程中具有广泛的应用。
它可以用于高速公路、隧道和桥梁等结构,具有良好的承载能力和耐久性能。
2.建筑工程:高性能混凝土在建筑工程中逐渐得到了广泛的应用。
新型混凝土现状及发展趋势研究综述
新型混凝土现状及发展趋势研究综述新型混凝土是指在传统混凝土中添加新材料、新技术、新工艺等,以提高其性能、功能和可持续发展性的一种材料。
近年来,随着基础设施建设的不断推进和人们对建筑材料性能要求的提高,新型混凝土的研究和应用逐渐受到了广泛关注。
一、新型混凝土的现状1.高性能混凝土(High Performance Concrete,HPC):高性能混凝土是指具有较高强度、较好的耐久性和良好的加工性能的混凝土。
它能够满足对抗渗、抗裂、抗冻融和耐久性等方面的要求。
2.自密实混凝土(Self-compacting Concrete,SCC):自密实混凝土是一种可以在没有外力作用下自行实现较好流动性和自密实的混凝土。
它具有较高的流动性和自行整平能力,适合于复杂形状结构的施工。
3.绿色混凝土(Green Concrete):绿色混凝土是指在生产、使用和回收过程中对环境和人体健康无害的混凝土。
它通过减少水泥含量、使用回收材料等方式降低对环境的影响。
4.超高性能混凝土(Ultra-High Performance Concrete,UHPC):超高性能混凝土是一种通过添加高性能粉状材料、纤维增强材料和化学掺合料等,提高混凝土的抗压强度、抗裂性能和耐久性的一种新材料。
二、新型混凝土的发展趋势1.多功能性:随着社会的发展和人们对建筑材料的要求越来越高,新型混凝土的发展趋势是将多种功能融合到混凝土中,如自愈合、自清洁、调控温度等。
2.轻质化:为了降低建筑物的自重、提高抗震性能,新型混凝土的发展趋势是向轻质化方向发展,例如轻质骨料混凝土。
3.高性能:随着建筑结构的复杂化和对建筑材料性能要求的提高,新型混凝土的发展趋势是朝着高性能、高强度、高耐久性和高抗震性等方向发展。
4.可持续发展:新型混凝土的发展趋势是朝着环境友好、资源节约和可持续发展的方向发展。
例如通过使用可再生材料、减少水泥使用量和二氧化碳排放等方式,减少对环境的影响。
超高性能混凝土的研究
超高性能混凝土的研究超高性能混凝土(UHPC)是一种新型的混凝土材料,具有卓越的力学性能和耐久性,被广泛应用于桥梁、隧道、建筑和水利工程等领域。
本文将就UHPC的特点、研究现状和未来发展进行详细的介绍。
一、UHPC的特点超高性能混凝土是一种以超细粉料、高性能水泥和高强度骨料为主要原料,通过特殊配比和特殊工艺制成的混凝土。
与传统混凝土相比,UHPC的主要特点如下:1. 高强度:UHPC的抗压强度通常在150MPa以上,是普通混凝土的5倍以上。
抗拉强度为10-20MPa,是普通混凝土的10倍以上。
2. 优异的耐久性:UHPC具有极佳的耐久性,能够在恶劣环境下长期保持较高的力学性能。
具有极佳的抗渗、抗冻融、耐久性和耐化学侵蚀性。
3. 易成型和高粘结性:UHPC的粘结性能非常好,能够与钢筋、预应力钢束等有效结合,加工成各种形状、尺寸的构件。
4. 优异的变形能力:UHPC在受力情况下呈现出极强的变形能力,具有优异的抗裂性和抗震性。
5. 体积稠密:UHPC经过特殊配比和特殊工艺制作,具有极高的致密性和微观结构的精细性,体积密度大于2.4g/cm3。
二、UHPC的研究现状目前,国内外对UHPC的研究已经取得了显著的进展,主要集中在材料成分、配合比设计、制备工艺、力学性能和结构应用等方面。
1. 材料成分:UHPC的基本原料包括水泥、硅粉、矿物掺合料、超细矿物颗粒、粘结剂、外加剂和水,其中水泥和超细矿物颗粒是UHPC的主要材料。
2. 配合比设计:UHPC的配合比设计是关键的技术之一,需要考虑到各种原材料的物理化学性质,以及混凝土的性能要求,通过科学合理的方法确定各种原料的配合比例。
3. 制备工艺:UHPC的制备工艺包括原料的预处理、混合、浇筑、养护等步骤,其中混合工艺是制备UHPC的关键环节。
4. 力学性能:UHPC的力学性能是评价其优劣的重要指标,包括抗压强度、抗拉强度、抗弯强度、抗冻融性等方面的性能。
5. 结构应用:UHPC在桥梁、隧道、建筑和水利工程中得到了广泛应用,主要包括梁、柱、板、墙、连接节点等构件的应用。
高性能混凝土的应用研究与未来发展现状 毕业论文
毕业论文课题名称高性能混凝土的应用研究与未来发展现状专业建筑施工与管理姓名学号摘要随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。
在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。
尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。
高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。
本文主要介绍了高性能混凝土发展的历史背景及目前国内外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国内外研究应用中的重要成果,并对其发展趋势作出展望。
随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。
关键词:高性能混凝土;耐久性;体积稳定性目录引言 (1)一、高性能混凝土产生的背景和研究现状 (2)(一)背景 (2)(二)研究现状及发展方向 (2)二、高性能混凝土的特点 (3)(一)高耐久性能 (3)(二)高工作性能 (3)(三)其它 (3)三、高性能混凝土的性能研究和应用分析 (4)(一)高性能混凝土的概念 (4)(二)高性能混凝土的质量及性能 (4)(三)高性能混凝土发展和应用中所面临的问题 (8)四、关于绿色高性能混凝土 (9)(一)研发绿色高性能混凝土的必要性 (9)(二)绿色高性能混凝土的可行性 (10)(三)绿色高性能混凝土的发展 (10)五、高性能混凝土的发展前景 (11)六、结论 (11)参考文献 (12)高性能混凝土的应用未来研究与发展前景从1824年波特兰水泥发明开始,混凝土材料至今已有100多年的历史,以水泥为胶结材的混凝土也取得了具大的发展,由普通混凝土向高性能混凝土发展。
《高性能混凝土在桥梁工程上的应用技术研究》范文
《高性能混凝土在桥梁工程上的应用技术研究》篇一一、引言随着现代桥梁工程建设的快速发展,高性能混凝土(HPC)以其出色的物理性能和耐久性能,在桥梁工程中的应用越来越广泛。
本文旨在探讨高性能混凝土在桥梁工程中的应用技术研究,包括其优势、应用现状、存在的问题及未来发展趋势。
二、高性能混凝土的优势高性能混凝土具有高强度、高耐久性、高工作性等优点,使得其在桥梁工程中具有显著的优势。
首先,其高强度特性使得桥梁结构更加轻巧,减轻了自重,增加了跨越能力。
其次,高耐久性使得桥梁结构能够抵抗各种恶劣环境条件的侵蚀,延长了使用寿命。
此外,高工作性使得混凝土在浇筑过程中具有较好的流动性和填充性,提高了施工效率。
三、高性能混凝土在桥梁工程中的应用现状目前,高性能混凝土在桥梁工程中的应用已经非常广泛。
例如,在大型桥梁工程中,HPC被广泛应用于主梁、墩身、桥墩等关键部位。
此外,HPC还被用于预制桥梁构件的生产,如预应力混凝土梁、箱梁等。
这些应用都充分体现了HPC在桥梁工程中的优势。
四、高性能混凝土应用技术研究针对高性能混凝土在桥梁工程中的应用,需要进行一系列的技术研究。
首先,需要研究HPC的配合比设计,以优化其力学性能和耐久性能。
其次,需要研究HPC的施工工艺,以提高施工效率和质量。
此外,还需要对HPC的长期性能进行评估,以确保其在实际使用中的安全性和耐久性。
同时,对于HPC的环保性能和可持续性能的研究也是必不可少的。
五、存在的问题与挑战尽管高性能混凝土在桥梁工程中的应用取得了显著的成果,但仍存在一些问题和挑战。
首先,HPC的成本相对较高,使得其在大规模应用中存在一定的经济压力。
其次,HPC的长期性能评估仍需进一步研究,以确保其在实际使用中的安全性和耐久性。
此外,HPC的环保性能和可持续性能也需要在应用过程中得到重视。
为了解决这些问题和挑战,需要开展一系列的研究工作。
六、未来发展趋势未来,高性能混凝土在桥梁工程中的应用将呈现出以下发展趋势。
高性能混凝土产生的背景和研究现状
高性能混凝土产生的背景和研究现状高性能混凝土(High Performance Concrete,HPC)是20世纪80年代后期开始发展的一种新型材料,主要是为了解决传统混凝土的弱点和不足。
20世纪60年代,日本开始使用强度高、耐久性好的新型混凝土来进行修建,这就激发了世界各地在混凝土技术上的创新与发展。
随着科技不断进步,HPC的研究和应用也逐渐成熟起来。
HPC是指强度等级大于C60、耐久性好、抗渗抗裂性能优良、具有良好的可加工性、抗震性能等一系列优良性质的混凝土。
HPC的研究方向主要包括材料、配合比设计、加工技术、破坏模型和评估方法等方面。
HPC的应用范围非常广泛,可以用于各种建筑物、桥梁、隧道、地下工程、海洋工程等领域。
目前,国内外HPC研究的重点主要集中在以下几个方向:1.材料研究。
HPC的优良性能主要源于材料,因此材料研究是HPC研究的重要方向。
材料研究包括水泥、粉煤灰、矿渣粉、矿物掺合料等原材料的性能研究和改性研究。
同时也需要研究材料的颗粒形状、大小、密度等对混凝土性能的影响。
2.配合比设计。
HPC的配合比设计是十分关键的环节,合理的配合比才能保证HPC的性能优良。
目前,国内外研究者在HPC配合比设计上采用了多种方法,例如多元最优、响应面、遗传算法等。
3.加工技术。
HPC的加工技术包括了成型、养护、抗渗、抗裂等多个方面。
在成型中,为了减少混凝土表面的凸凹不平,采用了抹灰、打磨等多种方法;在养护中,需要对温度、湿度、养护时间等进行控制,以保证HPC的强度和耐久性;在抗渗、抗裂方面,也需要采取措施进行改善。
4.破坏模型和评估方法。
HPC的破坏模型研究和评估方法研究都是为了提高HPC的使用可靠性和安全性。
目前,国内外研究者在HPC破坏模型和评估方法上采用了多种数学模型和试验方法。
总之,HPC在工程领域的应用越来越广泛,其优越的性能已经得到了广泛的认可和应用。
随着科技的不断发展,HPC技术还将不断更新与改进,为工程建设提供更加优质高效的新型材料。
高性能混凝土的研究与发展
1高 性 能 混凝 土 的研 究现 状 与 热 点
久 性 ,配制 H C 方面作 了大 量 的研 究工作 。 实验 P
中 , 遍采 用 盐 冻剥 落 量 、 F值 、 普 D 氯离 子 扩散 深 度
长 期 以来 , 凝 土 一 直 被 认 为 是 坚 固 耐 久 的 材 混
和 钢 筋锈 蚀 率 4个耐 久 性参 数 进 行耐 久 性设 计 优
高性 能 混凝 土 的研 究 与发展
Th e e r h a d d v lp e t f h ih p r r n e c n r t e rs a c n e eo m n e hg e f ma c o c e e o t o
高 柯 孟云芳 ( 宁夏大 学土木 与水 利工 程学 院 , 宁夏 银 川 7 0 2 ) 5 0 1
摘 要 : 文 介 绍 了高性 能 混凝 土的 发 展 及 目前 国 内外 研 究 热 点 , 明 了 高性 能 混 凝 土 的 特征 与性 能 . 及 高 性 能 混 凝 土 本 阐 以 未来 的发 展 趋 势 关键词: 高性 能 混凝 土 : 征 : 特 发展
Ab ta t e a t l n r d c st e d v l p n f h ih p r r n e c n rt n h o s o ih i r sa c e n o s r c : r ce i to u e h e eo me to e h g e o ma c o c ee a d t e h t twh c s e e r h d i d — Th i t f p
化。 比较 优化后 混凝 土与 按传统 设计 混凝 土 的性能 的优 劣 , 而确 定 出耐 久 性最 为பைடு நூலகம் 良的高性 能 混凝 从
混凝土高性能增强剂的研制与应用研究
混凝土高性能增强剂的研制与应用研究混凝土高性能增强剂是一种能够在混凝土中增加一些特殊性能的材料,以改善混凝土的性能。
目前,混凝土高性能增强剂的研制与应用已经成为混凝土科学研究领域的一个热点。
本文将就混凝土高性能增强剂的研制原理、应用效果以及未来发展方向进行研究与讨论。
一、混凝土高性能增强剂的研制原理1.控制混凝土中的孔隙结构:混凝土中的孔隙结构对混凝土的强度和耐久性有着重要的影响。
通过添加控制剂,可以有效地控制混凝土中的孔隙结构,使其达到更加紧密和均匀的状态。
2.增加混凝土的强度:混凝土高性能增强剂可以增加混凝土的抗压强度、抗拉强度和抗剪强度。
具体来说,可以通过添加高效的胶凝材料和增强剂,提高混凝土的结晶度和力学性能。
3.提高混凝土的耐久性:混凝土高性能增强剂可以提高混凝土的耐久性,如抗渗透性、抗冻融性、抗硫酸盐侵蚀性等。
通过添加适量的防水剂、减水剂和抗裂剂,可以有效地改善混凝土的耐久性。
二、混凝土高性能增强剂的应用效果1.提高混凝土的强度和耐久性:通过使用混凝土高性能增强剂,可以有效地提高混凝土的强度和耐久性,使混凝土工程具有更好的质量和使用寿命。
2.减少混凝土的用量:由于混凝土高性能增强剂的应用可以提高混凝土的强度和耐久性,因此可以减少混凝土的用量,从而节约资源和减少环境污染。
3.改善混凝土的加工性能:混凝土高性能增强剂可以改善混凝土的流动性和干缩性,使混凝土在施工过程中更容易施工和养护。
三、混凝土高性能增强剂的未来发展方向目前,混凝土高性能增强剂的研制与应用已经取得了一定的成果,但仍然存在着一些挑战和问题需要解决。
因此,混凝土高性能增强剂的未来发展方向可以从以下几个方面展望:1.开发新型的增强剂:目前市场上的混凝土高性能增强剂种类繁多,但普遍存在着副作用较大、施工难度大等问题。
因此,未来的研究应该致力于开发更加绿色、环保、低毒的混凝土高性能增强剂。
2.研究混合应用效果:混凝土高性能增强剂的研究往往是独立进行的,未来的研究可以探索不同增强剂的混合应用效果。
国内高性能混凝土研究进展与趋势
国内高性能混凝土研究进展与趋势目录一、内容概括 (2)1. 高性能混凝土概述 (3)2. 研究背景与意义 (4)3. 国内外研究现状及差距 (5)二、高性能混凝土原材料研究 (6)1. 水泥类型与性能 (7)2. 矿物掺合料的应用 (9)3. 高效减水剂的进展 (10)三、高性能混凝土配合比设计研究 (11)1. 配合比设计原则与方法 (13)2. 优化算法及智能配比技术 (14)3. 耐久性与工作性平衡策略 (15)四、高性能混凝土性能特点研究 (16)1. 物理性能 (18)2. 化学性能 (19)3. 力学性能及抗裂性 (20)4. 耐久性能 (21)五、高性能混凝土应用现状与发展趋势 (22)1. 应用领域及案例分析 (24)2. 市场需求分析 (25)3. 发展趋势预测 (27)六、高性能混凝土技术挑战与对策 (28)1. 技术难题与挑战 (30)2. 解决方案与措施 (31)3. 政策支持与标准制定 (32)七、结论与展望 (33)1. 研究总结 (34)2. 未来研究方向与展望 (35)一、内容概括本篇文档主要探讨了国内高性能混凝土的研究进展与趋势,涵盖了高性能混凝土的定义、技术特点、材料选择、配合比设计、施工工艺以及性能评估等方面的最新研究成果和发展动态。
在高性能混凝土的定义方面,文档指出了其相较于普通混凝土具有更高的力学性能、耐久性和工作性能,能够在各种恶劣环境下保持良好的工程性能。
在技术特点上,文档强调了高性能混凝土的组成优化、颗粒级配、外加剂优化、掺合料利用和耐久性提升等特点,这些特点使得高性能混凝土在建筑工程中具有更广泛的应用前景。
在材料选择方面,文档讨论了骨料、水泥、矿物掺合料和水等关键组分的优质化选择,以及环保型材料的研发和应用,以提高高性能混凝土的环境友好性和资源利用率。
在配合比设计上,文档介绍了基于试验和数值模拟的优化方法,以实现高性能混凝土性能的最佳匹配和经济效益的最大化。
超高强度混凝土的研究与应用
超高强度混凝土的研究与应用超高强度混凝土是一种新型的建筑材料,其强度可以达到普通混凝土的10倍以上,因此在工程建设中具有很大的潜力。
本文将介绍超高强度混凝土的研究现状、制备工艺和应用领域,并探讨其未来发展方向。
一、超高强度混凝土的研究现状超高强度混凝土是指强度在150MPa以上的混凝土,其主要由水泥、石英粉、硅灰、钢纤维等材料组成。
随着科技的不断发展,超高强度混凝土的研究也得到了很多重视。
目前,国内外学者在超高强度混凝土的研究方面已取得了很多进展。
1. 国外研究现状在国外,超高强度混凝土的研究始于上世纪80年代。
当时,法国学者Bernard德·拉福雷(Bernard de Larrard)首次提出了超高强度混凝土的概念,并在1992年成功制备了强度为200MPa的混凝土。
此后,美国、日本、德国等国家也相继开展了超高强度混凝土的研究工作。
其中,美国的普渡大学、日本的大阪大学、德国的斯图加特大学等高校在超高强度混凝土的研究方面取得了重大突破。
2. 国内研究现状我国在超高强度混凝土的研究方面起步较晚,但随着科技的不断发展,国内学者也取得了很多进展。
近年来,国内高校和科研机构相继开展了超高强度混凝土的研究工作,其中包括清华大学、同济大学、哈尔滨工业大学等。
他们主要从材料配比、制备工艺、性能研究等方面入手,不断探索超高强度混凝土的制备和应用。
二、超高强度混凝土的制备工艺超高强度混凝土的制备是一个复杂的过程,需要精确的材料配比和制备工艺。
目前,超高强度混凝土的制备工艺主要包括以下几个方面:1. 材料选择超高强度混凝土的材料主要包括水泥、石英粉、硅灰、钢纤维等。
其中,水泥的种类和配比对混凝土的强度和性能有着至关重要的影响。
石英粉和硅灰则是控制混凝土密实度和流动性的关键材料。
而钢纤维可以增强混凝土的韧性,提高其抗裂性能。
2. 配比设计超高强度混凝土的配比设计是制备过程中最为关键和复杂的一步。
配比设计需要考虑混凝土的强度、流动性、密实度等因素,并结合具体的施工环境和要求进行调整。
高性能混凝土应用研究
高性能混凝土应用研究近年来,高性能混凝土作为一种新型建筑材料,得到了广泛的关注和应用。
它以其卓越的力学性能和优异的耐久性,成为了大型工程建设不可或缺的重要材料。
本文将从高性能混凝土的定义、特点、应用及研究进展等方面进行探讨。
一、高性能混凝土的定义高性能混凝土,即High Performance Concrete,简称HPC。
它是指在保持混凝土基本性能和施工性能的前提下,通过在原材料、配合比、工艺技术等方面进行优化,以提高混凝土的抗压强度、耐久性、抗裂性和变形性等指标,进而满足特殊工程要求的一种特殊混凝土。
二、高性能混凝土的特点与传统混凝土相比,高性能混凝土具有以下几个特点:1. 抗压强度高:高性能混凝土经过优化设计,在相同配比下能够获得更高的抗压强度,可以承担更大的荷载。
2. 耐久性好:高性能混凝土采用优质材料、合理的配合比和特殊的工艺技术,具备出色的抗渗透性和抗冻融性,能够保证混凝土的长期使用寿命。
3. 抗裂性强:高性能混凝土与普通混凝土相比,其内部微裂纹数量较少,抗裂性能更好,可以更好地抵抗开裂和变形。
4. 施工性能好:高性能混凝土在保持强度和耐久性的前提下,通过细化骨料、添加减水剂等手段,改善了其流动性和可泵性,提高了施工效率。
5. 环保性高:高性能混凝土采用了更多的粉煤灰、矿渣粉等替代材料,减少了对天然资源的开采和对环境的污染。
三、高性能混凝土的应用高性能混凝土广泛应用于各类重要工程中,包括桥梁、隧道、高层建筑、核电站、大型水利工程等。
主要体现在以下几个方面:1. 超高层建筑:高性能混凝土具有较高的抗压强度和较好的耐久性,能够满足超高层建筑对强度、稳定性和安全性的要求。
2. 桥梁工程:高性能混凝土在桥梁工程中得到广泛应用,以满足大跨度、大荷载和复杂工况下的结构要求。
3. 隧道工程:高性能混凝土的耐久性好,能够很好地抵抗地下水侵蚀和冻融循环的损害,是隧道工程的理想材料。
4. 水利工程:高性能混凝土可用于水利工程中的堤坝、水闸等设施,具备良好的抗渗透性和耐冲刷性。
高性能混凝土的发展和应用
高性能混凝土的发展和应用概述高性能混凝土是指具有优异性能的混凝土,其抗压强度、耐久性、抗裂性、耐化学侵蚀性和工作性能等指标均优于普通混凝土。
高性能混凝土的发展和应用,旨在提高建筑物的强度、耐久性、安全性和节能性,有利于推动现代建筑技术的进步,提升建筑品质,为城市的可持续发展做出贡献。
发展历程高性能混凝土的研究始于20世纪80年代,最初由法国的材料科学研究所研发。
90年代初,日本开始大量研究高性能混凝土的技术,推广应用并完善了相关标准。
此后,欧美、加拿大、韩国等国家也相继开始高性能混凝土的研究。
随着研究的深入,高性能混凝土的性能不断得到提高和升级,发展趋势也愈加明朗。
技术特点高性能混凝土相对于普通混凝土而言,有着如下的技术特点:1.抗压强度高。
高性能混凝土的抗压强度远高于普通混凝土,可达到100MPa以上。
2.耐久性好。
高性能混凝土的密实性和致密性好,抵御水侵蚀和化学侵蚀能力强,耐久性好。
3.抗裂性强。
高性能混凝土的力学性能稳定、伸缩性小,抗裂性强。
4.施工性能优。
高性能混凝土流动性好,施工性能优,便于浇筑,形成均匀、致密的混凝土结构。
5.环保节能。
高性能混凝土采用高强度水泥减少用量,降低二氧化碳排放,符合现代建筑节能环保的要求。
应用领域高性能混凝土的应用范围非常广泛,主要应用于以下领域:1.高层建筑:高层建筑需要承受较大的风荷载和地震荷载,高性能混凝土能够为建筑提供强大的支撑。
2.桥梁和隧道:高性能混凝土能够提供稳固的结构支撑力,增强桥梁和隧道的承载能力和稳定性。
3.水利工程:高性能混凝土可以满足渠道、坝体等水利工程中对耐久性、抗渗透、抗冲刷的要求。
4.航空航天工程:高性能混凝土的抗压性、抗裂性和耐久性能够保证航空航天工程长期稳定运行。
5.地下管道和储罐:高性能混凝土的耐腐蚀性和耐久性能够满足地下管道和储罐的使用要求。
作为一种优良建筑材料,高性能混凝土具有很多独特的技术特点和应用领域,可以广泛应用于各种建筑和基础工程中。
超高性能混凝土的研究与应用前景
超高性能混凝土的研究与应用前景超高性能混凝土(Ultra-High Performance Concrete, UHPC)是一种新型的高强、高耐久、高可靠性的建筑材料,它主要由水泥、超细矿物粉、硅烷、高性能细骨料、钢纤维等材料制成。
UHPC在建筑和工程领域中有着广泛的应用前景,下面将从研究和应用两个方面详细探讨其发展趋势。
一、研究1.材料制备:UHPC的制备是一个复杂的过程,需要精确控制原材料比例和加工工艺,以确保材料的性能和稳定性。
目前,研究者们主要从以下几个方面进行探索:(1)原材料的使用:研究者们通过改变水泥、矿物掺合料、细骨料等原材料的种类和使用比例,调节混合物的物理性能和化学性能,以提高UHPC的性能。
(2)添加剂的使用:添加剂可以改善UHPC的流动性、黏结性、凝固时间和硬化过程中的温度变化等性能,使其更加适合不同的应用场景。
(3)混合工艺的优化:研究者们通过探索不同的混合工艺,如干混法、湿混法、高速搅拌法等,以提高UHPC的均匀性和稳定性。
2.性能研究:UHPC的性能包括力学性能、耐久性能、防护性能等多个方面,目前研究者主要从以下几个方面进行探索:(1)强度和韧性:强度和韧性是评价UHPC力学性能的关键指标,目前研究者通过探索不同的材料组成和混合工艺,以及添加不同类型的纤维等方法,实现了UHPC的高强度和高韧性。
(2)耐久性:UHPC的耐久性主要包括抗冻融性、抗碳化性、抗氯离子渗透性等多个方面,目前研究者通过探索不同的材料组成和混合工艺,以及添加不同类型的添加剂等方法,提高了UHPC的耐久性能。
(3)防护性能:UHPC的防护性能主要包括抗震、防火、隔热、隔音等多个方面,目前研究者通过探索不同的材料组成和混合工艺,以及添加不同类型的添加剂等方法,提高了UHPC的防护性能。
二、应用UHPC具有高强度、高韧性、耐久性好、抗冻融性强、抗碳化性好、抗氯离子渗透性好、抗震、防火、隔热、隔音等优点,可以应用于多个领域。
高性能混凝土在建筑中的应用研究
高性能混凝土在建筑中的应用研究高性能混凝土(High Performance Concrete,简称HPC)是一种新型建筑材料,以其高强度、高耐久性、高抗开裂性、高抗渗性等优点,正在被广泛地应用于建筑领域。
本文将会从介绍HPC的基本特性,探讨其在建筑中的应用,以及对于建筑领域的未来发展进行研究。
一、HPC的基本特性HPC是一种采用特殊的配合比、使用高品质原材料、采用特殊施工工艺而制得的具有特殊性能的混凝土。
其与普通混凝土的区别在于其具备了以下几个基本特性:1.高强度:在常规约束下,HPC的抗压强度可达到80MPa以上,而普通混凝土的抗压强度一般只有30MPa左右,因此HPC可满足更高要求的承重能力。
2.高耐久性:HPC能够长期承受多种化学腐蚀、冻融循环等自然环境所带来的损害,因此适合用于长期暴露于恶劣环境中的建筑。
3.高抗开裂性:由于HPC的抗张强度较高,可较好地抵抗混凝土收缩、温度变化等原因所带来的开裂。
4.高抗渗性:HPC中采用的添加剂能够大幅减少混凝土的渗透系数,从而使其在受到水流、潮湿等环境的影响时,仍然能够保持较好的性能。
5.施工可塑性:相较于普通混凝土,HPC具有更加可塑的性质,随着施工时的摆布和振捣等措施,可使其达到更加完美的状态。
二、HPC的应用1.桥梁建筑作为建筑中的重要组成部分,大型桥梁的建设需要选用具有较高抗张强度的材料,以满足其对于承重能力的要求。
HPC由于其高强度、高抗张性以及防腐耐久等特点,因此是桥梁建筑中不可或缺的材料。
例如在中国的南京长江大桥和香港的港珠澳大桥的建设中,采用的就是HPC。
2.高层建筑在高层建筑的设计中,HPC可以作为重要的结构支撑材料,以满足建筑的承载需求。
其高强度、高耐久性以及抗开裂性等特征,使得其更适合于高层建筑的建造。
例如在美国的芝加哥,曾经建造了一座百余层的高楼——西尔斯大厦,其中使用的就是HPC。
3.地下设施对于地下设施来说,HPC的高抗渗性和耐久性,使得其能够长期遭受地下水泄漏、污水渗漏等环境对于它的损害。
超高性能混凝土在建筑工程中的研究和应用
超高性能混凝土在建筑工程中的研究和应用1. 引言1.1 背景介绍超高性能混凝土是一种具有卓越性能的新型混凝土材料,其强度、耐久性、抗裂性等性能远远优于传统混凝土。
随着建筑工程对材料性能的要求不断提高,超高性能混凝土的研究和应用也越来越受到关注。
背景介绍部分将探讨超高性能混凝土的起源和发展历程,介绍其在国内外的研究现状和应用情况,为后续的内容提供必要的背景知识。
超高性能混凝土的研究与应用始于上世纪80年代,最初是由法国学者提出,并在德国、日本等发达国家展开深入研究。
近年来,我国也开始重视超高性能混凝土的研究与应用,一些重大工程项目中已经开始采用超高性能混凝土,取得了显著的经济和社会效益。
通过对超高性能混凝土的背景介绍,可以更好地了解其在建筑工程中的研究和应用现状,为后续的内容铺设基础。
1.2 研究目的研究目的是为了深入探讨超高性能混凝土在建筑工程中的应用价值和潜在优势,分析其特点和优势,比较其与普通混凝土的差异,探讨其在建筑结构中的性能表现,以及在施工工艺上的应用情况。
通过对超高性能混凝土的研究,可以为建筑工程领域提供更加可靠和持久的材料选择,提高建筑结构的抗压、抗拉和耐久性能,减少维护和修复成本,并推动建筑工程领域的技术创新和发展。
通过深入研究超高性能混凝土的应用范围和潜在优势,可以为未来的研究方向提供指导和借鉴,促进该领域的持续进步和发展,推动建筑工程领域向更加先进、绿色和可持续的方向发展。
1.3 意义和价值超高性能混凝土在建筑工程中的研究和应用具有重要的意义和价值。
超高性能混凝土的使用可以大幅提升建筑工程的耐久性和安全性。
其强度高、耐久性好、抗渗渗性强等特点,使得建筑结构更加稳固可靠,可以有效延长建筑物的使用寿命,减少维护和修复的频率,降低维护成本。
超高性能混凝土的应用可以实现建筑结构的轻量化设计,提升建筑的抗震性能。
由于超高性能混凝土的高强度和高韧性,可以减小构件截面尺寸,使得建筑结构更为轻便灵活,同时能够承受更大的荷载,在地震等极端环境下具有更好的抗震性能。
国内外自密实高性能混凝土研究及应用现状
国内外自密实高性能混凝土研究及应用现状一、内容概览随着全球经济的快速发展和城市化进程的加快,建筑工程的需求日益增长。
为了满足这一需求,建筑材料的研发和应用不断取得突破。
自密实高性能混凝土(Selfcompacting Highperformance Concrete,简称SCA)作为一种新型建筑材料,因其具有高强度、高耐久性、高抗渗性、高工作性能以及节能环保等特点,近年来在国内外得到了广泛关注和研究。
本文将对国内外自密实高性能混凝土的研究及应用现状进行概述,以期为相关领域的研究和应用提供参考。
首先本文将介绍自密实高性能混凝土的基本概念、原理及其主要性能特点。
其次通过对国内外自密实高性能混凝土的研究进展进行梳理,分析其在工程应用中的优势和不足。
然后结合实际工程案例,探讨自密实高性能混凝土在不同结构类型中的应用效果。
对自密实高性能混凝土在未来的发展趋势和研究方向进行展望。
1. 研究背景与意义随着社会经济的快速发展,建筑工程在各个领域的应用越来越广泛。
自密实混凝土作为一种新型建筑材料,具有较高的强度、耐久性和抗渗性能,能够满足建筑结构对材料性能的高要求。
然而目前国内外自密实混凝土的研究和应用仍存在一定的局限性,主要表现在自密实混凝土的强度、耐久性和抗渗性能等方面尚不能完全满足工程实际需求。
因此深入研究国内外自密实高性能混凝土的制备工艺、性能优化及其在工程中的应用现状具有重要的理论意义和现实意义。
首先研究国内外自密实高性能混凝土有助于提高建筑结构的抗震性能。
自密实混凝土由于其内部形成高度致密的微孔结构,具有良好的隔震作用,能够有效减小地震波在结构中的传播,从而提高结构的抗震性能。
其次研究国内外自密实高性能混凝土有助于降低建筑结构的能耗。
自密实混凝土由于其内部形成高度致密的微孔结构,具有良好的保温隔热性能,能够有效减少热量的传递,降低建筑结构的能耗。
再次研究国内外自密实高性能混凝土有助于提高建筑结构的使用寿命。
高性能混凝土的性能研究和应用 土木工程毕业论文
高性能混凝土的性能研究和应用土木工程毕业论文高性能混凝土是近年来发展起来的一种新型混凝土,在建筑工程中得到了广泛应用。
本文主要介绍高性能混凝土的性能研究和应用。
一、高性能混凝土的性能1.力学性能高性能混凝土的最大特点就是其强度高。
其强度分为抗压、抗拉、抗弯三种类型。
高性能混凝土的抗压强度达到90MPa以上,抗拉强度可达到10 MPa以上,抗弯强度高于15 MPa。
2.耐久性高性能混凝土的耐久性比普通混凝土要好。
它可以承受长期的荷载和恶劣的环境条件,比如高温、低温、潮湿等,而且能够有效抵抗钢筋锈蚀,延长使用寿命。
3.施工性能高性能混凝土的施工性能好,流动性强,易于充填。
而且,其自重小、混凝土温度低、混凝土龄期长,易于加工和施工。
4.防震性能高性能混凝土的防震性能优越,其能够有效地抵抗地震力,并在地震中保持结构整体性。
二、高性能混凝土的应用1. 地下工程高性能混凝土的空气孔隙率较低,具有良好的耐久性和抗渗性能,被广泛应用于地下工程基础和结构中。
2. 桥梁工程高性能混凝土拥有的力学性能良好,具有高强度和抗震性能,被广泛应用于桥梁建设中。
同时,高性能混凝土还可以减少桥梁自重,达到减轻负荷的效果。
3. 高层建筑高性能混凝土能够有效抵御大风、地震等自然灾害,因此在高层建筑中得到了广泛应用。
4. 声屏障高性能混凝土密度较大,具有良好的吸音效果,因此在公路附近修建声屏障时,可以使用高性能混凝土遮挡声音。
三、结论高性能混凝土的性能优越,在各个领域得到广泛应用。
随着人们对高品质建筑的要求不断提高,高性能混凝土的应用前景十分广泛。
高强度混凝土的性能研究
高强度混凝土的性能研究高强度混凝土,是工程技术领域中的一种非常重要的材料。
它的强度、硬度和耐久性不仅远远超过了传统的混凝土,而且其使用寿命也大大延长。
目前,随着科技的不断进步,高强度混凝土在各种工程领域都得到了广泛的应用。
因此,研究高强度混凝土的性能对于提高工程技术水平和推动工程建设具有重要的现实意义。
一、高强度混凝土的定义和特点高强度混凝土是指混凝土的抗压强度超过了60MPa,其主要成分由水泥、水、骨料和外加剂等组成。
与普通混凝土相比,高强度混凝土具有以下特点:1. 抗压强度高:高强度混凝土的抗压强度一般在60MPa以上,与普通混凝土相比增加一倍以上。
2. 单位体积重量大:由于混凝土中含有更多的骨料,因此其单位体积重量也随之增加。
3. 抗渗性能强:由于外加剂能够增加混凝土的密实度,从而提高抗渗性能。
4. 耐久性好:在加入一定的外加剂后,高强度混凝土的耐久性能可以得到进一步提升。
二、高强度混凝土的研究进展目前,针对高强度混凝土的研究主要集中在以下几个方面:1. 外加剂的研究:外加剂在高强度混凝土中发挥着重要的作用。
目前研究表明,钢纤维、微材料、高性能氢氧化铝等外加剂能够提高混凝土的性能。
2. 混凝土配合比的优化:在保证高强度条件下,混凝土配合比的优化是非常重要的。
目前研究表明,采用适当的水泥种类和骨料粒径能够增加混凝土的性能。
3. 组合材料的研究:组合材料是指高强度混凝土与其他材料的结合。
目前,钢筋混凝土、玻璃纤维增强塑料等组合材料已经得到了一定的应用。
三、高强度混凝土的应用高强度混凝土在各种工程领域中都有着广泛的应用。
其中,最主要的应用领域包括:1. 桥梁和隧道:高强度混凝土在桥梁和隧道等大型工程中作为地基和结构支撑材料得到了广泛应用。
2. 高层建筑:钢筋混凝土结构已经成为高层建筑的主要结构。
而高强度混凝土的应用能够大大提高结构的抗震和承重能力。
3. 水处理设备:高强度混凝土作为水处理设备的主要材料,能够提高水质的净化效率和设备的耐腐蚀性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能混凝土的研究与发展尤其近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。
高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。
HPC必将成为新世纪的重要建筑工程材料。
高性能混凝土(High Performance Concrete,HPC)是20世纪80年代末90年代初,一些发达国家基于混凝土结构耐久性设计提出的一种全新概念的混凝土,它以耐久性为首要设计指标,这种混凝土有可能为基础设施工程提供100年以上的使用寿命。
,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程中显示出其独特的优越性,在工程安全使用期、经济合理性、环境条件的适应性等方面产生了明显的效益,因此被各国学者所接受,被认为是今后混凝土技术的发展方向。
1 高性能混凝土产生的背景和研究现状处在恶劣环境下既有建筑不断劣化、退化导致过早失效、退役甚至出现恶性事故造成巨大损失的严重后果;原材料生产、开采造成的生态环境恶化以及砂石料枯竭、资源短缺严重影响进一步发展的严酷现实。
混凝土作为用量最大的人造材料,不能不考虑它的使用对生态环境的影响。
传统混凝土的原材料都来自天然资源。
每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1t硅酸盐水泥约需 1.5t石灰石和大量燃煤与电能,并排放1tCO2,而大气中CO2浓度增加是造成地球温室效应的原因之一。
尽管与钢材、铝材、塑料等其它建筑材料相比,生产混凝土所消耗的能源和造成的污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它的用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观。
有些大城市现已难以获得质量合格的砂石。
另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后的混凝土垃圾也给环境带来威胁。
必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土的再生利用,未来的混凝土必须是高性能的,耐久和高强都意味着节约资源。
“高性能混凝土”正是在这种背景下产生的。
1.2 研究现状及发展方向针对混凝土的过早劣化,发达国家在20世纪80年代中期掀起了一个以改善混凝土材料耐久性为主要目标的“高性能混凝土”开发研究的高潮,并得到了各国政府的重视。
从20世纪80年代开始,各国混凝土结构设计规范中逐渐突出了耐久设计的考虑,从只重视强度设计向强度与耐久性并重。
进入20世纪90后代以后,混凝土结构耐久性设计方法成为土木工程领域中的研究重点。
针对不同环境类别的侵蚀作用,提出材料性能劣化的理论或经验模式,并据此估算结构的使用寿命,成为发展和研究耐久性设计方法的主流。
目前,高性能混凝土的发展有以下几个方向:(1)绿色高性能混凝土(2)超高性能混凝土超高性能混凝土,如活性粉末混凝土(Reactive Powder con-crete,RPC),其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。
虽然在不同的国家,不同的学者或工程技术人员,对HPC的理解有所不同。
比如美国学者更强调高强度和尺寸稳定性,欧洲学者更注重耐久性,而日本学者偏重于高工作性。
但是他们的基本点都是高耐久性,这方面的认识是一致的。
2.2 高性能混凝土的性能与普通混凝土相比,高性能混凝土具有如下独特的性能:高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。
土的高强度可以减少构件尺寸,减小自重,增加使用空间;HPC良好的工作性可以减少工人工作强度,加快施工速度,减少成本。
前苏联学者研究发现用C110~C137的高性能混凝土替代C40~C60的混凝土,可以节约15%~25%的钢材和30%~70%的水泥。
虽然HPC本身的价格偏高,但是其优异的性能使其具有了良好的经济性。
高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。
2.3 高性能混凝土发展和应用中所面临的问题在高性能混凝土的应用过程中也存在一些问题,在高性能混凝土的原材料方面,我国水泥质量不稳定,离散性大;在骨料方面,粗骨料质量低劣,含泥量大,级配较差,细骨料细度模数不合要求;在外加剂和外掺料的选择上,尚缺乏充分的适用性的研究。
在高性能混凝土的施工过程中,施工人员的技术水平有限,养护措施不到位,使HPC的密实性和质量不稳定;在高性能混凝土的耐久性方面,由于高性能混凝土微管中水分的蒸发与凝聚而产生的收缩,使混凝土表面产生裂缝,这对HPC的抗碳化、抗冻融循环作用以及抗氯离子扩散等都是不利的,高性能混凝土的水泥用量高,水灰比低,硬化后长期处于水中时,水分通过微管扩散到内部,未水化的水泥粒子进一步水化,产生微膨胀也会使混凝土表面产生裂缝,为各种有害介质渗透提供通道,给氯离子侵入、碱骨料反应的发生和钢筋锈蚀创造可能;在高性能混凝土的设计方面,由于高性能混凝土的后期强度增长不及普通混凝土,而且脆性大,需要特别注意。
同时,在高性能混凝土的研究方面,现在的研究以实验室研究为主,但是实验室的情况与实际工况相差较大,这不利于今后高性能混凝土的推广应用。
3 高性能混凝土质量与施工控制3.1 高性能混凝土原材料及其选用细集料宜选用质地坚硬、洁净、级配良好的天然中、粗河砂,其质量要求应符合普通混凝土用砂石标准中的规定。
砂的粗细程度对混凝土强度有明显的影响,一般情况下,砂子越粗,混凝土的强度越高高性能混凝土必须选用强度高、吸水率低、级配良好的粗集料。
宜选择表面粗糙、外形有棱角、针片状含量低的硬质砂岩、石灰岩、花岗岩、玄武岩碎石,级配符合规范要求。
由于高性能混凝土要求强度较高,就必须使粗集料具有足够高的强度,一般粗集料强度应为混凝土强度的115倍~210倍或控制压碎指标值>10﹪。
最大粒径不应大于25mm,以10mm~20mm为佳,这是因为,较小粒径的粗集料,其内部产生缺陷的几率减小,与砂浆的粘结面积增大,且界面受力较均匀。
另外,粗集料还应注意集料的粒型、级配和岩石种类,一般采取连续级配,其中尤以级配良好、表面粗糙的石灰岩碎石为最好。
粗集料的线膨胀系数要尽可能小,这样能大大减小温度应力,从而提高混凝土的体积稳定性。
配制高性能混凝土时,掺入活性细掺合料可以使水泥浆的流动性大为改善,空隙得到充分填充,使硬化后的水泥石强度有所提高。
更重要的是,加入活性细掺合料改善了混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得到提高。
活性细掺合料是高性能混凝土必用的组成材料。
在高性能混凝土中常用的活性细掺合料有硅粉(SF)、磨细矿渣粉(BFS)、粉煤灰(FA)、天然沸石粉(NZ)等。
粉煤灰是火电厂燃煤锅炉排出的烟道灰,它能有效提高混凝土的抗渗性,显著改善混凝土拌合物的工作性,大掺量粉煤灰混凝土还对环境保护和节约资源有重要意义。
配制高性能混凝土的粉煤灰宜用含碳量低、细度低、需水量低的优质粉煤灰。
矿渣是高炉炼铁排出的熔融矿渣在高温状态下迅速水淬冷却而成的,用于高性能混凝土的磨细矿渣细度大于水泥,能提高混凝土的工作性和耐久性。
硅粉是电炉法生产硅铁合金所排放的烟道灰,SiO2含量大于90﹪,平均粒径约0.11μm,比表面积>20000㎡/kg,借助大剂量高效减水剂和强力搅拌作用,可以填充到水泥或其他掺合料的间隙中去,并且具有很高的活性,在各种掺合料中对混凝土的增强作用最为显著,是国际上制备超高强混凝土最通用的超细活性掺合料。
3.2 配合比设计控制要点3.2.1.设计思路有很大区别在以往的配合比设计方法中,是按混凝土的强度等级要求计算水灰比,而现在则是按耐久性的要求,首先根据环境作用等级确定电通量指标,由此来选择水胶比、控制胶凝材料最小用量以及掺和料的比例。
由于客专隧道的衬砌和仰拱设计强度等级为C30或C35,一般来说,为满足电通量要求和水胶比限值要求,混凝土的强度一般都是超强的。
3.2.2.胶凝材料用量及粉煤灰所占比例在进行配合比参数设计时,为保证混凝土的耐久性,混凝土中胶凝材料总量应处在一个适宜范围内,不仅有最低限要求,同时,对于C30及以下混凝土,胶凝材料总量不宜高于400kg/m3,C35~C40不宜高于450kg/m3。
铁路客运专线大力提倡使用粉煤灰、矿渣粉等矿物掺和料,与普通硅酸盐水泥一起作为胶凝材料。
使用粉煤灰等矿物掺和料,并不是单纯地考虑降低混凝土成本,首先是为了混凝土耐久性的需要,特别是可以有效改善混凝土抵抗化学侵蚀的能力(包括氯化物侵蚀、硫酸盐侵蚀、碱骨料反应等)。
国内外的大量研究表明,粉煤灰的掺量在20%以上时,改善混凝土耐久性的效果较佳,更有研究资料表明,粉煤灰的最大掺量可达到50%左右。
在《铁路混凝土结构耐久性设计暂行规定》中明确规定,一般情况下,矿物掺和料掺量不宜小于胶凝材料总量的20%,当大于30%时,混凝土的水胶比不得大于0.45。
3.2.3.含气量的要求含气量的要求也是客运专线高性能混凝土与普通混凝土的重要区别之一。
以往工程仅在有抗冻要求时才考虑适当提高混凝土的含气量,这是对混凝土耐久性的规律认识不足的表现。
实际上,混凝土中适量的引气,不仅能改善抗冻性,同时可显著减轻混凝土的泌水性,使水在拌合物中的悬浮状态更加稳定,从而提高混凝土材料的均匀性和稳定性。
因此,客运专线规定,即使配制非抗冻混凝土时,含气量也应不小于2%,并且作为施工质量控制的必检项目之一。
为适当提高混凝土的含气量,并获得较佳的减水和保塑效果,可使用新型聚羧酸盐减水剂。
该指标是客运专线对混凝土耐久性最重要、最具体的指标。
目前我国尚无电通量试验的国家标准,铁路行业电通量试验方法是以美国ASTMC1202 快速电量测定方法为基础制定的,其所测指标可以最大程度地区分和评价混凝土的密实度,而密实度正是影响混凝土耐久性最为关键的因素。
以往多是以抗渗性来评价混凝土的密实程度,但实践证明,抗渗试验只适合于判定较低强度等级混凝土的密实性,当强度等级超过C30后,抗渗等级几乎都能达到P20以上,再往下试验比较困难。
这正是用电通量指标取代抗渗标号作为混凝土耐久性控制的主要原因。
混凝土的电通量主要取决于水胶比,通过大量试验得到规律,一般水胶比小于0.5时基本可满足电通量小于2000 的要求,水胶比小于0.45时基本可满足电通量小于1500的要求。
3.3 高性能混凝土的施工控制混凝土原材料应严格按照施工配合比要求进行准确称量,称量最大允许偏差应符合下列规定(按重量计):胶凝材料(水泥、掺合料等)±1%;应采用卧轴式、行星式或逆流式强制搅拌机搅拌混凝土,采用电子计量系统计量原材料。