电磁感应现象中的能量问题

合集下载

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。

电磁感应现象中的能量问题

电磁感应现象中的能量问题
电磁感应的综合应用
澧县一中
朱锋
三、电磁感应中的能量问题:
(1)思路:从能量转化和守恒着手,运用动 能定理或能量守恒定律。 ①基本思路:受力分析→弄清哪些力做功, 正功还是负功→安培 明确有哪些形式的能量参与 电 转化,哪些增哪些减 → 由动能定理或能量守 力做 流 恒定律列方程求解. 负功 做 ②能量转化特点: 功 内能(焦耳热) 其它能(如: 电能 机械能) 其他形式能
例2: 如图示:质量为m 、边长为a 的正方形金属线框自某一高 度由静止下落,依次经过B1和B2两匀强磁场区域,已知B1 =2B2, 且B2磁场的高度为a,线框在进入B1的过程中做匀速运动,速度大 小为v1 ,在B1中加速一段时间后又匀速进入和穿出B2,进入和穿 出B2时的速度恒为v2,求: ⑴ v1和v2之比 a ⑵在整个下落过程中产生的焦耳热
澧县一中 朱锋
(2)线框由静止开始运动,到cd边刚离开磁场的 过程中,根据能量守恒定律,得: 解之,得线框穿过磁场的过程中,产生的焦耳热 3 2 2 为: mg R Q mg (h 3L) 2 B 4 L4
1 2 mg (h 3L) mv Q 2
电磁感应现象的实质是不同形式的能量转化的过 程,理清能量转化过程,用“能量”观点研究问题, 往往比较简单,同时,导体棒加速时,电流是变 化的,不能直接用Q=I2Rt求解(时间也无法确 定),因而能用能量守恒的知识解决。 澧县一中 朱锋
澧县一中
朱锋
例 4、 例 1、如图所示,两足够长平行光滑的金属导轨 MN、PQ 相距为 L,
导轨平面与水平面夹角α=30°,导轨上端跨接一定值电阻 R,导 轨电阻不计.整个装置处于方向竖直向上的匀强磁场中,长为 L 的 金属棒 cd 垂直于 MN、PQ 放置在导轨上,且与导轨保持电接触良好, 金属棒的质量为 m、电阻为 r,重力加速度为 g,现将金属棒由静止 释放,当金属棒沿导轨下滑距离为 s 时,速度达到最大值 vm.求: (1)金属棒开始运动时的加速度大小; N R (2)匀强磁场的磁感应强度大小; Q c ( 3 )金属棒沿导轨下滑距离为 s 的过 d 程中,电阻 R 上产生的电热.

电磁感应中的能量问题

电磁感应中的能量问题
C B N F
如图所示,a、b是两相距L=0.5m的平行、光滑 的水平金属导轨,在其上垂直放置两根金属杆1 和2,其质量分别为m 1=0.1kg,m2=0.2kg,电 阻分别为R1=1Ω, R2=0.25Ω,B=1.2T的匀强 磁场竖直向下,a、b两导轨电阻忽略不计.现对 2棒施以水平向右的极短时间的打击力作用,使 其获得大小为lN· s的冲量.求此后: ① 1棒运动的最大加速度和最大速度. ② 2棒上所产生的内能.
93年高考29.
两金属杆ab和cd长均为l,电阻均为R,质量分别为M和 m, M>m.用两根质量和电阻均可忽略的不可伸长的柔 软导线将它们连成闭合回路, 并悬挂在水平、光滑、 不导电的圆棒两侧. 两金属杆都处在水平位置, 如图 所示. 整个装置处在一与回路平面相垂直的匀强磁场 中, 磁感应强度为B. 若金属杆ab正好匀速向下运动, 求运动的速度.
R
竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所 示,磁感强度B=0.5T,导体ab及cd长均为0.2m,电阻均 为0.1Ω,重均为0.1N,现用力向上推动导体ab,使之匀速 上升(与导轨接触良好),此时,c d 恰好静止不动,那 么ab上升时,下列说法正确的是 A B C A.ab受到的推力大小为0.2N B.ab 向上的速度为2m/s F C.在2s内,推力做功转化的电能是0.4J D.在2s内,推力做功为0.6J a b 解: cd 静止,受力如图: F1 =mg=0.1N mg F1 ab匀速上升,受力如图:F= F1 +mg=0.2N F1 =BIL=B2 L2 v/2R=0.1N ∴v=2m/s F1 d S=vt=4m 拉力做功 WF =FS=0.8J c 安培力做功 WF1 =F1 S=0.4J
如图所示,电动机牵引一根原来静止的、长l为 1m,质量m为0.1kg的导体棒MN,其电阻R为1Ω, 导体棒架在处于磁感应强度B为1T、竖直放置的框架 上.当导体棒上升h为3.8m时获得稳定的速度,导 体产生的热量为2J,电动机牵引棒时,伏特表、安 培表的读数分别恒为7V、1A.电动机内阻r为1Ω, 不计框架电阻及一切摩擦,g取10m/s2.求: (1)棒能达到的稳定速度. (2)棒从静止达到稳定速度所需的时间

高二物理电磁感应中的能量问题(含答案)

高二物理电磁感应中的能量问题(含答案)

电磁感应中的能量问题复习精要1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。

导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后再转化为焦耳热,另一部分用于增加导体的动能,即当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后再转化为焦耳热2.在电磁感应现象中,能量是守恒的。

楞次定律与能量守恒定律是相符合的,认真分析电磁感应过程中的能量转化,熟练地应用能量转化与守恒定律是求解叫复杂的电磁感应问题常用的简便方法。

3.安培力做正功和克服安培力做功的区别:电磁感应的过程,同时总伴随着能量的转化和守恒,当外力克服安培力做功时,就有其它形式的能转化为电能;当安培力做正功时,就有电能转化为其它形式的能。

4.在较复杂的电磁感应现象中,经常涉及求解焦耳热的问题。

尤其是变化的安培力,不能直接由Q=I 2 Rt 解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。

这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。

1.如图所示,足够长的两光滑导轨水平放置,两条导轨相距为d ,左端MN 用阻值不计的导线相连,金属棒ab 可在导轨上滑动,导轨单位长度的电阻为r 0,金属棒ab 的电阻不计。

整个装置处于竖直向下的均匀磁场中,磁场的磁感应强度随时间均匀增加,B =kt ,其中k 为常数。

金属棒ab 在水平外力的作用下,以速度v 沿导轨向右做匀速运动,t =0时,金属棒ab 与MN 相距非常近.求:(1)当t =t o 时,水平外力的大小F .(2)同学们在求t =t o 时刻闭合回路消耗的功率时,有两种不同的求法: 方法一:t =t o 时刻闭合回路消耗的功率P =F·v .方法二:由Bld =F ,得 F I Bd= 2222F R P I R B d ==(其中R 为回路总电阻)这两种方法哪一种正确?请你做出判断,并简述理由.x2.如图所示,一根电阻为R=0.6Ω的导线弯成一个圆形线圈,圆半径r=1m ,圆形线圈质量m=1kg ,此线圈放在绝缘光滑的水平面上,在y 轴右侧有垂直于线圈平面B=0.5T 的匀强磁场。

电磁感应中能量问题

电磁感应中能量问题

B
θ
θ
F
使光滑导轨平面与水平面成 θ ,匀强磁场 与导轨平面垂直,给质量为m的金属棒 的金属棒ab沿 与导轨平面垂直,给质量为 的金属棒 沿 导轨向上初速度v 导轨向上初速度 0的同时加沿斜面向上外力 F,在F作用下棒沿轨道向上运动 时速度达 作用下棒沿轨道向上运动x时速度达 作用下棒沿轨道向上运动 稳定,问此过程中电路产生的焦耳热? 稳定,问此过程中电路产生的焦耳热?
V0
a r R
B
b 有什么办法可以使金属棒不停下来? 有什么办法可以使金属棒不停下来?
V0
a
F
R
r
b
B
棒一水平向右初速度V 给ab棒一水平向右初速度 0的 棒一水平向右初速度 同时在ab棒上加水平向右的恒 同时在 棒上加水平向右的恒 棒将做什么运动? 力F,问ab棒将做什么运动? , 棒将做什么运动
如图,让闭合矩形线圈 如图,让闭合矩形线圈abcd从高处自由 从高处自由 下落一段距离后进人匀强磁场, 下落一段距离后进人匀强磁场,从bc边 边 开始进入磁场到ad边刚进入磁场的这一 开始进入磁场到 边刚进入磁场的这一 段时间里,如图所示的四个v—t图象中, 图象中, 段时间里,如图所示的四个 图象中 肯定不能表示线圈运动情况的是: 肯定不能表示线圈运动情况的是:
B
θ θ
F
导轨不光滑, 导轨不光滑,动摩擦因数为 µ ,其它 条件不变,问怎样求焦耳热? 条件不变,问怎样求焦耳热?
B
R
F
06上海 如图所示, 平行金属导轨与水平面成θ 上海) ( 06 上海 ) 如图所示 , 平行金属导轨与水平面成 θ 角 , 导轨与固定电阻R 相连, 导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平 有一导体棒ab 质量为m ab, 面.有一导体棒ab,质量为m,导体棒的电阻与固定电 的阻值均相等,与导轨之间的动摩擦因数为μ 阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ, 导体棒ab沿导轨向上滑动,当上滑的速度为V ab沿导轨向上滑动 导体棒ab沿导轨向上滑动,当上滑的速度为V时,受到 安培力的大小为F 安培力的大小为F.此时 电阻R 消耗的热功率为Fv Fv/ (A)电阻R1消耗的热功率为Fv/3. Fv/ (B)电阻 R。消耗的热功率为 Fv/6. 整个装置因摩擦而消耗的热功率为μmgvcosθ μmgvcosθ. (C)整个装置因摩擦而消耗的热功率为μmgvcosθ. 整个装置消耗的机械功率为( μmgcosθ) (D)整个装置消耗的机械功率为(F+μmgcosθ)v·

第65课时电磁感应中的动力学和能量问题2025届高考物理一轮复习课件

第65课时电磁感应中的动力学和能量问题2025届高考物理一轮复习课件

t1时刻cd边与L2重合,t2时刻ab边与L3重合,t3时刻ab边与L4重合,已
知t1~t2的时间间隔为0.6 s,整个运动过程中线圈平面始终处于竖直方
向(重力加速度g取10 m/s2)。则(

目录
高中总复习·物理
A. 在0~t1时间内,通过线圈的电荷量为0.25 C
B. 线圈匀速运动的速度大小为8 m/s
2
(2L2+L1)。
目录
高中总复习·物理
1. 【功能关系在电磁感应中的应用】
(多选)如图,MN和PQ是电阻不计的平行
金属导轨,其间距为L,导轨弯曲部分光滑,
平直部分粗糙,两部分平滑连接,平直部
分右端接一个阻值为R的定值电阻。平直部
分导轨左边区域有宽度为d、方向竖直向上、磁感应强度大小为B的匀
强磁场,质量为m、电阻也为R的金属棒从高度为h处由静止释放,到
R,木块质量也为m,重力加速度为g,试求:
目录
高中总复习·物理
(1)匀强磁场的磁感应强度B大小;
答案:
4
gm2 R2
2L0 L1 4
解析:导线框匀速进入磁场时,受力平
衡,受力情况如图所示。
根据平衡条件有
FT=F安+mgsin θ
目录
高中总复习·物理
其中F安=BIL1

I=

E=BL1v
导线框与木块通过光滑细线相连,导线框匀
定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行
现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆
垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加
速直线运动。整个装置处于垂直导轨平面向上的匀强磁场中,外力

高中物理 电磁感应现象中的能量问题

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。

此过程中,其他形式的能量转化为电能。

当感应电流通过用电器时,电能又转化为其他形式的能量。

“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。

同理,安培力做功的过程,是电能转化为其它形式能的过程。

安培力做了多少功,就有多少电能转化为其它形式的能。

认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就两道题目来加以说明。

例1(94年上海高考题)如图1所示,两根光滑的金属导轨,平行放置在倾角为θ斜角上,导轨的左端接有电阻R,导轨自身的电阻可忽路不计。

斜面处在一匀强磁场中,磁场方向垂直于斜面向上。

质量为m,电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。

在这过程中(A).作用于金属捧上的各个力的合力所作的功等于零(B).作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和(C.)恒力F与安培力的合力所作的功等于零(D).恒力F与重力的合力所作的功等于电阻R上发出的焦耳热解析:在金属棒匀速上滑的过程中,棒的受力情况如图2所示。

弹力N对棒不做功,拉力F对棒做正功,重力G与安培力F安对棒做负功。

棒的动能不变,重力势能增加,电阻R上产生焦耳热,其内能增加。

依动能定理,对金属棒有W F+W G+W安=△E k=0即作用在捧上各个力作功的代数和为零。

以上结论从另一个角度来分析,因棒做匀速运动,故所受合力为零,合力的功当然也为零。

故选项A正确,选项B,C错误。

因弹力不做功,故恒力F与重力的合力所做的功等于克服安培力所做的功。

而克服安培力做多少功,就有多少其他形式的能转化为电能,电能最终转化为R上发出的焦耳热,故选项D正确。

例2:位于竖直平面内的矩形平面导线框abcd,ab长为l1,是水平的,bd长为l2,线框的质量为m,电阻为R,其下方有一匀强磁场区域,该区域的上、下边界PP'和QQ'均与ab平行,两边界间的距离为H, H>l2,磁场的磁感应强度为B,方向与线框平面垂直,如图所示。

电磁感应中的能量转换问题

电磁感应中的能量转换问题

电磁感应中的能量转换问题电磁感应是电磁学中的重要概念,指的是磁场的变化可以在导体中产生感应电动势,进而转化为电能。

这一现象的应用广泛,如电磁感应发电机、变压器等,都是能量转换的典型代表。

本文将探讨电磁感应中的能量转换问题,以及它们在现代社会中的应用。

1.电磁感应原理电磁感应原理由法拉第发现,并由法拉第电磁感应定律完整表述。

根据这一定律,当导体的回路与磁场发生相对运动时,导体中会产生感应电动势,从而产生感应电流。

这一原理可以简单地表述为:改变磁通量,就会产生感应电动势。

2.电磁感应中的能量转换在电磁感应中,磁场的变化会引起电动势的产生,进而导致电流的流动。

在这一过程中,能量会从磁场转化为电能,完成能量转换。

具体而言,当导体与磁场相对运动时,由于磁感线的变化,磁通量也会随之改变。

根据法拉第电磁感应定律,磁通量的变化会引起感应电动势的产生。

而感应电动势作用于导体内部的自由电子,使其在导体内运动,形成感应电流。

这个过程中,原本由能量形式的磁场能量或机械能,便被转化为电能。

3.电磁感应中的转换效率在电磁感应中,能量的转换过程并非完全高效。

由于导体内存在电阻,感应电流经过导体时会产生焦耳热,导致能量的损失。

因此,电磁感应转换的效率往往不会达到百分之百。

为了提高转换效率,可以采取一系列措施,如增加导体的截面积、降低导体材料的电阻率,以减少能量的损失。

4.电磁感应在发电机中的应用电磁感应广泛应用于发电机中,将其转换为电能的过程主要由发电机完成。

发电机通过旋转的励磁线圈切割磁力线,产生感应电动势。

通过导线的接通,感应电动势使电流流经导线,从而实现了能量的转换过程。

这种转换过程是由机械能转化为电能,供应给电网或其他电力设备。

5.电磁感应在变压器中的应用电磁感应还被应用于变压器中,实现电能的输送和变换。

变压器由两个相互绝缘的线圈组成,它能够根据电磁感应原理,将一个交流电压转换为另一个交流电压。

通过在主线圈中加入交流电源,产生交变磁场。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题
(1)确定研究对象(导体棒或回路);
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量
相互转化;
(3)根据能量守恒定律列式求解.
(18 分)(2012·高考天津卷)如图所示,一对光滑的平行金属 导轨固定在同一水平面内,导轨间距 l=0.5 m,左端接有阻值 R=0.3 Ω 的电阻.一质量 m=0.1 kg,电阻 r=0.1 Ω 的金属棒 MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁 场的磁感应强度 B=0.4 T.棒在水平向右的外力作用下,由静
力为多大?整个过程拉力的最大值为多大?
(3)若第 4 s 末以后,拉力的功率保持不变,ab 杆能达到的最大
速度为多大?
[答案] (2)μmg μmg ma (3)(μmg+BR2l+2vrm)vm
(2012·山东潍坊一模理综)如图所示,水平地面上方矩形
虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和
止开始以 a=2 m/s2 的加速度做匀加速运动,当棒的位移 x=9
m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力
前后回路中产生的焦耳热之比 Q1∶Q2=2∶1.导轨足够长且电
阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良 好接触.求:
(1)棒在匀加速运动过程中,
通过电阻 R 的电荷量 q;
一、电磁感应中的能量问题 1.能量转化 导体切割磁感线或磁通量发生变化,在回路中产生感应 电流,这个过程中机械能或其他形式的能转化为电能 .具有 感应电流的导体在磁场中受安培力作用或通过电阻发热,又 可使电能转机化械为能 内或能 .因此,电磁感应过程中总是 伴随着能量的转化. 2.能量转化的实质:电磁感应现象的能量转化实质是其 他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .

电磁感应现象中的能量问题

电磁感应现象中的能量问题

2010届高三物理教学研讨会交流材料电磁感应现象中的能量问题溧阳市南渡高级中学高三物理备课组能的转化与守恒,是贯穿物理学的基本规律之一。

从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。

电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。

此过程中,其他形式的能量转化为电能。

当感应电流通过用电器时,电能又转化为其他形式的能量。

“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。

同理,安培力做功的过程,是电能转化为其它形式能的过程。

安培力做了多少功,就有多少电能转化为其它形式的能。

认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。

一、安培力做功的微观本质1、安培力做功的微观本质设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。

所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。

因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e 作用。

场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。

当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。

导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。

由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。

[含答案及解析]电磁感应中的能量问题分析范文

[含答案及解析]电磁感应中的能量问题分析范文

电磁感应中的能量问题分析一、基础知识1、过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2、求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.3、电磁感应中能量转化问题的分析技巧a、电磁感应过程往往涉及多种能量的转化(1)如图中金属棒ab沿导轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热,另一部分转化为金属棒的动能.(2)若导轨足够长,棒最终达到稳定状态做匀速运动,之后重力势能的减小则完全用来克服安培力做功,转化为感应电流的电能.b、安培力做功和电能变化的特定对应关系(1)“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.(2)安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.c 、解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向.(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.二、练习1、如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中 ( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLh R +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量答案 BD解析 金属棒由静止释放后,当a =0时,速度最大,即mg -BL BL v m R +r=0,解得v m =mg (R +r )B 2L 2,A 项错误.此过程通过R 的电荷量q =I Δt =BLh (R +r )Δt ·Δt =BLh R +r,B 项正确.导体棒克服安培力做的功等于整个电路产生的热量,C 项错误.由动能定理知对导体棒有ΔE k =W 重+W 安,D 项正确.2、如图所示,倾角为θ=30°、足够长的光滑平行金属导轨MN 、PQ 相距L 1=0.4 m ,B 1=5 T的匀强磁场垂直导轨平面向上.一质量m =1.6 kg 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,其电阻r =1 Ω.金属导轨上端连接右侧电路,R 1=1 Ω,R 2=1.5 Ω.R 2两端通过细导线连接质量M =0.6 kg 的正方形金属框cdef ,正方形边长L 2=0.2 m ,每条边电阻r 0为1 Ω,金属框处在一方向垂直纸面向里、B 2=3 T 的匀强磁场中.现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g 取10 m/s 2.(1)若将电键S 断开,求棒下滑过程中的最大速度.(2)若电键S闭合,每根细导线能承受的最大拉力为3.6 N,求细导线刚好被拉断时棒的速度.(3)若电键S闭合后,从棒释放到细导线被拉断的过程中,棒上产生的电热为2 J,求此过程中棒下滑的高度(结果保留一位有效数字).解析(1)棒下滑过程中,沿导轨的合力为0时,速度最大,mg sin θ-F安=0F安=B1IL1I=Er+R1+R2E=B1L1v max代入数据解得:v max=7 m/s(2)闭合S后,设细导线刚断开时,通过金属框ef边电流为I′,则通过cd边的电流为3I′则:2F T-Mg-B2I′L2-3B2I′L2=0解得I′=0.5 A通过R2的电流I2=3I′r0 R2I2=1 A电路总电流I1=I2+4I′=3 A金属框接入电路总电阻R框=34ΩR2与R框并联电阻为R′,R′=R框R2R框+R2=1 2Ω设此时棒的速度为v1,则有I 1=B 1L 1v 1r +R 1+R ′解得v 1=3.75 m/s(3)当棒下滑高度为h 时,棒上产生的热量为Q ab ,R 1上产生的热量为Q 1,R 2与R 框上产生的总热量为Q ′,根据能量转化与守恒定律有mgh =12m v 21+Q ab +Q 1+Q ′ Q ab =2 JQ 1=Q ab =2 JQ ′=Q ab 2=1 J 解得h ≈1 m答案 (1)7 m/s (2)3.75 m/s (3)1 m3、如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用.金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热答案 AC解析 根据动能定理,合力做的功等于动能的增量,故A 对;重力做的功等于重力势能的减少,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力做的功等于电阻R 上产生的焦耳热,所以B 、D 错,C 对.4、(2011·上海单科·32)如图所示,电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω、质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r =0.1 J .(取g =10 m/s 2)求:(1)金属棒在此过程中克服安培力做的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答. 答案 (1)0.4 J (2)3.2 m/s 2 (3)见解析解析 (1)下滑过程中安培力做的功即为电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J所以W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L 2R +rv 由牛顿第二定律得mg sin 30°-B 2L 2R +rv =ma 所以a =g sin 30°-B 2L 2m (R +r )v =[10×12-0.82×0.752×20.2×(1.5+0.5)] m/s 2=3.2 m/s 2 (3)此解法正确.金属棒下滑时受重力和安培力作用,其运动满足mg sin 30°-B 2L 2R +rv =ma 上式表明,加速度随速度增大而减小,棒做加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的最大速度,因此上述解法正确.mgs sin 30°-Q =12m v 2m 所以v m = 2gs sin 30°-2Q m= 2×10×1.15×12-2×0.40.2m/s ≈2.74 m/s. 5、如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直方向的磁场中,整个磁场由若干个宽度皆为d 的条形匀强磁场区域1、2、3、4……组成,磁感应强度B 1、B 2的方向相反,大小相等,即B 1=B 2=B .导轨左端MP 间接一电阻R ,质量为m 、电阻为r 的细导体棒ab 垂直放置在导轨上,与导轨接触良好,不计导轨的电阻.现对棒ab 施加水平向右的拉力,使其从区域1磁场左边界位置开始以速度v 0向右做匀速直线运动并穿越n 个磁场区域.(1)求棒ab 穿越区域1磁场的过程中电阻R 产生的焦耳热Q ;(2)求棒ab 穿越n 个磁场区域的过程中拉力对棒ab 所做的功W ;(3)规定棒中从a 到b 的电流方向为正,画出上述过程中通过棒ab 的电流I 随时间t 变化的图象;(4)求棒ab 穿越n 个磁场区域的过程中通过电阻R 的净电荷量q .答案 (1)B 2L 2v 0Rd (R +r )2 (2)nB 2L 2v 0d R +r(3)见解析图 (4)BLd R +r或0 解析 (1)棒产生的感应电动势E =BL v 0通过棒的感应电流I =E R +r电阻R 产生的焦耳热Q =(E R +r)2R ·d v 0=B 2L 2v 0Rd (R +r )2 (2)拉力对棒ab 所做的功W =E 2R +r ·d v 0·n =nB 2L 2v 0d R +r(3)I -t 图象如图所示(4)若n 为奇数,通过电阻R 的净电荷量q =ΔΦ1R +r =BLd R +r若n为偶数,通过电阻R的净电荷量q=ΔΦ2=0R+r注:(2)问中功W也可用功的定义式求解;(4)问中的电荷量也可用(3)问中的图象面积求出.。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F=知,v 转变时,F 转变,物体所受合外力转变,物体的加速度转变,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先依照受力情形确信该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判定(1)右手定那么和左手定那么相结合,先用右手定那么确信感应电流方向,再用 左手定那么判定感应电流所受安培力的方向.(2)用楞次定律判定,感应电流所受安培力的方向必然和导体切割磁感线运动的方向垂直。

热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.大体方式是:受力分析→运动分析(确信运动进程和最终的稳固状态)→由牛顿第二定律列方程求解.运动的动态结构:如此周而复始的循环,循环终止时加速度等于零,导体达到平稳状态.在分析进程中要抓住a=0时速度v 达到最大这一关键.专门提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和进程示用意二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.大体方式是:受力分析→弄清哪些力做功,做正功仍是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.专门提示在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情形,因为安培力做的功是电能和其他形式的能之间彼此转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.R L B R E BL v 22=⋅R LB 22安培力做副功其它形式能电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高考的热点。

《电磁感应》中的能量问题

《电磁感应》中的能量问题
6 00
碍 引 起 感 应 电流 的 导体 ( 磁 体 ) 的相 对 运 动 。 ” 或 间 即引 起 感 应 电流 的 导 体 ( 磁体 ) 近 或 远 离 的过 程 中都 或 靠

要 克服 电磁 力 做 功 ,外 力 克 服 电磁 力 做 功 的 过程 就 是 把 其 他
《电 磁 感 应 》 中 的 能 量 问 题
关 晓 颖
( 庆 市第 四 中学 , 龙江 大 庆 大 黑 《 电磁 感 应 》 章 中涉 及 的 问题 主 要 就 是 感 应 电流 的方 向 一 和 大 小 问题 。下 面 从 能 量 角 度 来 分析 这 两 方 面 问题 。 从 能 量 守 恒 角 度看 楞 次 定 律 产生 电磁 感 应 现象 的根 本 原 因 是 磁 通 量 发 生 变 化 ,而 引 起 磁 通 量 变 化 的 原 因 主 要 有 : 场 变 化 、 圈 变 化 、 对 运 动 磁 线 相 等。“ 碍” 阻 的作 用 是 把 其 他 形式 的 能 量 ( 其 他 电路 的 电能 ) 或 转化( 转移 ) 或 为感 应 电 流所 在 回 路 的 电 能 , 这 个 过 程 中 , 在 能 量 是 守 恒 的 因此 。 次 定 律 的实 质 。 是 能 量 转 化 与 守 恒 定 楞 正 律 在 电 磁 感 应 现 象 中 的 体 现 。而 这 种 能 量 的 转 化 与 守 恒 关 系 是 通 过 “ 碍 ” 用 具 体 体 现 出来 的 。 阻 作 1磁 场 变 化 所 引起 的 电磁 感 应 现 象 . 磁 场 变 化 会 在 空 间激 发 感 生 电场 ,感 生 电场 对 自由 电荷 做 功 , 磁 场 能 转化 为 电场 能 。 把 例 1 两 圆 环 A、 置 于 同 一 水 平 面 上 . : B 其 中A为 均 匀 带 电 绝 缘 环 , 为 导 体 环 . 当A以 B 如 图 所 示 的 方 向绕 中心 转 动 的角 速 度 发 生 变 化 时 , 中 产生 如 图所 示 方 向 的感 应 电流 , B 则 (C 。 B ) A- 可 能 带 正 电且 转 速 减 小 A B A可 能带 正 电且 转 速 增 大 . CA可 能带 负 电且 转 速 减 小 . D A 能 带 负 电 且 转 速增 大 -可 例 2 如 图所 示 ,b 一 个 可 绕 垂 直 于 纸 面 的 轴 O 动 的闭 : a是 转 合 矩 形 线 框 , 滑 动 变 阻 器 的滑 片P自左 向 右 滑 动 时 , 纸 外 当 从 向 纸 内看 , 线框 a 将 ( ) b C。 A 保 持静 止 不 动 . B. 时 针 转 动 逆 C 顺 时 针 转 动 . D. 生转 动 , 因 电 源 极 性 不 明 , 发 但 无 法确定转动方 向 2相 对 运 动 所 引 起 的 电磁 感 应 现 象 . 楞 次定 律 的另 一 种 表 述 :电磁 感 应 所 产 生 的 效 果 总 是 阻 “
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核心文档必属精品电磁感应现象中的能量问题能的转化与守恒,是贯穿物理学的基本规律之一。

从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。

电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。

此过程中,其他形式的能量转化为电能。

当感应电流通过用电器时,电能又转化为其他形式的能量。

“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。

同理,安培力做功的过程,是电能转化为其它形式能的过程。

安培力做了多少功,就有多少电能转化为其它形式的能。

认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。

一、安培力做功的微观本质1、安培力做功的微观本质设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。

所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。

因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e 作用。

场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。

当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。

导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。

由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。

正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。

由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

当导体在安培力的作用下以速度v d从位置1变到位置2微小一段位移时,导体切割磁感线而产生纵向电场,正电荷没有纵向运动,只有横向运动,因而受到瞬间的洛伦兹力f洛和纵向电场力f2不做功。

正电荷所受横向电场力f H做正功。

但自由电子既有横向位移又有纵向位移,受到横向洛伦兹力f d和纵向洛伦兹力f m,这两个力的合洛伦兹力为f L,与v和v d的合速度v合方向垂直,还受到纵向电场力f1。

沿纵向对自由电子做功功率:沿横向对自由电子做功功率:对自由电子做功的总功率:所以洛伦兹力对自由电子不做功。

f e对电子做负功,f1对电子正功,由于f e=f d和f1=f m,所以这两个力对电子做的总功也为零。

综上所述,安培力对通电导体做功的微观本质是由于横向电场对正电荷的电场力做正功的宏观表现,但这一宏观表现,必须通过洛伦兹力来实现。

2、安培力做功与能的关系如图所示,在竖直平面内,固定着框架abMN,ab之间是直流电源,导体棒cd可在光滑导轨aM、bN上滑动,并不脱离导轨。

导体棒cd的质量为m,acdb构成一个闭合回路,产生如图所示的电流。

cd 棒受重力作用要竖直向下运动,切割磁感线产生如图所示感应电流,受到如图所示的安培力,安培力做负功,cd棒的机械能减少,减少的机械能通过安培力做功转化为电路中的电能,再转化为线路中的内能。

因而cd棒机械能的增减要通过安培力做功来实现,安培力做功起传递能量的作用。

综上所述,从微观上,安培力是导体内正电荷所受的横向电场力,安培力做功的本质是该横向电场力做功的宏观表现;从宏观上,安培力做功与路径有关,起传递能量转化的作用。

二、恒定的安培力做功问题例1、(94年上海高考题)如图1所示,两根光滑的金属导轨,平行放置在倾角为θ斜角上,导轨的左端接有电阻R,导轨自身的电阻可忽路不计。

斜面处在一匀强磁场中,磁场方向垂直于斜面向上。

质量为m,电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。

在这过程中(A)作用于金属捧上的各个力的合力所作的功等于零(B)作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和(C)恒力F与安培力的合力所作的功等于零(D)恒力F与重力的合力所作的功等于电阻R上发出的焦耳热解析:在金属棒匀速上滑的过程中,棒的受力情况如图2所示。

弹力N对棒不做功,拉力F对棒做正功,重力G与安培力F安对棒做负功。

棒的动能不变,重力势能增加,电阻R上产生焦耳热,其内能增加。

依动能定理,对金属棒有W F+W G+W安=△E k=0即作用在捧上各个力作功的代数和为零。

以上结论从另一个角度来分析,因棒做匀速运动,故所受合力为零,合力的功当然也为零。

故选项A正确,选项B,C错误。

因弹力不做功,故恒力F与重力的合力所做的功等于克服安培力所做的功。

而克服安培力做多少功,就有多少其他形式的能转化为电能,电能最终转化为R上发出的焦耳热,故选项D正确。

例2、如图3所示,拉动电阻为R的长金属框,当线框的右边缘与磁场边缘平齐时速率为认并以这一速率离开磁场区域。

已知磁场是均匀的,磁感应强度为B.线框宽为a,长为b。

试求线框右边缘刚出磁场至左边缘刚出磁场这一过程中,外力的功,安培力的功、电流的功、电路中产生的焦耳热?分析与解:题设过程中包含着四种能量形式的转化,涉及到三个做功过程。

用简图表示如下:据能的转化与守恒定律,在题设全过程中,其它形式的能、机械能、电能、内能四种能量在数值上应是相等。

我们只需求出这四个量中的任意一个,就可推知另外三个。

在题设过程中,线框回路的感应电动势ε=Bav。

感应电流I=ε/R =Bav/R。

电路中电流作功W电 =Iεt= Bav/R•Bav•b/v=B2a2bv/R ·据能的转化与守恒定律,W外=Q=W电=B2a2bv/RW安=-W外=-B2a2bv/R三、变化的安培力做功问题例3:位于竖直平面内的矩形平面导线框abcd,ab长为l1,是水平的,bd长为l2,线框的质量为m,电阻为R,其下方有一匀强磁场区域,该区域的上、下边界PP'和QQ'均与ab平行,两边界间的距离为H, H>l2,磁场的磁感应强度为B,方向与线框平面垂直,如图4所示。

令线框的dc边从离磁场区域上边界PP'的距离为h处自由下落,已知在线框的dc边进入磁场以后,ab边到达边界PP'之前的某一时刻线框的速度已达到这一阶段的最大值,问从线框开始下落到dc边刚刚到这磁场区域下边界QQ'的过程中,磁场作用于线框的安培力所作的总功为多少?解析:线框的dc边到达磁场区域的上边界PP'之前为自由落体运动。

dc边进入磁炀后,而ab边还没有进入磁场前,线框受到安培力(阻力)作用,依然加速下落。

这是一个变加速度运动,加速度越来越小,速度越来越大。

设dc边下落到离PP,以下的距离为Ah肘,速度达到最大值,以vm表示这最大速度,则这时线框中的感应电动势为ε=Btw', 线框中的电流为I=ε/R=B lν/R作用于线框的安培力为F=B l I=B2l12v m/R速度达到最大的条件是F=mg由此得v m=mgR/(B2l12) ……①线框的速度达到v m后,而线框的ab边还没有进入磁场区前,线框作匀速运动。

当整个线框进入磁场后,线框中的感应电流为零,磁场作用于线框的安培力为零,直至dc边到达磁场区的下边界QQ',线框作初速度为v m,加速度为g的匀加速运动。

可见磁场对线圈的安培力只存在于线框dc边进入磁场之后到ab边进入磁场之前这段时间内。

对线框从开始下落到ab边刚好进入磁场这一过程,设安培力作的总功为W,由动能定理有mg(h+l2)W=mv m2/2 ……②联立①②两式得W=-mg(l2+h)+m3g2R2/(2B4l14)例4、如图5所示,倾角θ=30°,宽度L =1m的足够长的U 形平行光滑金属导轨固定在磁感强度B =1T ,范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上。

用平行于导轨功率恒为6W 的牵引力,牵引一根质量m =0.2kg ,电阻R =1Ω放在导轨上的金属棒ab ,由静止沿导轨向上移动,棒ab 始终与导轨接触良好且垂直,当金属棒移动2.8m 时,获得稳定速度,在此过程中金属棒产生的热量为5.8J (不计导轨电阻及一切摩擦,取g =10m/s 2)。

问:(1)金属棒达到的稳定速度是多大?(2)金属棒从静止达到稳定速度所需时间是多少?解析:(1)金属棒沿斜面作变加速运动,当匀速上升时,有稳定速度。

设所受的安培力为F 安,则:F = mgsin θ+ F 安; F 安= BIL = R B2L2v ; F = v P。

联立解得金属棒达到的稳定速度是:v =2m/s(2)由能量转化和守恒定律,得:Pt = mgSsin θ+ 21mv 2+ Q 代入数据解得:t =1.5s对于电磁感应中的能量转化问题,应弄清在过程中有哪些能量参与了转化,能量的转化和守恒是通过做功来实现的,安培力做功是联系电能与其它形式的能相互转化的桥梁。

利用能量观点来分析解题,可以避开复杂过程细节的分析,避开变力功的计算,抓住事物变化的本质规律。

例5: n匝线圈包围的面积为S,总电阻为R置于匀强磁场B中,从中性面开始,以角速度ω匀速转动,求外力做功的平均功率.分析与解: 此题属于正弦交流电问题,无论是外力、安培力,还是电流都呈周期性变化。

此类问题包含的能量转化过程如下:电流热功率可由电流的有效值求得, P热=I2R=(Im/2)·R=(εm/2R)2R且εm=nBωS 外力的功率等于热功率 P外= P热= (nBωS)2/2R四、简单连接体例6两金属杆ab和cd长均为l,电阻均为R,质量分别为M和m,M>m,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。

两金属杆都处在水平位置如图6,整个装置处在一与回路平面垂直的匀强磁场中,磁感应强度为B,若金属杆ab正好匀速向下运动,求运动的速度。

分析与解:两棒运动时,因电磁感应,回路中出现感应电流使两棒发热,而ab向下、cd向上匀速运动时动能不变而总重力势能减少。

所以此过程中机械能转化为内能(有能量转化),且参与转化的能量数值可用未知量。

相关文档
最新文档