(整理)幂级数的部分练习题及答案
(完整版)幂函数练习题及答案
幂函数练习题及答案、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,填在题后的括号内(每小题 5 分,共50 分).B.幂函数的图象都经过(0 ,0)和(1,1 )点C .若幂函数y x 是奇函数,则y x 是定义域上的增函数D.幂函数的图象不可能出现在第四象限1 6.函数y x3和y x3图象满足请把正确答案的代号1.下列函数中既是偶函数又是( ,0)上是增函数的是4x32.函数3B.y x 221y x 2在区间[ ,2] 上的最大值是2C.D.1A.4 B.1C.D.3.下列所给出的函数中,是幂函数的是A.y x3 3B.y x C.2x3D.5.下列命题中正确的是A.当0 时函数y x的图象是一条直线yy14 4A.关于原点对称B.关于x 轴对称7. 函数 y x|x|,x R ,满足A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数28.函数 y x 2 2x 24 的单调递减区间是 ( )A . ( , 6]B .[ 6, )C .( , 1]D .[ 1, )9. 如图 1— 9所示,幂函数 y x 在第一象限的图象,比较x 1 x 2 f (x 1)f (x 2 )f(x 12x2),f(x 1)2f(x 2)大小关系是( )奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤 (共 76 分) .15 .( 12 分)比较下列各组中两个值大小6 6 5 5C .关于 y 轴对称D .关于直线 y x 对称0, 1, 2, 3 , 4 ,1的大小(A.1 34 21 B . 012 3 41C.2 4 0 31 1D.3 24 11410 . 对于幂函数 f (x) x , 若 0 x 1 x 2 ,则A . f(x 1x 2 2f (x 1) f (x 2)2 B . f(x 1x2)f (x 1) f(x 2)2C .x 1f( 1x 22f (x 1) f (x 2 )2D . 无法确定、填空题:请把答案填在题中横线上(每小题6 分,共 24 分)k n( 1)k14 .幂函数 yxm(m,n,kN*, m,n 互质 ) 图象在一、二象限,不过原点,则 k,m,n 的34(1 )0.611与0.7 11;(2)( 0.88)1与( 0.89)3 .16.(12分)已知幂函数2f(x) x m 2m 3(m Z)的图象与x轴,y轴都无交点,且关于y 轴对称,试确f (x)的解析式.117 .(12 分)求证:函数y x3在R上为奇函数且为增函数18 .(12 分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系3 1 21)y x2;(2)y x3;(3)y x3;14)y x 2;(5)y x 3;(6)y x 219.(14分)由于对某种商品开始收税,使其定价比原定价上涨后,商品卖出个数减少bx 成,税率是新定价的a成,这里a,b 均为正常数,且a<10 ,设售货款扣除税款后,剩余y 元,要使y 最大,求x的值.20 .(14 分)利用幂函数图象,画出下列函数的图象(写清步骤)x2 2x 22x2 2x 152)y (x 2)3 1.xx成(即上涨率为10),涨价A)(B)(C)(D )(E)(F)参考答案、CCBADDCADA二、11 .(0, );12.f (x)4x3 (x 0);13.5;14.m, k为奇数,n是偶数;三、15 .解:( 1 ) 函数y6x11在(0, )上是增函数且0 0.6 0.76 0.61160.711(2 )5函数y x3在(0, ) 上增函数且0.88 0.895 0.88350.89350.88350.893 ,即5( 0.88)350.89) 3 .16 .解:2 m 由m22m2mZ303是偶数得m 1,1,3.m 1和3时解析式为 f (x) 0 x ,m 1时解析式为f (x) x17 .解:显然 f ( x) x)3 f (x) ,奇函数;令x1 x2 ,则 f (x1) f (x2 ) 3x13x2 (x1 2x2 )(x12x1x2 x2 ) ,其中,显然x1x2 0,2x1 x1x2 x2 1= (x1 2x2)3x2422,由于且不能同时为0 ,否则x1x2 0 ,故(x11(x1 x2 )1221 2 3 2x2 ) x222420,3x22420,0.从而f(x1) f (x2) 0. 所以该函数为增函数18 .解:六个幂函数的定义域,奇偶性,单调性如下:3(1) y x2x3定义域[0,) ,既不是奇函数也不是偶函数,在[0,) 是增函数;12)y x 3 3 x 定义域为 R ,是奇函数,在 [0, )是增函数;23)y x 3 3 x 2 定义域为 R ,是偶函数,在 [0, )是增函数; 21 4)y x 2 12 定义域 R UR 是偶函数,在 (0, )是减函数;x 315)y x 3 13定义域 R UR 是奇函数,在 (0, )是减函数;x16)y x 2 1定义域为 R 既不是奇函数也不是偶 函数,在 (0, ) x 上减函数 .通过上面分析,可以得出( 1) (A ),( 2) (F ),( 3) (5 ) (D ),( 6 ) (B ) .x19.解:设原定价 A 元,卖出 B 个,则现在定价为 A (1+ 1x 0),20 .解:E ),( 4) ( C ),现在卖出个数为 B (1 - bx ),现在售货金额为 A (1+ x ) B(110 10bx )=AB(1+10x1x 0)(1bx-10),x应交税款为 AB(1+ )(110bx a-10 ) ·10 ,x剩余款为 y = AB(1+)(1 105(1 b) 时y 最大b所以 x-b 1x 0)(1 1a 0)= AB (1要使 y 最大, x 的值为a )( 10 100 5(1 b) xb 1b x 101),向上平移 x 2 2x 2x 2 2x 11 x2 2x(x1 1)21把函数 ,y12的图象向左平移x 21 个单位,再1 个单位可以得到函数2x 2 x2x 2的图象 .2x 1 5(x 2) 31的图象可以由5x 3 图象向右平移 2 个单位,再向下平移。
高三数学幂函数试题答案及解析
高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。
3.3 幂函数(精练)(解析版)--人教版高中数学精讲精练必修一
3.3幂函数(精练)1.(2023·全国·高一专题练习)已知幂函数()f x 的图象经过点()8,4,则()f x 的大致图象是()A .B .C .D .【答案】C【解析】设()f x x α=,因为()f x 的图象经过点()8,4,所以84α=,即3222α=,解得23α=,则()23f x x ==,因为()()f x f x -===,所以()f x 为偶函数,排除B 、D ,因为()f x 的定义域为R ,排除A .因为()23f x x =在[)0,∞+内单调递增,结合偶函数可得()f x 在(],0-∞内单调递减,故C 满足,故选:C.2.(2023·山东聊城)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .c<a<bC .a b c>>D .b<c<a【答案】B【解析】由已知,421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为幂函数23y x =在()0,+∞上单调递增,而15<14<13,所以222333111543<<⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.3.(2022秋·辽宁葫芦岛·高一校联考期中)设 1.2111y =, 1.428y =,0.63130y =,则()A .231y y y >>B .312y y y >>C .132y y y >>D .321y y y >>【答案】D【解析】由题意可知,()0.61.220.611111121y ===,()()1.40.61.43 4.270.628222128y =====,因为0.6y x =在()0,∞+上是增函数,130128121>>,所以321y y y >>.故选:D.4.(2023·福建南平)下列比较大小中正确的是()A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .3377(2.1)(2.2)--<-D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】对于A 选项,因为0.5y x =在[0,)+∞上单调递增,所以0.50.523()()32<,故A 错误,对于B 选项,因为1y x -=在(,0)-∞上单调递减,所以1123()()35--->-,故B 错误,对于C 选项,37y x =为奇函数,且在[0,)+∞上单调递增,所以37y x =在(,0)-∞上单调递增,因为333777115(2.2)511--⎭==⎛⎫⎛⎫--- ⎪ ⎪⎝⎝⎭,又()337752.111⎛⎫-<- ⎪⎝⎭,所以3377(2.1)(2.2)--<-,故C 正确,对于D 选项,43y x =在[0,)+∞上是递增函数,又443311()()22-=,所以443311()()23>,所以443311()()23->,故D 错误.故选:C.5.(2022秋·河南·高一统考期中)()3a π=-,27b =-,()05c =-,则()A .a b c <<B .b a c <<C .<<c a bD .c b a<<【答案】A【解析】 3()f x x =,在R 上单调递增,而()(3)a f b f π=-=-,,根据单调递增的性质,得0a b <<,又1c =,所以a b c <<.故选:A6(2022秋·福建泉州·高一校联考期中)下列比较大小正确的是()A 12433332-->>B .12433332-->>C .12433332--->>D .21433323--->>【答案】C2242333π---⎡⎤==⎢⎥⎣⎦,21333--=又23y x -=在()0,∞+上单调递减,2π>,所以2223332π---<<,所以12433332-->>.故选:C7.(2023·江苏常州)下列幂函数中,既在区间()0,∞+上递减,又是奇函数的是().A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【解析】对选项A ,12y x =在()0,∞+为增函数,故A 错误.对选项B ,13y x =在()0,∞+为增函数,故B 错误.对选项C ,23y x -=在()0,∞+为减函数,设()123321f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()()11332211f x f x x x ⎡⎤⎛⎫-===⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,∞+为减函数,设()11331f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()113311f x f x x x ⎛⎫⎛⎫-==-=- ⎪ ⎪-⎝⎭⎝⎭,所以()f x 为奇函数,故D 正确.故选:D8.(2023春·江苏南京)幂函数2223()(1)m m f x m m x --=--在()0,∞+上是减函数,则实数m 值为()A .2B .1-C .2或1-D .1【答案】A【解析】 幂函数2223()(1)mm f x m m x --=--,211m m ∴--=,解得2m =,或1m =-;又,()0x ∈+∞时()f x 为减函数,∴当2m =时,2233m m --=-,幂函数为3y x -=,满足题意;当1m =-时,2230m m --=,幂函数为0y x =,不满足题意;综上,2m =,故选:A .9.(2022·高一单元测试)幂函数()()22231mm f x m m x+-=--在区间(0,+∞)上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】幂函数()()22231m m f x m m x+-=--在区间(0,+∞)上单调递增,∴2211230m m m m ⎧--=⎨+-⎩>,解得m =2,∴5()f x x =,∴()f x 在R 上为奇函数,由0a b +>,得a b >-,∵()f x 在R 上为单调增函数,∴()()()f a f b f b >-=-,∴()()0f a f b +>恒成立.故选:A .10.(2023·浙江台州)(多选)关于幂函数(,y x R ααα=∈是常数),结论正确的是()A .幂函数的图象都经过原点()0,0B .幂函数图象都经过点()1,1C .幂函数图象有可能关于y 轴对称D .幂函数图象不可能经过第四象限【答案】BCD【解析】对于A :幂函数1y x -=不经过原点()0,0,A 错误对于B :对于幂函数(,y x R ααα=∈是常数),当1x =时,1y =,经过点()1,1,B 正确;对于C :幂函数2y x =的图像关于y 轴对称,C 正确;对于D :幂函数图象不可能经过第四象限,D 正确.故选:BCD.11.(2023·全国·高一专题练习)(多选)已知幂函数()f x 的图象经过点(,则()A .()f x 的定义域为[)0,∞+B .()f x 的值域为[)0,∞+C .()f x 是偶函数D .()f x 的单调增区间为[)0,∞+【答案】ABD【解析】设()()a f x x a =∈R ,则()22af ==12a =,则()12f x x ==,对于A 选项,对于函数()f x =0x ≥,则函数()f x 的定义域为[)0,∞+,A 对;对于B 选项,()0f x =≥,则函数()f x 的值域为[)0,∞+,B 对;对于C 选项,函数()f x =[)0,∞+,定义域不关于原点对称,所以,函数()f x 为非奇非偶函数,C 错;对于D 选项,()f x 的单调增区间为[)0,∞+,D 对.故选:ABD.12.(2023·宁夏银川)(多选)幂函数()()211m f x m m x --=+-,*N m ∈,则下列结论正确的是()A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,∞+【答案】ABD【解析】因为()()211m f x m m x --=+-是幂函数,所以211m m +-=,解得2m =-或1m =,又因为*N m ∈,故1m =,A 正确;则()2f x x -=,定义域为{|0}x x ≠,满足()2()()f x x f x --=-=,故()f x 是偶函数,B 正确;()2f x x -=为偶函数,在(0,)+∞上单调递减,故()()2(2)3f f f -=>,C 错误;函数()221f x x x -==的值域为()0,∞+,D 正确,故选:ABD13.(2022秋·广东惠州)(多选)已知函数()()21m mf x m x -=-为幂函数,则()A .函数()f x 为奇函数B .函数()f x 在区间()0,∞+上单调递增C .函数()f x 为偶函数D .函数()f x 在区间()0,∞+上单调递减【答案】BC【解析】因为()()21mmf x m x -=-为幕函数,所以11m -=,即2m =,所以()2f x x =.函数()2f x x =的定义域为R ,()()()22f x x x f x -=-==,所以函数()f x 为偶函数,又函数()2f x x =在()0,∞+为增函数.故选:BC.14.(2023春·河北保定)(多选)若幂函数()()1f x m x α=-的图像经过点()8,2,则()A .3α=B .2m =C .函数()f x 的定义域为{}0x x ≠D .函数()f x 的值域为R【答案】BD【解析】因为()()1f x m x α=-是幂函数,所以11m -=,解得2m =,故B 正确;所以()f x x α=,又因的图像经过点()8,2,所以3282αα==,所以31α=,解得13α=,故A 错误;因为()13f x x =,则其定义域,值域均为R ,故C 错误,D 正确.故选:BD.15.(2023春·山西忻州·高一统考开学考试)(多选)已知幂函数()()23mx m x f =-的图象过点12,4⎛⎫ ⎪⎝⎭,则()A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0∞-上为减函数D .()f x 在()0,∞+上为减函数【答案】AD【解析】根据幂函数定义可得231m -=,解得2m =±;又因为图象过点12,4⎛⎫ ⎪⎝⎭,所以可得2m =-,即()221f x x x -==;易知函数()f x 的定义域为()()0,,0+∞⋃-∞,且满足()()()2211f x f x xx -===-,所以()f x 是偶函数,故A 正确,B 错误;由幂函数性质可得,当()0,x ∈+∞时,()2f x x -=为单调递减,再根据偶函数性质可得()f x 在(),0∞-上为增函数;故C 错误,D 正确.故选:AD16.(2022秋·安徽滁州·高一校考期中)(多选)对幂函数()32f x x -=,下列结论正确的是()A .()f x 的定义域是{}0,R x x x ≠∈B .()f x 的值域是()0,∞+C .()f x 的图象只在第一象限D .()f x 在()0,∞+上递减【答案】BCD【解析】对幂函数()32f x x -=,()f x 的定义域是{}0,R x x x >∈,因此A 不正确;()f x 的值域是()0,∞+,B 正确;()f x 的图象只在第一象限,C 正确;()f x 在()0,∞+上递减,D 正确;故选:BCD .17.(2023·四川成都)(多选)已知幂函数()f x 的图像经过点(9,3),则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当120x x >>时,1212()()f x f x x x -<-【答案】AC【解析】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.18.(2023·湖北)(多选)下列关于幂函数说法不正确的是()A .一定是单调函数B .可能是非奇非偶函数C .图像必过点(1,1)D .图像不会位于第三象限【答案】AD【解析】幂函数的解析式为()ay x a =∈R .当2a =时,2y x =,此函数先单调递减再单调递增,则都是单调函数不成立,A 选项错误;当2a =时,2y x =,定义域为R ,此函数为偶函数,当12a =时,y =,定义域为{}0x x ≥,此函数为非奇非偶函数,所以可能是非奇非偶函数,B 选项正确;当1x =时,无论a 取何值,都有1y =,图像必过点()1,1,C 选项正确;当1a =时,y x =图像经过一三象限,D 选项错误.故选:AD.19.(2023·高一课时练习)有关幂函数的下列叙述中,错误的序号是______.①幂函数的图像关于原点对称或者关于y 轴对称;②两个幂函数的图像至多有两个交点;③图像不经过点()1,1-的幂函数,一定不关于y 轴对称;④如果两个幂函数有三个公共点,那么这两个函数一定相同.【答案】①②④【解析】①,12y x ==y 轴对称,所以①错误.②④,由3y x y x =⎧⎨=⎩解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩或00x y =⎧⎨=⎩,即幂函数y x =与3y x =有3个交点,所以②④错误.③,由于幂函数过点()1,1,所以图像不经过点()1,1-的幂函数,一定不关于y 轴对称,③正确.故答案为:①②④20.(2023·湖南娄底·高一统考期末)已知幂函数()()2133m f x m m x +=-+为偶函数.(1)求幂函数()f x 的解析式;(2)若函数()()1f xg x x+=,根据定义证明()g x 在区间()1,+∞上单调递增.【答案】(1)()2f x x =;(2)见解析.【解析】(1)因为()()2133m f x m m x +=-+是幂函数,所以2331m m -+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+.设211x x >>,则()()()12212121212112121111x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因为211x x >>,所以210x x ->,121x x >,所以12110x x ->,所以()()210f x f x ->,即()()21f x f x >,故()g x 在区间()1,+∞上单调递增.21.(2023·天津宝坻·高一天津市宝坻区第一中学校考期末)已知幂函数()ag x x =的图象经过点(,函数()()241g x bf x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数b 的值;(2)判断函数()f x 在区间()1,1-上的单调性,并用的数单调性定义证明.【答案】(1)()g x =b =(2)()f x 在()1,1-上单调递增,证明见解析【解析】(1)由条件可知2a=12a =,即()12g x x ==,所以()42g =,因为()221x b f x x +=+是奇函数,所以()00f b ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以0b =成立;(2)函数()f x 在区间()1,1-上单调递增,证明如下,由(1)可知()221xf x x =+,在区间()1,1-上任意取值12,x x ,且12x x <,()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<,即()()12f x f x <,所以函数在区间()1,1-上单调递增.22.(2023·福建厦门·高一厦门一中校考期中)已知幂函数()af x x =的图象经过点12A ⎛ ⎝.(1)求实数a 的值,并用定义法证明()f x 在区间()0,∞+内是减函数.(2)函数()g x 是定义在R 上的偶函数,当0x ≥时,()()g x f x =,求满足()1g m -≤m 的取值范围.【答案】(1)12α=-,证明见解析;(2)46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【解析】(1)由幂函数()af x x =的图象经过点12A ⎛ ⎝12α⎛⎫∴= ⎪⎝⎭12α=-证明:任取12,(0,)x x ∈+∞,且12x x<11222121()()f x f x x x ---=-==210x x >> ,120x x ∴-<0>21()()0f x f x ∴-<,即21()()f x f x <所以()f x 在区间()0,∞+内是减函数.(2)当0x ≥时,()()g x f x =,()f x 在区间[)0,∞+内是减函数,所以()g x 在区间()0,∞+内是减函数,在区间(),0∞-内是增函数,又15g ⎛⎫= ⎪⎝⎭(1)g m -1(1)5g m g ⎛⎫-≤ ⎪⎝⎭函数()g x 是定义在R 上的偶函数,则115m -≥,解得:65m ≥或45m ≤所以实数m 的取值范围是46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 23.(2023福建)已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围.【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a ①当22a -<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤③当22a->,即4a <-时,()(2)70g a h a ==+≥所以7a ≥-.又4a <-所以74a -≤<-.综上可知,a 的取值范围为[7,2]-1.(2023广西)(多选)已知幂函数()nm f x x =(m ,*n ∈N ,m ,n 互质),下列关于()f x 的结论正确的是()A .m ,n 是奇数时,幂函数()f x 是奇函数B .m 是偶数,n 是奇数时,幂函数()f x 是偶函数C .m 是奇数,n 是偶数时,幂函数()f x 是偶函数D .01mn<<时,幂函数()f x 在()0,∞+上是减函数E .m ,n 是奇数时,幂函数()f x 的定义域为R 【答案】ACE【解析】()nm f x x ==当m ,n 是奇数时,幂函数()f x 是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数,幂函数/()f x 在0x <时无意义,故B 中的结论错误当m 是奇数,n 是偶数时,幂函数()f x 是偶函数,故C 中的结论正确;01mn<<时,幂函数()f x 在()0,∞+上是增函数,故D 中的结论错误;当m ,n 是奇数时,幂函数()f x =R 上恒有意义,故E 中的结论正确.故选:ACE.2.(2022秋·福建福州·高一校联考期中)(多选)已知幂函数()()22922mm f x m m x+-=--对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,若()()0f a f b +>,则()A .0a b +<B .0a b +>C .()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭D .()()22f a f b a b f ++⎛⎫≤ ⎪⎝⎭【答案】BD【解析】因为()()22922mm f x m m x+-=--为幂函数,所以2221m m --=,解得1m =-或3m =,因为对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,所以函数()f x 在(0,)+∞上递增,所以290m m +->当1m =-时,2(1)(1)990-+--=-<,不合题意,当3m =时,233930+-=>,所以3()f x x =因为33()()f x x x -=-=-,所以()f x 为奇函数,所以由()()0f a f b +>,得()()()f a f b f b >-=-,因为3()f x x =在R 上为增函数,所以a b >-,所以0a b +>,所以A 错误,B 正确,对于CD ,因为0a b +>,所以333()()2222f a f b a b a b a b f ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭33322344(33)8a b a a b ab b +-+++=33223()8a b a b ab +--=223[()()]8a ab b a b ---=23()()08a b a b -+=≥,所以()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭,所以C 错误,D 正确,故选:BD3.(2023·江苏·校联考模拟预测)(多选)若函数13()f x x =,且12x x <,则()A .()()()()12120x x f x f x -->B .()()1122x f x x f x ->-C .()()1221f x x f x x -<-D .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭【答案】AC【解析】由幂函数的性质知,13()f x x =在R 上单调递增.因为12x x <,所以()()12f x f x <,即120x x -<,()()120f x f x -<,所以()()()()12120x x f x f x -->.故A 正确;令120,1x x ==,则0(0)1(1)0f f -=-=,故B 错误;令()13()g x f x x x x =+=+,则由函数单调性的性质知,13()f x x =在R 上单调递增,y x =在R 上单调递增,所以13()y f x x x x =+=+在R 上单调递增,因为12x x <,所以()12()g x g x <,即()()1122f x x f x x +<+,于是有()()1221f x x f x x -<-,故C 正确;令121,1x x =-=,则1202x x +=,所以因为(1)(1)(0)02f f f +-==,故D 错误.故选:AC.4.(2022秋·江西九江·高一统考期末)已知幂函数()()223mm f x x m --+=∈N 的图像关于直线0x =对称,且在()0,∞+上单调递减,则关于a 的不等式()()33132mma a --+<-的解集为______.【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】由()()223mm f x x m --+=∈N 在()0,∞+上单调递减得,2230m m --<,故13m -<<,又m +∈N ,故1m =或2,当1m =时,()4f x x =-,满足条件;当2m =时,()3f x x =-,图像不关于直线0x =对称,故1m =.因为函数13()g x x -=在()(),0,0,-∞+∞为减函数,故由不等式()()1133132a a --+<-得,10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a +>⎧⎪->⎨⎪+>-⎩或10320a a +<⎧⎨->⎩.解得2332a <<或1a <-,综上:23132a a <-<<或.故答案为:()23,1,32⎛⎫-∞- ⎪⎝⎭5.(2023·山西太原)已知函数()3f x x x =+.若对于任意[]2,4m ∈,不等式()()240f ma f m m-++恒成立,则实数a 的取值范围是___________.【答案】6a ≥【解析】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()3f x x x =+是R 上的奇函数,因为3,y x y x ==均是R 上的增函数,所以()3f x x x =+是R 上的增函数,因为()()240f ma f m m-++,所以()()24f m mf ma +--,即()()24f m mf ma +-所以24m m ma +-,由[]2,4m ∈知0m >,故41a m m++,令()41g m m m=++,[]2,4m ∈设1224m m <,()()1212121212444411g m g m m m m m m m m m ⎛⎫-=++-++=-+- ⎪⎝⎭()()()21121212121244m m m m m m m m m m m m ---=-+=由1224m m <,得120m m -<,124m m >,则()()120g m g m -<,即()()12g m g m <,所以()g m 在[]2,4上单调递增,当4m =时,()g m 取得最大值6,故6a .故答案为:6a .6.(2023春·四川广安·高一校考阶段练习)已知幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =++-在[]0,2上的最大值为3,求实数a 的值.【答案】(1)2m =,()3f x x =;(2)2a =±.【解析】(1)幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增,故25110m m m ⎧+-=⎨+>⎩,解得2m =,故()3f x x =;(2)由(1)知:()3f x x =,所以()22121g x ax a x ax a =+-=-++-,所以函数()g x 的图象为开口向下的抛物线,对称轴为直线x a =;由于()g x 在[]0,2上的最大值为3,①当2a ≥时,()g x 在[]0,2上单调递增,故()()max 2333g x g a ==-=,解得2a =;②当0a ≤时,()g x 在[]0,2上单调递减,故()()max 013g x g a ==-=,解得2a =-;③当02a <<时,()g x 在[]0,a 上单调递增,在[],2a 上单调递减,故()()2max 13g x g a a a ==+-=,解得1a =-(舍去)或2a =(舍去).综上所述,2a =±.7.(2023·黑龙江哈尔滨·高一哈尔滨市第六中学校校考期末)已知幂函数()()23122233p p f x p p x--=-+是其定义域上的增函数.(1)求函数()f x 的解析式;(2)若函数()()h x x af x =+,[]1,9x ∈,是否存在实数a 使得()h x 的最小值为0?若存在,求出a 的值;若不存在,说明理由;(3)若函数()()3g x b f x =-+,是否存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ?若存在,求出实数b 的取值范围;若不存在,说明理由.【答案】(1)()f x =(2)存在1a =-(3)9,24⎛⎤-- ⎥⎝⎦【解析】(1)因为()()23122233p p f x p p x--=-+是幂函数,所以2331p p -+=,解得1p =或2p =当1p =时,()1f x x=,在()0,∞+为减函数,当2p =时,()f x =在()0,∞+为增函数,所以()f x =(2)()()h x x af x x =+=+t =,因为[]1,9x ∈,所以[]1,3t ∈,则令()2k t t at =+,[]1,3t ∈,对称轴为2a t =-.①当12a-≤,即2a ≥-时,函数()k t 在[]1,3为增函数,()min ()110k t k a ==+=,解得1a =-.②当132a <-<,即62a -<<-时,2min ()024a a k t k ⎛⎫=-=-= ⎪⎝⎭,解得0a =,不符合题意,舍去.当32a-≥,即6a ≤-时,函数()k t 在[]1,3为减函数,()min ()3930k t k a ==+=,解得3a =-.不符合题意,舍去.综上所述:存在1a =-使得()h x 的最小值为0.(3)()()3g x b f x b =-+=()g x 在定义域范围内为减函数,若存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,则()()g m b n g n b m ⎧==⎪⎨==⎪⎩①②,②-①()()33m n m n =-=+-+,=+,1=③.将③代入②得:1b m m ==+令t m n <,0≤<,所以10,2t ⎡⎫∈⎪⎢⎣⎭.所以2219224b t t t ⎛⎫=--=-- ⎪⎝⎭,在区间10,2t ⎡⎫∈⎪⎢⎣⎭单调递减,所以924b -<≤-故存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,实数b 的取值范围且为9,24⎛⎤-- ⎥⎝⎦.8.(2023·福建龙岩)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)k g x f x k x=+∈.(1)若(2)5g =,求k ;(2)已知2k ≤,若关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,求k 的取值范围.【答案】(1)2k =(2)12k <≤【解析】(1)对于幂函数()21()2910m f x m m x -=-+,得229101m m -+=,解得32m =或3m =,又当32m =时,12()f x x =不为偶函数,3m ∴=,2()f x x ∴=,2()k g x x x∴=+,(2)452kg ∴=+=,解得2k =;(2)关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,即22102k x k x +->在[1,)+∞上恒成立,即22min 12k x k x ⎡⎤+>⎢⎥⎣⎦,先证明()2kh x x x=+在[1,)+∞上单调递增:任取121x x >>,则()()()()1212221212121212x x x x k k k h x h x x x x x x x x x +-⎛⎫⎛⎫-=+-+=- ⎪ ⎪⎝⎭⎝⎭,121x x >> ,120x x ∴->,()12122x x x x +>,又2k ≤,()12120x x x x k ∴+->,()()120h x h x ∴->,即()()12h x h x >,故()2kh x x x=+在[1,)+∞上单调递增,()()min 11h x h k ∴==+,2112k k ∴+>,又2k ≤,解得12k <≤.9.(2022秋·上海普陀·高一曹杨二中校考阶段练习)设R m ∈,已知幂函数()()2133m f x m m x +=+-⋅是偶函数.(1)求m 的值;(2)设R a ∈,若函数()[],0,2y f x ax a x =-+∈的最小值为1-,求a 的值.【答案】(1)1m =(2)1a =-或5a =.【解析】(1)因为幂函数()()2133m f x m m x +=+-⋅是偶函数,所以2331m m +-=且1m +为偶数,解得:1m =或4m =-(舍),则1m =,所以()2f x x =.(2)令()()2y g x f x ax a x ax a ==-+=-+的开口向上,对称轴2a x =,①当02a≤即0a ≤,()g x 在[]0,2上单调递增,所以()()min 01g x g a ===-,所以1a =-;②当022a <<即04a <<,()g x 在0,2a ⎡⎤⎢⎥⎣⎦上单调递减,在22a ⎡⎤⎢⎥⎣⎦,上单调递增,所以()22min1242a a a g x g a ⎛⎫==-+=- ⎪⎝⎭,解得:2a =+2a =-③当22a≥即4a ≥,()g x 在[]0,2上单调递减,所以()()min 241g x g a ==-=-,解得:5a =所以5a =.综上:1a =-或5a =.10.(2022秋·河南·高一校联考期中)已知幂函数223()(2)m x f x m -⋅=-在(0,)+∞上单调递增.(1)求实数m 的值;(2)若对[]2,2x ∀∈-,[2,2]a ∃∈-,使得()221f x at t a ≤+++都成立,求实数t 的取值范围.【答案】(1)3m =;(2)实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.【解析】(1)因为幂函数()223(2)m x f x m -⋅=-在(0,)+∞上单调递增,所以()2213230m m m ⎧-=⎪⇒=⎨->⎪⎩;(2)由(1)可得3()f x x =因为对[2,2]x ∀∈-,使得()221f x at t a ≤+++都成立所以2max ()21f x at t a ≤+++,其中[2,2]x ∈-,由(1)可得函数()f x 在[]22-,上的最大值为8,所以2218at t a +++≥,又[2,2]a ∃∈-,使得2218at t a +++≥都成立所以()2max 270a t t ⎡⎤++-≥⎣⎦,因为220t +>,所以()227y a t t =++-是关于a 的单调递增函数,∴()()22max272270a t t t t ⎡⎤++-=++-≥⎣⎦,即2230t t +-≥,∴32t ≤-或1t ≥,所以实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.11.(2023·浙江)已知幂函数()()2223mf x m m x =--.(1)若()f x 的定义域为R ,求()f x 的解析式;(2)若()f x 为奇函数,[]1,2x ∃∈,使()31f x x k >+-成立,求实数k 的取值范围.【答案】(1)()2f x x=(2)(),1-∞-【解析】(1)因为()()2223mf x m m x =--是幂函数,所以22231m m --=,解得2m =或1m =-,当2m =时,()2f x x =,定义域为R ,符合题意;当1m =-时,()11x xf x -==,定义域为()(),00,∞-+∞U ,不符合题意;所以()2f x x =;(2)由(1)可知()f x 为奇函数时,()11x xf x -==,[]1,2x ∃∈,使()31f x x k >+-成立,即[]1,2x ∃∈,使131x k x>+-成立,所以[]1,2x ∃∈,使113k x x-<-成立,令()[]13,1,2h x x x x=-∈,则()max 1k h x -<,[]12,1,2x x ∀∈且12x x <,则()()()1212211212111333h x h x x x x x x x x x ⎛⎫-=--+=-+ ⎪⎝⎭,因为1212x x ≤<≤,所以211210,0x x x x ->>,所以()2112130x x x x ⎛⎫-+> ⎪⎝⎭,即()()12h x h x >,所以()13h x x x=-在[]1,2上是减函数,所以()()max 1132h x h ==-=-,所以12k -<-,解得1k <-,所以实数k 的取值范围是(),1-∞-。
解析函数的幂级数展开的题及答案
解:可直接求出函数 1 z 在 z 0 的各阶导数值,
f (0) 1 f '(0) (1 z )
1z 0源自z 0f ''(0) ( 1)(1 z ) 2
( 1)
f ( n ) (0) ( 1) ( n 1)(1 z ) n
zn (1) 3 (并讨论在收敛圆周上的敛散性); n 1 n n ( z 1) (2) (并讨论在 z 0, 2 点处的敛 n n 1
散性).
n 1 1, an lim 解:(1) 因为 lim 所以该级 3 n a n n n 1 数的收敛半径为 R 1 ;在收敛圆周上,幂级数变为: ein n3 , 易知该级数绝对收敛因而也收敛. n 1 2
3
n 1 1, an lim (2) 易得: lim 故该级数 n a n n n 1 的收敛半径为 R 1 . 因 z 0, 2 均位于收敛圆周上, 故需要进一步讨论起敛散性.对于 z 0, 原级数变为
(1) 交错级数 , (由交错级数的 Lebniz 判别法) n n 1 易知其收敛但不绝对收敛.对于 z 2, 该幂级数变为
z
所以:
ez 1 2 1 1 3 1 2 z 1 1 z 1 1 z , z 1. 1 z 2! 2! 3!
10
例4.7:证明级数 z 在 z r (0 r 1)上一致收敛 .
n n 1
证: z r n,且级数 r n (0 r 1)收敛
例:用唯一性定理证明 2 z cos2 z 1. sin 解: f1 ( z ) sin 2 z cos2 z f 2 ( z) 1 f1 ( z )与f 2 ( z )在全平面上解析,而在 实轴上f1 ( x) f 2 ( x) 故在全平面上 1 ( z ) f 2 ( z ),即 f sin 2 z cos2 z= 1
高一幂函数的试题及答案
高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。
三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。
7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。
四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。
9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。
答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。
三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。
(完整版)幂的运算练习及答案
(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。
各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。
幂级数的部分练习题和答案
题目部分.(卷面共有100题,349.0分,各大题标有题量和总分)一、选择 (10小题,共22.0分) (2分)[1] (2分)[2] 函数项级数∑∞=1n nnx 的收敛域是(A) []1,1- (B) [)1,1- (C) ()1,1- (D) (]1,1-答( )(2分)[3] 设级数()n n n x b 20-∑∞=在2-=x 处收敛.则此级数在4=x 处(A)发散; (B)绝对收敛; (C)条件收敛; (D)不能确定敛散性。
答:( )(3分)[4]设级数()n n n x a 30+∑∞=在1-=x 处是收敛的.则此级数在1=x 处(A)发散; (B)绝对收敛;(C)条件收敛; (D)不能确定敛散性。
答:( ) (2分)[5]设级数()n n n x a 10-∑∞=的收敛半径是1.则级数在3=x 点(A)发散; (B)条件收敛; (C)绝对收敛; (D)不能确定敛散性。
答:( ) (2分)[6]如果81lim 1=+∞→nn n a a ,则幂级数∑∞=03n nn x a(A)当2<x 时,收敛; (B) 当8<x 时,收敛; (C) 当81>x 时,发散; (D) 当21>x 时,发散; 答( ) (2分)[7]若幂级数∑∞=0n n n x a 的收敛半径为R,那么(A)R a a nn n =+∞→1lim,(B) R a a n nn =+∞→1lim,(C)R a n n =∞→lim , (D)nn n a a 1lim +∞→不一定存在 . 答( )(3分)[8] 若幂级数∑∞=0n n n x a 在2=x 处收敛.在3-=x 处发散.则 该级数(A)在3=x 处发散; (B)在2-=x 处收敛; (C)收敛区间为(]2,3- ;(D)当3>x 时发散。
答( )(2分)[9] 如果()x f 在0x 点的某个邻域内任意阶可导.那么幂级数()()()∑∞=⎥⎦⎤⎢⎣⎡-000!n n n x x n x f 的和函数 (A) 必是()x f . (B)不一定是()x f . (C)不是()x f . (D)可能处处不存在。
高数幂级数详解和习题
二、幂级数及其收敛性
1.定义: 形如 an ( x x0 )n的级数称为幂级数.
n 0
当x0 0时, an xn , 其中an为幂级数系数.
n0
2.收敛性:
例如级数 xn 1 x x2 ,
n0
当 x 1时, 收敛; 当 x 1时, 发散;
收敛域(1,1); 发散域(,1] [1,);
n1
lim
an1
n an
lim
n
(n
1)n1 nn
lim n
1
1 n
n
(n
1)
R 0,
级数只在 处收敛, 收敛域为{0}.
(3) xn ;
n1 n! lim an1 lim 1 0, R ,
n an n n 1
收敛域为
.
(4) (1)n 2n ( x 1)n .
n1
定理 1 (Abel 定理)
如果级数 an x n 在 x x0 ( x0 0)处收敛,则
n0
它在满足不等式 x x0 的一切 x处绝对收敛;
如果级数 an x n 在x x0 处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
几何说明 收敛区域
• • •• • • ••• • •
(2)
(1)n
n0
x2n
1 1 x2
;
(3)
ax 2n
n0
a 1 x2
;
(4) xn e x;
n0 n!
(5) (1)n1
x 2n1
sin x;
n1
(2n 1)!
(6) (1)n xn1 ln(1 x);
n0
n1
四、小结
幂函数练习题及答案解析
幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。
2.若 a < 1,则 5a < 0.5a < 5-a。
解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。
3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。
解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。
(-3)^n。
解析:因为 (-2)^n。
0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。
+∞) 上为减函数。
因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。
-4)。
解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。
-4) 上递减。
2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。
0)。
解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。
0)。
3.正确的说法有 2 个。
解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。
4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。
因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。
第十四章幂级数练习题(2021
第十四章 幂级数(2021.1)一、单选题1、21∞=∑nn x n 的收敛域为( ). AA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1]2、级数21∞=∑nn x n的收敛域为( ). DA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1]3、级数1∞=∑nn x n的收敛域为( ). CA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1] 4、∑∞=-1)1(1n n x n的收敛域为( ). C A 、 (-1,1) B 、 (0,2] C 、 [0,2) D 、 [-1,1)5、nx n)1(+∑的收敛域为( ). CA. )1,1[-B. ]0,2[-C. )0,2[-D. )2,0[6、若nn n a x∞=∑在00≠x 收敛,则在区间00(,)-x x 内nn n a x∞=∑ ( ). AA .绝对收敛B .条件收敛C .发散D .不能确定 7、若()01nn n a x ∞=-∑在3x =处收敛,在1x =-处发散,则该级数的收敛半径R ( ). A A .等于2 B .小于2 C .大于2 D .不能确定 8、已知1∞=∑nn n a x在2x =处收敛, 则在32x =-处此级数( ). A A 、绝对收敛 B 、条件收敛 C 、发散 D 、不能确定 9、若nn x a )1(+∑在3-=x 处收敛,则该级数在0=x 处( ). A A 、绝对收敛 B 、条件收敛 C 、发散 D 、不能确定 10、若nn x a )1(-∑在1-=x 处收敛,则该级数在2=x 处( ). BA. 条件收敛B. 绝对收敛C. 发散D. 不能确定 11、若幂级数nn nx a)1(0-∑∞=在1-=x 处条件收敛,则级数∑∞=0n n a ( ). BA .条件收敛B .绝对收敛C .发散D . 不能确定12、级数211(1)(1)nn n n x ∞=+-∑的收敛半径R =( ). CA 、1B 、eC 、1e -D 、2e -13、幂级数212-∑n n x 的收敛半径是 ( ). BA.21B. 2C. 21D. 214、22∑n nx的收敛半径是 ( ). AA.21B. 2C. 21D. 215、若n nn a x∞=∑收敛半径为1R ,nn n b x∞=∑ 的收敛半径为2R (1R <2R )则()0nn nn ab x ∞=+∑的收敛半径为( ). DA .1R +2RB .12R R +C .2RD .1R16、级数)32(n nnnx x +∑的收敛半径是 ( ) AA.21 B. 31C. 2D. 3 17、)35(n nn n x x +∑的收敛半径是( ) DA.51 B. 31C. 5D. 3 18、幂级数n n x n)1211(1+++∑∞= 的收敛域是( ). A A .()1,1- B .(]1,1- C .[)1,1- D .[]1,1-19、幂级数nn n x ∑∞=--21)2(,(2<x )的和函数为 ( ). AA. x x 2122+-B. x x 2122+C. x x 21+D. xx21-20、幂级数∑∞=--112)1(n nnn x ,(2<x )的和函数为( ). C A.x -22 B. x +22 C. x x +2 D. xx -2 21、幂级数∑∞=02n n nx ,(2<x )的和函数为 ( ). AA.x-22B. x 211-C. x +22D. x 211+22、幂级数1(1)2nnn n x ∞=-∑,(2<x )的和函数为( ). CA .2x x + B. x -22 C. 2x x-+ D. x x -223、幂级数∑∞=-02)1(n n nnx ,(2<x )的和函数为( ). CA.x 211+ B. x 211- C. x +22 D. x -2224、下述展开式正确的是( ) . CA 、212nx x x e x n-=+++++x R ∈B 、21(1)2n xn x x e x n-=-+-+-+ x R ∈C 、21(1)2!!nx nx x e x n -=-+-+-+x R ∈D 、212!!n xx x ex n -=+++++ x R ∈25、函数2()x f x e -=展开成x 的幂级数为( ). DA 、2312!3!x x x ++++ x R ∈B 、2312!3!x x x -+-+ x R ∈C 、46212!3!x x x ++++ x R ∈D 、46212!3!x x x -+-+ x R ∈26、函数()2x f x xe =展成x 的幂级数是( ). AA .210!n n x n +∞=∑B .10!n n x n +∞=∑C .20!nn x n ∞=∑ D .()21021!n n x n +∞=+∑ 27、函数()()ln 1f x x =+展成x 的幂级数是( ). BA .()()1011!+∞=-+∑n nn x n ; (1,1)∈-x B .()1011n n n xn +∞=-+∑; (1,1)∈-xC .()11∞=-∑nn xn ; (1,1)∈-x D .1∞=∑n n x n . (1,1)∈-x28、将xx f 1)(=展开成)3(-x 的幂级数为( ). B A .03(1)()(06)3nnn x x ∞=--<<∑ B .013(1)()(06)33n nn x x ∞=--<<∑C .(1)(3)(24)nnn x x ∞=--<<∑ D .01(1)(3) (24)3n n n x x ∞=--<<∑29、设()()20(0,1)2!n nn a x f x a n ∞==≠-∑,则()f x ''=( ). AA .()af xB .()2a f x C .()1f x aD .()f x30、幂级数1nn x n∞=∑在1x <的和函数()S x =( ). BA .()ln 1x -B .ln(1)x --C .11x -D .11x -二 填空题1、设幂级数∑∞=0n nn x a 的收敛区间()3,3-,则幂级数()∑∞=--011n n n x na 的收敛区间为_________.答案:()4,2-. 2、 若∑nnxa 的收敛半径为R ,则nnx a )2(+∑的收敛区间为_________.答案:R R +---2,2()3、 若∑nnxa 的收敛半径为R ,则nnx a )2(-∑的收敛区间为_________.答案:)2,2(R R +-4、 幂级数2nx n∑的收敛域是_________.答案: ]1,1[- 5、 幂级数n nx n ∑的收敛域是_________.答案: )1,1(-6、 幂级数nnx ∑的收敛域是_________.答案:)1,1(-7、 幂级数nx n∑的收敛域是 _________.答案:)1,1[-8、 幂级数nx n)1(+∑的收敛域为_________.答案:[2,0)-9、 幂级数()∑∞=-151n nn x 的收敛域是_________.答案: (4,6)-10、 幂级数()n n x n 2112-∑∞=的收敛域是_________. 答案:[1,3]11、级数()∑∞=--111n n n x n的收敛域是_________.答案:(1,1]-12、幂级数11nn n x ∞=-的收敛域是_________.答案:(3,3]-13、幂级数∑∞=++02)1()1(n nnn x 收敛域是_________. 答案:[3,1)-14、幂级数2021nn n x ∞=+∑的收敛域是_________.答案:(15、幂级数的()nn nx n ∑∞=-+113收敛半径为=R _________.答案:1.16、幂级数∑∞=-+0)3(2n nn nnx 的收敛半径为=R _________. 答案:3=R .17、幂级数023n n nn x n ∞=+∑的收敛域是_________. 答案:11[,)33-18、幂级数21(2)!(!)nn n x n ∞=∑的收敛半径为=R _________. 答案:14=R 19、幂级数∑∞=+152n n nx 的收敛半径是=R _________.答案:2=R20、若幂级数()1∞=-∑nnn a x 的收敛半径0R =,则此幂级数只在_________收敛.答案:1=x21、幂级数∑∞=0n nnx a与11∞-=∑n n n na x 的收敛半径分别为1r 与2r ,则1r ___ 2r .答案:等于22、幂级数∑∞=0n nn x a 与101+∞=+∑n n n a x n 的收敛半径分别为1r 与2r ,则1r ____ 2r .答案:等于 23、幂级数()01∞=-∑nn n a x 在3=x 处条件收敛,则该级数的收敛半径R =_________.答案:2=R 24、幂级数∑∞=-02)1(n n nx a在处2=x 条件收敛,则其收敛域为_________.答案:[0,2]25、若1lim 3nn n a a →∞+=,则幂级数210n n n a x ∞+=∑的收敛区间是_________.答案:(26、若1lim 3+→∞=n n na a ,则幂级数20∞=∑n n n a x 的收敛区间是_________.答案:( 27、函数x2的麦克劳林展开式为=x2__________________________________. 答案:()∑∞=0!2ln n n nx n , (,)∈-∞+∞x28、函数)(21x xe e -+的麦克劳林展开式为__________________________________. 答案: +++++)!2(!4!21242n x x x n, (,)∈-∞+∞x 29、函数)(21x xe e --的麦克劳林展开式为__________________________________. 答案:∑∞=--112)!12(k k k x , (,)∈-∞+∞x30、函数2x e的麦克劳林展开式为__________________________________.答案:∑+∞=02!n nn x . , (,)∈-∞+∞x31、函数xe2的幂级数展开式为__________________________________.答案:nn n xx n e∑+∞==02!2 , (,)∈-∞+∞x32、函数x 2sin 的幂级数展开式为__________________________________.答案:12012)!12(2)1(2sin ++∞=+∑+-=n n n nx n x , (,)∈-∞+∞x33、函数)21ln(x +的幂级数展开式__________________________________.答案:n n n n x n x 2)1()21ln(11∑+∞=--=+ , 12<x 34、函数)2ln(x +在)2,2-(内的麦克劳林展开式为________________________________.答案: nnn n x 2)1(2ln 1⋅-+∑-, 2<x 35、函数21xx-在)1,1(-内的麦克劳林展开式为__________________________________. 答案:∑∞=+012n n x, 1<x36、函数xx +13的麦克劳林展开式为__________________________________.答案:+-++-=++-21433)1(1n n x x x xx , 1<x 37、函数()21-=x x f 在0=x 的幂级数展开式为__________________________________. 答案:∑∞=+-012n n nx , 2<x38、将xx f 1)(=展开成)3(-x 的幂级数为__________________________________. 答案:.013(1)(),0633∞=--<<∑n nn x x39、把()1f x a bx=+展成x 的幂级数(其中a b ⋅≠0)时,其收敛半径R =___________. 答案:ab解析:()011111∞=⎛⎫==⋅=- ⎪+⎝⎭+∑nn bx f x bx a bx a a a a当1,-<bx a 即<a x b 时收敛,当1,->bx a 即>a x b时发散 从而收敛半径为ab40、幂级数nn x n )1211(1+++∑∞= 的收敛域是___________.答案:(1,1)-三 计算题1、函数21()32f x x x =-+ 展开成x 的幂级数,并确定收敛域。
幂级数测试题
幂级数测试题第十四章幂级数单选题:1设幂级数的收敛半径为R ,则下列断语中正确的是(A)在上一致收敛。
(B)在内某些点处非绝对收敛。
(C)的收敛半径大于。
(D)对任意的,在上一致收敛。
.2。
若幂级数在处收敛,在处发散,则该级数(A)在处发散;(B)在处收敛;(C)收敛区间为; (D)当时发散。
3.幂级数级数的收敛域是(A) (B)(C) (D)4.若幂级数的收敛半径为R,那么(A), (B) ,(C), (D)不一定存在 .5.如果能展开成的幂级数,那么该幂级数(A) 是的麦克劳林级数;(B)不一定是的麦克劳林级数;(C)不是的麦克劳林级数;(D) 是在点处的泰勒级数。
6. 如果,则幂级数(A)当时,收敛;(B) 当时,收敛;(C) 当时,发散;(D) 当时,发散7..设级数在处是收敛的,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
8幂级数在其收敛区间的两个端点处A 全是发散的. B. 全是收敛的C. 左端点发散, 右端点收敛. D 左端点收敛, 右端点发散9. 函数展开成的幂级数的方法是.10. 幂级数的收敛域为答案: 1—10 DDBDA ADDDA填空题:1. 若幂级数在内收敛, 则应满足__________.2. 设幂级数的收敛半径为2, 则级数的收敛区间为__________.3.级数的和函数为_________.4. 设是一等差数列, 则幂级数收敛域是__________.5. 与有相同的___________.6. 的幂级数展开式_________________.7. 幂级数只有在___________区间内才有和函数.8. 经过逐项微分或逐项积分后幂级数___________不变.9. 的幂级数表达式____________.10. 级数在区间_________收敛.答案: 1. .4. ( -1, 1)5. 收敛区间.. 6.7. 收敛. 8. 收敛半径. 9.计算题1.求幂级数的收敛域及和函数.2. 求幂级数的收敛域及和函数.3. 求幂级数的收敛半径与收敛域( 1)4. 将函数展开为的幂级数, 并指出收敛域.5. 求函数在x=1处泰勒展开式.6. 设幂级数当时有且求该幂级数的函数.7. 将展成x的幂级数.8. 求幂级数的和函数.9. 试求幂级数的收敛区域及和函数10. 设,确定的连续区间,并求积分的值答案: 1. 解因且当时级数都发散, 故该级数的收敛域为( -1, 1 ), 令, 则,.2. 解: 收敛半径, 当时, 原级数发散, 故原级数的收敛域为( -1, 1 ). 设其和函数为,3. ( 1 ) 解记, 由于, 故收敛半径R=1, 收敛区间为( -1, 1 )当时, 由于, 故级数发散, 所以该级数的收敛域为( -1, 1 ) .( 2 ) 解记因为所以收敛半径R=1, 收敛域为[ -1, 1 ].4. 解而而级数与的收敛域都是[ -1, 1 ], 故当时5. 解因.6. 设和函数则即.解上述关于的二阶微分方程, 得.7. 解易看出, 而两边求导, 得.8.级数的和函数为9. 由于级数在上收敛,所以当时,有10. 因为幂级数的收敛域是,所以在上的连续,且可逐项积分。
幂级数及泰勒展开习题解答(最新整理)
幂级数及泰勒展开一、求下列幂级数的收敛区间1. 12(21)nn x n n ∞=-∑解:12(21)limlim 12(1)(21)n n n n a n n a n n +→∞→∞-==++1R ⇒=当时,因 , 所以收敛,1x =21112(21)2(1)n n n n n n =<-+-112(21)n n n ∞=-∑当时, 绝对收敛,1x =-1(1)2(21)nn n n ∞=--∑ 收敛区间为。
⇒[1,1]-2.n ∞=解:11lim 2n n nna a +→∞==2R ⇒= 当时,为收敛的交错级数,2x=1n ∞=当时, 2x =-11n n ∞∞===- 收敛区间为。
⇒(2,2]-3. 1(1)32n n n n n n x x ∞=⎡⎤-+⎢⎥⎣⎦∑解:1111(1)32limlim 3(1)32n n n n nn n n nn a a ++++→∞→∞-+==-+, 当时,通项不趋于零, 收敛区间为。
13R ⇒=13x =±⇒11,33⎛⎫- ⎪⎝⎭4. 1(23)(1)21nnn x n ∞=---∑解:121limlim 121n n n na n a n +→∞→∞-==+1R ⇒=故当,即时级数绝对收敛。
231x -<12x <<当时, 发散,1x =11(1)(1)111, 21212-12n n n n n n n n ∞∞==--⎛⎫=> ⎪--⎝⎭∑∑当时, 为收敛的交错级数,2x =1(1)21nn n ∞=--∑ 收敛区间为。
⇒(1,2]5.1ln(1)1)1n n n x n ∞=+-+∑解:1ln(2)(1)limlim 1(2)ln(1)n n n n a n n a n n +→∞→∞++==++1R ⇒=故当,即时级数绝对收敛。
11x -<02x <<当时,因为0x =,1ln(1)ln lim lim lim 011n x x n x x n x →∞→+∞→+∞+===+2ln 1ln ln(2)ln(1)()()0() 3 21x x n n f x f x x e n x x n n -++'=⇒=<>⇒≥<++时,所以 收敛,1(1)ln(1)1n n n n ∞=-++∑当时,因为当时 所以发散, 2x =2n ≥ln(1)11112n n n n +>>++1ln(1)1n n n ∞=++∑ 收敛区间为。
高一数学幂函数试题及答案
高一数学幂函数试题及答案一、选择题(每题4分,共40分)1. 函数y=x^3的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D2. 函数y=x^2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D3. 函数y=x^(-1)的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D4. 函数y=x^2+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D5. 函数y=x^3-3x+2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D6. 函数y=x^2+2x+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D7. 函数y=x^(-2)+3的图象是()A. 一条直线C. 一个曲面D. 一个曲线答案:D8. 函数y=x^3-6x^2+11x-6的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D9. 函数y=x^4-4x^2+4的图象是()A. 一条直线B. 一个平面C. 一个曲面答案:D10. 函数y=x^5-5x^3+10x的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D二、填空题(每题4分,共20分)11. 函数y=x^2的图象关于____对称。
答案:y轴12. 函数y=x^3的图象关于____对称。
答案:原点13. 函数y=x^(-1)的图象在第一象限和第三象限。
答案:正确14. 函数y=x^2+1的图象与x轴无交点。
答案:正确15. 函数y=x^3-3x+2的图象有一个拐点。
答案:正确三、解答题(每题10分,共40分)16. 求函数y=x^2-4x+4的最小值。
解:函数y=x^2-4x+4=(x-2)^2,当x=2时,函数取得最小值0。
答案:017. 求函数y=x^3-3x+2的零点。
解:令y=0,得到x^3-3x+2=0,解得x=1或x=-2。
幂函数练习题及答案
幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。
幂函数在数学中有广泛的应用,涉及到各个领域的问题。
本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。
1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。
答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。
这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。
注意负指数的处理方式。
2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。
答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。
当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。
(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。
当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。
(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。
函数值随 x 的增大而迅速增大。
通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。
3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。
答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。
幂级数的部分练习题及答案
题目部分,(卷面共有100题,349.0分,各大题标有题量和总分)一、选择 (10小题,共22.0分)(2分)[1](2分)[2] 函数项级数的收敛域是(A)(B)(C)(D)答( )(2分)[3] 设级数在处收敛,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
答:( )(3分)[4]设级数在处是收敛的,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
答:( )(2分)[5]设级数的收敛半径是1,则级数在点(A)发散;(B)条件收敛;(C)绝对收敛;(D)不能确定敛散性。
答:( )(2分)[6]如果,则幂级数(A)当时,收敛;(B) 当时,收敛;(C) 当时,发散;(D) 当时,发散;答( )(2分)[7]若幂级数的收敛半径为R,那么(A),(B),(C),(D)不一定存在 .答( )(3分)[8] 若幂级数在处收敛,在处发散,则该级数(A)在处发散;(B)在处收敛;(C)收敛区间为;(D)当时发散。
答( )(2分)[9] 如果在点的某个邻域内任意阶可导,那么幂级数的和函数(A) 必是, (B)不一定是(C)不是, (D)可能处处不存在。
答( )。
(2分)[10]如果能展开成的幂级数,那么该幂级数(A) 是的麦克劳林级数;(B)不一定是的麦克劳林级数;(C)不是的麦克劳林级数;(D) 是在点处的泰勒级数。
答( )。
二、填空 (54小题,共166.0分)(2分)[1]函数项级数的收敛域是。
(2分)[2]讨论x值的取值范围,使当_____________时收敛当_____________时发散(3分)[3] 设级数的部分和函数,级数的通项。
(2分)[4] 级数的和是。
(2分)[5] 级数在上的和函数是。
(3分)[6]设不是负整数,对的值讨论级数的收敛性得当时,绝对收敛,当时,条件收敛。
(2分)[7] 幂级数的收敛域是。
(3分)[8]幂级数的收敛半径是,和函数是。
高等数学幂级数专项练习
幂级数专题训练解题策略4 利用幂级数的求和公式利用幂级数的求和公式求数列的极限,其原理是: 设有幂级数n n nx a∑∞=1,我们想办法求出其和函数)(x S (怎样求和函数见注解),则)(1x S x ann n=∑∞=,即)( (2211)x S x a x a x a x a n n n n n =++++=∑∞=,令0x x =,则有)(......0020201x S x a x a x a nn =++++,而 )...(lim ......020*********nn n n n x a x a x a x a x a x a +++=++++∞→,于是 )()...(lim 0020201x S x a x a x a nn n =+++∞→,即无穷多项相加的数列的极限求出了。
注解 怎样求幂级数n n nx a∑∞=1的和函数)(x S 呢?一般来说,有这几种情况:(1)若n n nx a∑∞=1是等比级数,则利用等比数列的求和公式即可;例如:级数.....12642++++++n x x x x 是公比为2x q =的等比级数,因此其和为2264211 (1x)x x x x n -=++++++,且12<=x q ; 注意求等比级数的和时,一定要注明公比属于1-和1+之间。
(2)若n n nx a∑∞=1不是等比级数,但将其逐项求导后是等比级数,则先求导变成等比级数求出和函数,再通过积分变回原级数的和函数。
例如,级数 (1)2)1( (7531)21753+--++-+--+n x x x x x n n 不是等比级数,但将其求导后有...)1( (1221)642+-++-+--+n n x x x x 是一个公比为2x q -=的等比级数,于是依据等比级数的求和公式有222164211...)1( (1x)x x x x n n +=+-++-+--+,且12<-=x q (即1<x ), 于是两边积分有⎰⎰+=+-++-+--+xxn n dx x dx xx x x 0222164211]...)1(...1[,即有x x dx x n x x x x x xx n n arctan arctan 11 (1)2)1( (7530021)21753==+=+--++-+-⎰-+,且1<x 。
第十八讲:幂级数收敛域把函数展成幂级数的练习题参考答案
第十八讲:幂级数收敛域把函数展成幂级数的练习题参考答案一、单项选择题(每小题4分,共24分)1若0n nn a x ∞=∑收敛半径为1R ,0n n n b x ∞=∑ 的收敛半径为2R (1R <2R )则()0n n nn a b x ∞=+∑的收敛半径为……( D )A 、1R +2RB 、12R R +C 、2RD 1R解:()0n n n n ab x ∞=+∑的收敛半径是0n n n a x ∞=∑收敛半径为1R ,0n n n b x ∞=∑ 的收敛半径为2R 中较小的 即2R2.若0n nn a x ∞=∑在00x x =≠收敛,则在0x x <内,0n n n a x ∞=∑……(A )A 、绝对收敛B 、条件收敛C 、发散D 、可能收敛也可能发散解:由定理知,若0n n n a x ∞=∑在00x x =≠收敛则0n n n a x ∞=∑在0x x <内绝对收敛 选A 3.把()1f x x a bx=+展成的幂级数(其中⋅≠a b 0)时,其收敛半径R =(A ) A . a b B .b a C .b a b + D .b a b- 解:1a bx +=111b a x a+ 01(1)n n n b x a a ∞=⎛⎫=- ⎪⎝⎭∑ ∴b x a <1 a x b < R =a b选A 4.()()0021n nnn n x x ∞∞==+-∑∑的收敛区间(考虑端点)是 (C ) A .(-1,1) B .[-1,1]C .11,22⎛⎫- ⎪⎝⎭D .11,22⎡⎫-⎪⎢⎣⎭解:(1)()02n n x ∞=∑的半径112R = ;()01n n n x ∞=-∑的半径21R = 故R =12; (2)在12x =±处0(2)n n x ∞=∑发散,0(1)n n n x ∞=-∑收敛 故原级数在12x =±处发散 选C 5.设()()20(0,1)2!n nn a x f x a n ∞==≠-∑,则()"f x =(A )A .()af xB .()2a f xC .()1f x aD .()f x 解:(1)()()21121!nn n a f x x n ∞-==-∑’ ()()221"122!nn n a f x x n mn ∞-==-=-∑()1202!m m m a x m +∞=∑=()af x 故选A 6.幂级数1nn x n ∞=∑在1x <的和函数S (x )=( B ) A .()ln 1x - B .ln(1)x --C .11x - D .11x - 解:令()11nn x S x x n ∞==<∑ ()111'1n n S x x x ∞-===-∑ ()()01ln 11x S x dx x x ==---⎰ 故选B 二、填空题(每小题4分,共24分)7.幂级数03n n x ∞=⎛⎫ ⎪⎝⎭∑的收敛半径R 为解:1131lim lim 33n n n n n na a ρ++→∞→∞=== 收敛半径13R ρ== 8.幂级数0n n n a x ∞=∑在x =-3处条件收敛,则该级数的收敛半径R = 解:级数在x =-3条件收敛,∴当3x <级数绝对收敛当3x >级数发散 故R =39.幂级数2111n n n ∞-=-的收敛半径R = 解:()1()lim()n n n U x x U x ρ+→∞=21n =< 2113x <,2x <3x故R 10.幂级数()1!nn x n ∞=∞∞∑在-,的和函数()S x =解:0!nx n x e n ∞==∑1011!!n nx n n x x e n n ∞∞==∴=-=-∑∑故()S x =1xe - 11.()ln 1x +)展成x 的幂级数,则()ln 1x +=解:()ln 1x +=10(1)(1)nn n x n ∞+=-+∑收敛域11x -<≤ 12.将12x -展成(1)x -幂级数,则12x -=解:(1)011(1)21(1)nn x x x ∞===----∑ (2)收敛区间1102x x -<<<即 三、计算题(每小题8分,共64分)13.求n n n ∞=的收敛半径与收敛域 解:(1)1lim n n n na a ρ+→∞== 12= ∴收敛半径R =2 (2)当x =-2时,1n ∞=发散12p (=<1) 当x =2时,11n ∞=-收敛(莱布尼兹级数) (3)收敛域为(]22-,14.求0(2)(1)3nn n x n ∞=-+⋅∑的收敛半径与收敛域 解:(1)1131lim lim 3(2)3n n n n n na a n ρ++→∞→∞===+(n+1) ∴收敛半径R =3 有323x -<-< 即15x -<< (2)当x =5时,111n n ∞=∑+发散(调和级数) 当1x =-时,()111n n n ∞=∑-+收敛(莱布尼兹级数) (3)级数的收敛域为[)15-, 15.求211(1)4nn n n x ∞-=-∑的收敛半径与收敛域 解:(1)()2114lim lim ()4n n n n n nU x x U x ρ++→∞→∞==2114x =< 24x ∴<, 2x <, R =2 (2)当2x =±时01(1)2n n ∞=-⎛⎫-⋅ ⎪⎝⎭∑发散()0,n U n →→∞ (3)级数的收敛域(-2,2)16.将()1f x x a=-展成(x b -)幂级数(a b ≠) 解:(1)变形 ()111()1f x x bb a x b b a b a==--+--+- (2)展开()()011n n n x b f x b a b a ∞=-⎛⎫=- ⎪--⎝⎭∑ ()()101()n n n x b b a ∞+=--=-∑(3)收敛域(即收敛区间)x b b a--<1 b a x b b a --<-<-17.将()232x f x x x =-+展开成x 的幂级数 解:解法(1)()1111211212f x x x x x x x ⎡⎤⎢⎥⎛⎫⎢⎥=-=+ ⎪---⎛⎫⎝⎭⎢⎥-- ⎪⎢⎥⎝⎭⎣⎦=1110001122n n n n n n n n x x x x ∞∞∞+++===⎡⎤⎛⎫+=- ⎪⎢⎥-⎝⎭⎣⎦∑∑∑ 收敛域:12x < 1111x x x <→<-<<即 解法(2)()()2(1)(2)212(1)21x x f x x x x x ⎛⎫---==- ⎪ ⎪----⎝⎭ 011111212n n n x x x ∞=⎛⎫=-+=- ⎪-⎝⎭-∑(11x -<<) 18.将()()2ln 12f x x x =--展开成x 的幂级数 解:(1)变形()()()ln 1ln 12f x x x =++-(2)展开:()()()()110011211n n n n n n f x x x n n ∞∞++==--=+-++∑∑()()11101121n n n n n x x n ∞+++=-⎡⎤=+-⎣⎦+∑ (3)收敛区间1111,22x x -<≤-≤< 故有收敛区间11,22⎡⎫-⎪⎢⎣⎭ 19.将cos 4x x π⎛⎫- ⎪⎝⎭展开成的幂级数 解:(1)变形()cos cos 44f x x x ππ⎡⎤⎛⎫==+- ⎪⎢⎥⎝⎭⎣⎦=cos 2424x x ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ (2)展开()()()()()22100112!2!n n n n n n f x x x n n ∞∞+==⎤--=-⎥+⎢⎥⎣⎦∑∑ (3)收敛域(即收敛区间) x -∞<<∞20利用逐项积分将()arctan f x x =展开成麦克劳林级数,并求其收敛域 解:(1)()2011xf x dt t =+⎰()2001x n n n t dt ∞=⎡⎤=-⎢⎥⎣⎦∑⎰ =()()221001121nn n n n n t dt x n ∞∞+==--=+∑∑(2)当1x =-时()0121nn n ∞=-+∑收敛(莱布尼兹级数) 当1x =时,()0121n n n ∞=-+∑收敛 故有收敛域[]1,1-四、证明题(本题8分)21.利用()ln 2x +的麦克劳林展开式,证明:()01ln 21nn n ∞=-=+∑证:(1)令()()ln 2ln 212x f x x ⎛⎫=+=+ ⎪⎝⎭ ln 2ln 12x ⎛⎫=++ ⎪⎝⎭(2) ()()2101ln 212n n x f x n +∞=-⎛⎫=+ ⎪+⎝⎭∑收敛区间:11,222x x -<≤-<≤ (3)令()()012,2ln 4ln 21nn x f n ∞=-===++∑ 移项:()01ln 4ln 2ln 21n n n ∞=-=-=+∑ 证毕五、综合题(每小题10分,共30分) 22.求幂级数()132nn n n n x x ∞⎡⎤-+⎢⎥⎢⎥⎣⎦∑n=1的收敛域解:(1)变形:原式=()1162n n n n n x ∞=-+∑ (2)1lim n n na a ρ+→∞= ()()111162lim 216n n n n n n n +++→∞-+=⨯-+11111666lim 3262116n n n n n ++→∞-⎛⎫+ ⎪⎝⎭===-⎛⎫+ ⎪⎝⎭13R ∴= (3)当13x =-时,()1166n n n ∞=+-∑发散()0,n u n →→∞/ 当13x =时,()1166n n n n ∞=-+∑发散()0,n u n →→∞/ 故级数的收敛区间:11,33⎛⎫- ⎪⎝⎭23.将()212f x x x =--展开成(x-1)的幂级数 解:(1)变形:()()()132f x x x =-+ ()()()()231325x x x x +--=⋅-+111532x x ⎛⎫=- ⎪-+⎝⎭(2)展开:()()()11152131f x x x ⎡⎤=-⎢⎥-+-+-⎣⎦11111115231123x x ⎡⎤⎢⎥=--⎢⎥--⎢⎥-+⎣⎦ ()0011111152233n n n n n x x ∞∞==⎡⎤--⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑ ()()1101111523n n n n n x ∞++=⎡⎤-=-+-⎢⎥⎢⎥⎣⎦∑ (3)收敛区间:111,123x x --<< ∴收敛区间13x -<<24.将()1x d e f x dx x ⎛⎫-= ⎪⎝⎭展开成x 的幂级数,并由此求1(1)!n n n ∞=+∑之值 解:(1)0!nx n x e n ∞==∑ ()x -∞<<+∞ ∴原式=01!n n x d n dx x ∞=⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭∑11!n n d x dx n -∞=⎛⎫= ⎪⎝⎭∑ 11'!n n x n -∞=⎛⎫= ⎪⎝⎭∑()221!n n n x n ∞-=-=∑()111!n n n x n ∞-==+∑ 收敛区间为(),-∞+∞(2)求1(1)!n n n ∞=+∑之值 令1x =,1(1)!n n n ∞=+∑=11x x d e dx x =⎛⎫- ⎪⎝⎭()12111x x x xe e e e x=--==-+=故有1(1)!n n n ∞=+∑=1 选作题 :将()()212f x x =-展开成x 的幂级数解:()111''2212f x x x ⎛⎫⎪⎛⎫== ⎪ ⎪-⎝⎭ ⎪-⎝⎭01'22n n x ∞=⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑'11001222n n n n n n x n x ∞∞-+==⎛⎫== ⎪⎝⎭∑∑ 收敛区间:12x <,故收敛区间:22x -<<。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
幂函数练习题及答案
幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。
幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。
下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。
1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。
因此,当x取值为2时,y的值为16。
2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。
因此,当x取值为0.5时,y的值为20。
3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。
将方程两边同时除以3,得到4 = x^2。
再开平方根,得到x = ±2。
因此,当y取值为12时,x的值为±2。
4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。
将方程两边同时除以4,得到1/2 = x^(-1/2)。
两边同时取倒数,得到2 = x^(1/2)。
再平方,得到4 = x。
因此,当y取值为2时,x的值为4。
通过以上练习题的解答,我们可以看到幂函数的特点和性质。
首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。
其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。
此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目部分,(卷面共有100题,349.0分,各大题标有题量和总分) 一、选择(10小题,共22.0分)(2分)[1](2分)[2] 函数项级数的收敛域是(A)(B)(C)(D)答( )(2分)[3] 设级数在处收敛,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
答:( )(3分)[4]设级数在处是收敛的,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
答:( ) (2分)[5]设级数的收敛半径是1,则级数在点(A)发散;(B)条件收敛;(C)绝对收敛;(D)不能确定敛散性。
答:( )(2分)[6]如果,则幂级数(A)当时,收敛;(B) 当时,收敛;(C) 当时,发散;(D) 当时,发散;答( )(2分)[7]若幂级数的收敛半径为R,那么(A),(B) ,(C),(D)不一定存在 .答( )(3分)[8] 若幂级数在处收敛,在处发散,则该级数(A)在处发散;(B)在处收敛;(C)收敛区间为;(D)当时发散。
答( )(2分)[9] 如果在点的某个邻域内任意阶可导,那么幂级数的和函数(A) 必是,(B)不一定是,(C)不是,(D)可能处处不存在。
答( )。
(2分)[10]如果能展开成的幂级数,那么该幂级数(A) 是的麦克劳林级数;(B)不一定是的麦克劳林级数;(C)不是的麦克劳林级数;(D) 是在点处的泰勒级数。
答( )。
二、填空(54小题,共166.0分)(2分)[1]函数项级数的收敛域是。
(2分)[2]讨论x值的取值范围,使当_____________时收敛当_____________时发散(3分)[3] 设级数的部分和函数,级数的通项。
(2分)[4] 级数的和是。
(2分)[5] 级数在上的和函数是。
(3分)[6]设不是负整数,对的值讨论级数的收敛性得当时,绝对收敛,当时,条件收敛。
(2分)[7] 幂级数的收敛域是。
(3分)[8]幂级数的收敛半径是,和函数是。
(1分)[9] 如果幂级数的收敛半径是1,则级数在开区间内收敛。
(2分)[10]如果,则幂级数在开区间内收敛。
(2分)[11] 设幂级数的收敛半径是,则幂级数的收敛半径是。
(2分)[12]如果幂级数在处收敛,在处发散,则它的收敛域是.(5分)[13] 幂级数的通项是,收敛域是。
(6分)[14] 幂级数的收敛域是。
(4分)[15] 幂级数的收敛区间是。
(4分)[16] 幂级数的收敛域是。
(4分)[17] 若幂级数和的收敛半径分别为、,则、具有关系。
(3分)[18] 设,则幂级数的收敛半径是。
(2分)[19] 幂级数的收敛域是,和函数是。
(3分)[20] 幂级数的和函数是。
(3分)[21] 幂级数的收敛域是,和函数是。
(2分)[22] 级数的收敛域是,和函数是。
(2分)[23] 若幂级数的收敛半径是,则其和函数在开区间上是连续的。
(2分)[24] 如果幂级数与的收敛半径分别是、,则级数的收敛半径是。
(3分)[25] 若幂级数的收敛半径是,则其和函数在开区间内是可微的,且有逐项求导公式。
(3分)[26] 设幂级数的收敛半径是,则其和函数在开区间上可积,且有逐项求积公式。
(4分)[27] 函数的麦克劳林展开成为,其收敛域是。
(3分)[28] 函数的麦克劳林展开式为,收敛区间是。
(3分)[29] 函数在点的泰勒展开式为,收敛区间是。
(3分)[30] 函数的麦克劳林展开式为,收敛域是。
(3分)[31] 函数的麦克劳林级数展开式为,收敛域是。
(5分)[32] 函数的麦克劳林展开式为,收敛域是。
(6分)[33] 函数关于的幂级数为,收敛域是。
(4分)[34] 函数的麦克劳林展开式为,收敛域是。
(4分)[35] 函数的麦克劳林展开式为,其收敛域是。
(3分)[36] 如果的麦克劳林展开式为,则。
(2分)[37] 函数在点的泰勒级数为,收敛区间为。
(2分)[38] 函数的麦克劳林级数为,收敛区间为。
(2分)[39] 函数的麦克劳林级数为,收敛域为。
(4分)[40] 函数的麦克劳林展开式是,。
(3分)[41] 函数的麦克劳林展开式为,。
(5分)[42] 函数关于x的幂级数是,。
(4分)[43] 函数的麦克劳林展开式为,= 。
(4分)[44] 函数的麦克劳林展开式为,。
(2分)[45] 函数关于的幂级数是,。
(6分)[46] 函数的麦克劳林级数为,。
(3分)[47] 将函数展开成形如的幂级数时,收敛域是。
(3分)[48] 若函数在点的某一邻域内任意阶可微,设,那么在该邻域内能展开成泰勒级数的充要条件是。
(3分)[49] 函数在点的泰勒展开式是,其收敛域是。
(3分)[50] 函数的麦克劳林级数是,其收敛域是。
(3分)[51] 函数的麦克劳林级数是,其收敛域是。
(3分)[52] 根据的幂级数展开式将表示成一个数项级数,该数项级数的前三项(用分数表示)是。
(2分)[53] 级数发散时,的取值范围是。
(2分)[54] 利用的幂级数展开式将表示成一个数项级数,该数项级数的第六项(用分数表示)是。
三、计算(36小题,共161.0分)(3分)[1]设,求级数的和函数。
(3分)[2] 设试求级数的和函数。
(3分)[3] 求函数项级数的和函数s(x)。
(4分)[4] 求级数在(-1,1)内的和函数。
(4分)[5] 设为上的连续函数,级数,其中试确定的收敛域及和函数。
(4分)[6] 试求幂级数的和函数。
(5分)[7]试求幂级数的收敛域。
(4分)[8]试求级数的收敛域。
(3分)[9] 试求级数的收敛域。
(4分)[10] 试求幂级数的收敛半径及收敛域。
(4分)[11] 试求幂级数的收敛域。
(5分)[12]求幂级数的收敛域。
(4分)[13]已知幂级数的收敛半径,试求的收敛半径。
(5分)[14]试求幂级数的收敛半径及收敛域。
(5分)[15] 试求幂级数的收敛域。
(5分)[16]试求幂级数的收敛域。
(5分)[17] 试求幂级数的收敛域。
(5分)[18] 试求幂级数的收敛域。
(6分)[19] 试求幂级数的收敛域。
(5分)[20] 试求幂级数的收敛半径。
(6分)[21] 试求幂级数的收敛域。
(5分)[22]试求幂级数的收敛半径及收敛域。
(4分)[23] 试求幂级数在其收敛域上的和函数。
(5分)[24] 试求幂级数在收敛域上的和函数。
(2分)[25] 试求级数的收敛域。
(3分)[26]试求幂级数的收敛半径。
(2分)[27] 试求幂级数的收敛半径。
(6分)[28] 设,确定的连续区间,并求积分的值。
(6分)[29] 设,确定的连续区间并计算的值。
(6分)[30] 设,,试用幂级数表示。
(6分)[31] 设,试用幂级数表示。
(6分)[32] 设,试用幂级数表示。
(6分)[33] 设,试确定,使得在上可微,并计算的值。
(6分)[34] 设,确定,使得在上可微,并计算的值。
(3分)[35] 设,求关于h的麦克劳林级数。
(3分)[36] 试求函数关于x的幂级数.====================答案==================== 答案部分,(卷面共有100题,349.0分,各大题标有题量和总分)一、选择(10小题,共22.0分)(2分)[1][答案]C(2分)[2][答案]B(2分)[3][答案]B(3分)[4][答案]D(2分)[5][答案]A(2分)[6][答案]A(2分)[7][答案]( D )(3分)[8][答案]( D )(2分)[9][答案](B)(2分)[10][答案](A)二、填空(54小题,共166.0分) (2分)[1][答案](2分)[2][答案](3分)[3][答案](2分)[4][答案]。
(2分)[5][答案](3分)[6][答案](2分)[7][答案](3分)[8][答案]……(1分)[9][答案](2分)[10][答案](2分)[11][答案](2分)[12][答案](5分)[13][答案](6分)[14][答案](4分)[15][答案](4分)[16][答案](4分)[17][答案]=(3分)[18][答案](2分)[19][答案] ,。
(3分)[20][答案](3分)[21][答案] (2分)[22][答案] (2分)[23][答案] (2分)[24][答案]或为(3分)[25][答案] (3分)[26][答案](4分)[27][答案] (3分)[28][答案] (3分)[29][答案] (3分)[30][答案] (3分)[31][答案] (5分)[32][答案] (6分)[33][答案] (4分)[34][答案](4分)[35][答案] (3分)[36][答案] (2分)[37][答案] (2分)[38][答案] (2分)[39][答案] (4分)[40][答案] (3分)[41][答案](5分)[42][答案] (4分)[43][答案](4分)[44][答案] (2分)[45][答案] (6分)[46][答案](3分)[47][答案] (3分)[48][答案]对于该邻域内的任意,有(3分)[49][答案](3分)[50][答案](3分)[51][答案](3分)[52][答案](注:填也得10分)(2分)[53][答案];(2分)[54][答案](注:答案形式为也给分)三、计算(36小题,共161.0分) (3分)[1][答案](3分)[2][答案]于是,(3分)[3][答案]所给级数是以为公比的等比级数因此,当x>0, ,级数收敛且和函数又x=0时,,级数收敛且=0综上所述=(4分)[4][答案]解法一= ⋯== ⋯⋯⋯解法二(4分)[5][答案]设为的部分和,则…所求和函数… 所求收敛域为…(4分)[6][答案]幂级数的收敛域是,所以当时,有(5分)[7][答案]设因为所以当时,级数收敛;又当,级数发散,故收敛域为。
(4分)[8][答案]令,原级数化为,当且仅当时,级数收敛,所以原级数的收敛域是。
(3分)[9][答案]令,级数化为,当且仅当时, 收敛,所以当时,原级数收敛,收敛域为.(4分)[10][答案]令,级数的收敛半径是1,收敛域是,故原级数收敛半径是1,收敛域是. (4分)[11][答案]由于,所以,当时,级数发散;当时,级数收敛;故收敛域为.(5分)[12][答案]令,原级数化为,此级数的收敛半径是2, 收敛域是,故原级数的收敛域是.(4分)[13][答案]利用两级数之间的关系,可得:当, 即时,级数收敛,当时,级数发散, 所以收敛半径是.(5分)[14][答案]设因为,所以收敛半径,而且时,级数收敛。
故收敛域为。
(5分)[15][答案]设因为,所以,且时,级数发散,故收敛域是。
(5分)[16][答案]设因为所以当时,级数收敛,当时,级数发散,故收敛域为。