光学工程_光镊技术

合集下载

光镊技术开辟了单细胞操作与精准检测新途径

光镊技术开辟了单细胞操作与精准检测新途径

光镊技术开辟了单细胞操作与精准检测新途径近年来,光镊技术作为一种重要的生物科技工具得到了广泛关注和应用。

与传统的机械操作方式相比,光镊技术通过操纵光束来控制和操作微小物体,如细胞、蛋白质和DNA等。

这种非接触式的操作方式不仅避免了传统机械操作中可能引起的损伤和干扰,还为科学家们开辟了单细胞操作与精准检测的全新途径。

单细胞操作是生命科学研究领域中的一项基础性工作,它对于研究细胞的特性和功能以及疾病的发生机制具有重要意义。

传统的单细胞操作方法主要包括显微针和机械牵引等技术,但这些方法存在诸多局限性。

显微针微操纵需要高超的技巧和经验,并且容易对细胞造成损伤。

机械牵引则无法精准地控制单个细胞的运动与定位。

光镊技术的出现改变了这一局面,具有高精度和非接触性的特点,可实现对单个细胞的精确操作。

基于光镊技术的单细胞操作主要依赖于光的操控能力。

通过调整光束的形状、强度和方向等参数,科学家们可以实现对细胞的捕捉、固定、移动甚至切割等操作。

例如,他们可以利用光镊技术轻松地抓取和操纵细胞,并将其放置到特定的位置进行研究。

光镊技术还可以控制光束的强度来对细胞进行精确的切割,从而实现单细胞分离和单细胞转录组的测序等工作。

除了单细胞操作,光镊技术还在精准检测领域展现出了巨大的潜力。

传统的检测方法往往需要破坏细胞或者繁琐的操作步骤,限制了其在生命科学研究中的应用。

而光镊技术不仅可以对细胞进行非接触式的操作,还可以对其进行实时监测和成像。

例如,科学家们可以利用光镊技术对单个细胞进行活细胞荧光染色和成像,观察其生命活动的变化。

此外,光镊技术还可以结合其他检测方法,如拉曼光谱和质谱等,实现对细胞成分和代谢产物等进行定量分析。

光镊技术的广泛应用不仅推动了单细胞研究的发展,也为生物医学领域的精准治疗和诊断提供了新的思路和方法。

例如,在肿瘤治疗中,通过光镊技术可以对单个肿瘤细胞进行捕捉和杀灭,从而实现高效的个体化治疗。

此外,光镊技术还可以用于血液分析、细胞筛选和微流控芯片等领域,实现对微小生物和实体的高通量操控和检测。

光镊实验的研究内容

光镊实验的研究内容

光镊实验的研究内容光镊实验是一种基于光力学原理的实验方法,通过利用光的动量对微小颗粒施加力的特性,实现对微小颗粒的操纵和定位。

光镊实验的研究内容主要包括光镊原理、光镊系统设计和应用等方面。

光镊原理是光镊实验的基础,其核心思想是利用激光束对微小颗粒施加光压力,产生一个与光束传播方向相反的恒力,从而实现对微小颗粒的操纵。

根据光镊原理,可以将光束聚焦到一个微小的焦点,形成一个光学陷阱,通过调整光束的参数,可以调节光陷阱的位置和力度,实现对微小颗粒的精确操纵。

光镊系统的设计是光镊实验的关键环节,它包括光源、透镜、光阑、光学陷阱等组成部分。

其中,光源是提供激光束的光源装置,通常使用激光器作为光源,激光器可以提供高强度、单色、相干性好的激光束。

透镜用于对激光束进行聚焦,可以将激光束聚焦到一个微小的焦点。

光阑用于控制激光束的直径和形状,可以调节光束的参数。

光学陷阱是光镊系统的核心部分,通过光学陷阱可以实现对微小颗粒的操纵和定位。

光镊实验的应用非常广泛,涉及生物医学、纳米技术、物理学等多个领域。

在生物医学领域,光镊实验可以用于单细胞操纵、细胞捕获和操纵、蛋白质分子的定位等研究。

在纳米技术领域,光镊实验可以用于纳米颗粒的组装、纳米器件的制造等研究。

在物理学领域,光镊实验可以用于研究光与物质的相互作用、光与物质的能量转换等基础问题。

光镊实验的研究还面临一些挑战和困难。

首先,光镊实验需要高质量的激光束,因此对光源的要求较高。

其次,光镊实验对光学系统的要求也较高,需要高质量的透镜和光阑。

此外,光镊实验对环境的要求也较高,需要较低的振动和干扰。

光镊实验是一种基于光力学原理的实验方法,通过利用光的动量对微小颗粒施加力的特性,实现对微小颗粒的操纵和定位。

光镊实验的研究内容包括光镊原理、光镊系统设计和应用等方面。

光镊实验在生物医学、纳米技术、物理学等领域有广泛的应用前景,但也面临一些挑战和困难。

光镊技术在生命科学中的应用前景

光镊技术在生命科学中的应用前景

光镊技术在生命科学中的应用前景随着科学技术的不断进步,许多新的技术在不断诞生并应用到各个领域中。

其中,光镊技术便是生命科学中应用广泛的一种技术。

光镊技术是一种将光束和微型机械加工技术相结合的新型技术,其作用是利用光束对微米甚至纳米级别的生物分子进行操控。

在生命科学研究中,光镊技术可以用于分子分离、分析、定位以及微纳制造等方面,目前已成为了生物分子操控的一项重要技术。

一、光镊技术在生物靶点药物研发中的应用光镊技术在生物靶点药物研发中的应用十分广泛。

其作用是通过改变药物分子结构和成分来提高药物的稳定性和成活率。

此外,光镊技术还可以通过光引发的药物控制释放,有效控制药物的剂量和释放时机。

这种技术的应用使得药物的研发效率大大提高,可以更加精准地制订靶点药物研发方案。

二、光镊技术在基因编辑中的应用基因编辑是目前生物学领域中非常热门的研究课题,旨在通过对基因序列的修改来改变生物体的一些特性。

而光镊技术在基因编辑中的应用则是使得基因编辑更加方便和快速。

通过使用光镊技术,研究人员可以精准地改变基因序列,进行高效的基因编辑。

这种技术的应用使得基因编辑的效率得到了大幅提升,可以更加完善地开展基因编辑研究。

三、光镊技术在细胞成像中的应用在生命科学研究中,细胞成像是十分重要的一个环节。

而光镊技术可以通过对细胞进行精确的控制,使得细胞成像更加清晰和准确。

通过使用光镊技术,研究人员可以对细胞的实时动态进行观察和记录,并且可以控制细胞的移动、参与反应等过程。

这种技术的应用让细胞成像在生命科学研究中发挥了更加重要的作用。

四、光镊技术在单细胞组学中的应用在单细胞组学研究中,研究人员需要精确地针对单个细胞进行研究,从而探究基因调控和代谢网络等相关机制。

而光镊技术可以通过对单个细胞的操控和诱导,使得单细胞组学研究更加完善和深入。

通过使用光镊技术,研究人员可以对单个细胞进行操作,包括进行药物的注射、电击、脉冲处理等。

这种技术的应用可以更好地开展单细胞组学研究,实现对单个细胞特性的深入研究。

光镊原理资料

光镊原理资料

光镊原理
光镊是一种利用激光束在微观尺度上进行操控和操作的技术。

光镊技术可以通过操纵光场的势能来实现对微小物体的精确控制,被广泛应用于微操控、生物医学和纳米加工领域。

光镊的基本原理
光镊的基本原理是利用激光束对微小粒子的反向光学力进行操纵。

当一束激光束聚焦到微小粒子上时,激光束在粒子表面产生的反射作用力会将微小粒子朝光束的焦点方向推动。

当激光束焦点逐渐移动时,可以实现对微小粒子的三维操控。

光镊的工作原理
光镊的工作原理是基于输入激光的光场与微小物体的相互作用。

激光束的光子对微小物体施加的作用力主要包括光场梯度力和光场散射力。

光场梯度力是由激
光光场强度梯度产生的,可用于操纵微小粒子的位置。

光场散射力则是由光子撞
击微小粒子表面而产生的反向力。

光镊的应用
光镊技术在生物医学领域有着广泛的应用。

例如,可以利用光镊技术对生物细胞进行操作和研究,实现单细胞的操控和精细处理。

此外,光镊技术还可以用于
制备微米级别的光学器件,如光子晶体、微透镜等。

另外,光镊技术还在纳米加工领域得到了广泛应用。

利用激光束的高精度控制,可以实现对纳米尺度的加工和定位,为纳米器件的研发提供了新的可能。

结语
光镊技术作为一种高精度的操控技术,在微操控、生物医学和纳米加工领域具
有重要的应用价值。

通过对光镊的原理和工作原理的深入理解,可以更好地应用
和推广光镊技术,为相关领域的研究和发展提供有力的支持。

光镊技术实验报告(3篇)

光镊技术实验报告(3篇)

第1篇一、实验目的1. 了解光镊技术的基本原理和操作方法;2. 掌握光镊在操控微小物体中的应用;3. 分析实验数据,评估光镊技术的性能。

二、实验原理光镊技术是一种利用光力捕获和操控微小物体的技术。

其基本原理是:当光束照射到微小物体上时,由于物体对光的吸收、散射和折射,光束会发生偏折,从而对物体产生光压。

通过调节光束的强度、方向和聚焦位置,可以实现对微小物体的捕获、操控和定位。

三、实验仪器与材料1. 光源:He-Ne激光器;2. 光路调节系统:包括光束扩展器、光束分割器、光束聚焦器、光束导向器等;3. 操控平台:包括光镊、样品台、摄像头等;4. 样品:直径为5μm的玻璃球;5. 计算机软件:用于数据采集、处理和分析。

四、实验步骤1. 准备实验仪器,包括光源、光路调节系统、操控平台等;2. 将He-Ne激光器调至最佳工作状态,输出稳定的激光束;3. 通过光路调节系统,将激光束聚焦至样品台上的玻璃球;4. 调节光束聚焦位置,使光束与玻璃球接触;5. 观察玻璃球在光镊作用下的运动情况,并记录相关数据;6. 分析实验数据,评估光镊技术的性能。

五、实验结果与分析1. 光镊对玻璃球的捕获在实验过程中,当光束聚焦至玻璃球上时,玻璃球被成功捕获。

在光镊作用下,玻璃球在样品台上做往返运动,运动轨迹基本呈直线。

这表明光镊能够有效地捕获微小物体。

2. 光镊对玻璃球的操控通过调节光束聚焦位置和强度,可以实现对玻璃球的操控。

在实验中,我们观察到以下现象:(1)当光束聚焦位置在玻璃球上方时,玻璃球向上运动;(2)当光束聚焦位置在玻璃球下方时,玻璃球向下运动;(3)当光束聚焦位置在玻璃球侧面时,玻璃球沿光束方向运动。

这表明光镊能够实现对微小物体的精确操控。

3. 实验数据与分析根据实验数据,我们可以得出以下结论:(1)光镊技术能够有效地捕获和操控微小物体;(2)光镊的操控精度较高,能够实现对微小物体的精确定位;(3)光镊技术在操控微小物体方面具有广泛的应用前景。

光镊的技术原理及应用

光镊的技术原理及应用

光镊的技术原理及应用1. 引言光镊是一种利用激光束产生光压力,对微小粒子进行操控和固定的技术。

其原理基于光子的动量,通过调节激光的光束参数,可以实现对微粒子的捕捉、移动、旋转等精确控制。

光镊技术在生物医学、纳米科学、光学通信等领域具有广泛应用。

2. 原理光镊技术的原理基于光子的动量和光压效应。

光子是光的最小单位,具有一定的动量。

当光子射到物体上时,其动量将被传递给物体,使其受到压力。

利用激光束产生的高强度、高聚焦的光场,可以对微小粒子施加足够的光压力,实现对其进行操控。

光镊技术主要基于两种光压效应:反射光压和偏折光压。

反射光压是指激光束射到微粒子表面后,被微粒子反射回去,产生反向的光压力。

偏折光压是指激光束通过微粒子时,由于微粒子对光的折射率不同于周围介质,产生折射现象,使光束偏折,从而产生光压力。

这两种光压效应可以结合使用,实现对微粒子的精确控制。

3. 技术应用3.1 生物医学领域光镊技术在生物医学领域有广泛的应用。

例如,可以利用光镊技术对单个细胞进行操控和研究,包括单细胞分离、单细胞操控、单细胞解析等。

此外,光镊技术还可以用于显微手术,如利用激光束进行准确切割或光凝固,实现微创手术。

光镊技术在生物医学领域的应用有望进一步推动微创手术的发展,并为生物医学研究带来突破。

3.2 纳米科学领域光镊技术在纳米科学领域也有重要应用。

通过调节激光的光束参数,可以对纳米颗粒进行精确的操控和排列,实现纳米技术的发展。

例如,可以利用光镊技术将纳米颗粒按照一定的规则排列,制备纳米材料的光学器件或纳米电路。

此外,光镊技术还可以用于纳米机器人的控制和操纵,推动纳米科学的进一步研究和应用。

3.3 光学通信领域光镊技术在光学通信领域有着重要的应用。

利用光镊技术,可以对光纤中的光信号进行精确的调控和处理,实现光信号的控制和传输。

例如,可以利用光镊技术对光纤中的光信号进行调制,实现光信号的放大或滤波。

此外,光镊技术还可以用于光纤通信系统中的光路选择和光纤连接的调整,提高光通信的可靠性和性能。

光镊原理的应用

光镊原理的应用

光镊原理的应用1. 光镊的定义光镊是一种利用光的特性来控制微观对象的工具。

它利用激光束的聚焦效应,将光束聚焦成一个非常小的光点,并利用光的压阻力或光子的冲击力对微观对象进行操作和控制。

2. 光镊的工作原理光镊的工作原理主要基于下列两个重要效应:2.1 光阱效应光阱效应是指激光束在介质中发生折射、散射等现象,从而形成一种类似于势阱的光学场景。

当微观对象进入光阱时,会受到光的压阻力,并被限制在光束的焦点区域内。

2.2 光压效应光压效应是指光子在物体表面产生的反冲作用力。

当激光束聚焦到微观对象表面时,光子的冲击力会使微观对象受到推动或操纵。

3. 光镊的应用领域3.1 生物学研究光镊在生物学研究中得到广泛应用。

它可以用于操纵和植入细胞,进行单细胞操作、细胞捕获和分类,以及光学镊切、拉伸等细胞操作技术。

3.2 纳米技术在纳米技术领域,光镊可以用于纳米粒子的操纵、定位和组装。

通过调整激光的参数,可以精确控制纳米粒子的位置和方向。

3.3 光学通信在光学通信领域,光镊可以用于对光纤进行修复和调整。

通过调整激光的焦距和功率,可以精确控制光纤中的光信号。

3.4 物理学研究光镊在物理学研究中也扮演着重要角色。

它可以用于单个原子和分子的操作和操纵,以及量子态的控制和测量。

4. 光镊的优势和局限性4.1 优势•光镊可以对微观对象进行非接触式操作,避免了对样品的污染和损伤。

•光镊具有高空间分辨率和灵活的操纵能力,可以实现高精度的操作和控制。

•光镊可以在不同环境中工作,适用于各种复杂样品。

4.2 局限性•光镊在操纵微观对象时受限于光的传播特性,操作范围较小。

•光镊的操纵效果受到光源和光学系统的限制,需要高质量的光源和光学器件。

5. 总结光镊作为一种利用光的特性进行微观操纵和控制的工具,在生物学研究、纳米技术、光学通信和物理学研究等领域都有广泛的应用。

它具有非接触式操作、高空间分辨率和灵活的操纵能力等优势,但也存在操作范围较小和光源、光学器件的限制等局限性。

光镊技术的原理及应用

光镊技术的原理及应用

图4 光镊
(b)
测量微粒
布朗运动
的瞬时速
度。(a)实
验装置原
理 图 ;(b)
微的布朗
运动瞬时
速度分布
曲线
1907年,爱因斯坦认为能量均分定理适用于布朗微粒,但是因为单个微粒的瞬时速
度变化太快,所以这个预言难以从实验上直接证明。
2010年,Tongcang Li等人利用两束正交偏振相向传播的光束形成的光阱小球悬浮在
利用光镊捕获微粒,使两微粒在显微镜焦平面附近发生碰撞并直接进行观察。 通过大量的碰撞后两个微粒结合与分散,可得到相互作用的直接信息。
•纳米技术领域
在纳米技术领域,由于光镊能对微米级和纳米级的器件进行非接触 式操纵,因而被用于纳米压印、纳米组装和微纳加工。
图7 纳米组装。a)用光镊将沉在样品池底部的纳米线镊起;b)用光镊将 GaN纳米线和SnO2纳米带镊起,并放置到正确位置,然后用光学激光将二 者熔合。 (Pauzauski等人,纳米器件、电路)
图11 光镊测量细胞膜弹性。(a)光镊拉伸细胞的示意图;(b)用药后细胞膜的变 化量;(c)没有加药细胞膜的变化
图12 光镊技术操控活体动物内的红细胞。 (a)光镊操控小白鼠耳朵毛细血管 中的红细胞示意图;(b)光镊诱导红细胞疏通血管恢复正常血液流动
•分子生物学领域
图13 用光镊操纵单分子体系的模式。(a)单分子的一端粘在光阱中的微球上, 另一端粘在盖玻片上;(b)单分子的一端粘在光阱中的微球上,另一端粘在 吸附在玻璃微针上的微球上;(c)单分子的两端分别粘在两个光阱(双光阱) 中的微球上。
光镊技术的原理及应用
2017年3月22日
光镊技术的定义 原理 实验装置 操纵特点 应用
定义

光镊的技术原理及应用

光镊的技术原理及应用

光镊的技术原理及应用光镊是一种利用光学力对微小粒子进行操作和操纵的技术设备。

它的技术原理主要基于激光束的光学力和光动力学效应。

通过调控激光束的参数,如光强、波长和光束的横截面形状等,可以对微小粒子产生吸引力或推力,实现对其位置和运动的控制,从而实现对微小粒子的操作。

光镊的技术原理主要包括光学效应、散射效应和吸收效应。

其中光学效应是最基本的原理,它通过光场对粒子施加的力来操纵粒子的运动。

当激光入射到粒子上时,激光光子与粒子之间会发生散射作用或吸收作用。

激光束的光强和波长的选择会影响光学效应的大小和类型。

当光学效应与光学力平衡时,粒子会被束缚在光学力场中,形成光镊效应,这样就可以对粒子进行操作。

光镊技术有着广泛的应用领域。

首先,光镊技术可以用于微生物学研究。

通过光镊技术,可以操纵微生物细胞、病毒等微小生物粒子,进行单个细胞的操作和研究。

例如,可以通过光镊技术捕获和操作单个细胞,研究其生长、分裂和运动等过程。

此外,还可以通过光镊技术将不同种类的微生物分离,实现对微生物的定点操作。

其次,光镊技术在生物医学领域也有很多应用。

例如,可以利用光镊技术对单个细胞进行操作,并对细胞内部进行精细的观察和测量。

这对于了解细胞的功能、结构和代谢等过程具有重要意义。

此外,光镊技术还可以结合显微技术,实现对活体组织和器官进行非侵入性操作和观察。

例如,可以通过光镊技术对活体细胞进行切割、焊接、注射等操作,用于研究和治疗癌细胞、神经退行性疾病等疾病。

再次,光镊技术也可以应用于纳米技术和纳米制造领域。

通过光镊技术,可以操纵和组装纳米颗粒,构建纳米结构和纳米器件。

例如,可以通过控制光镊的位置和力度,操纵纳米颗粒进行排列和组装,构建具有特定功能和性能的纳米结构。

此外,还可以利用光镊技术对纳米材料进行加工和处理,实现对纳米材料的精确控制和调节。

总之,光镊技术通过利用光学力对微小粒子进行操作和操纵,具有广泛的应用前景。

它在微生物学研究、生物医学领域和纳米技术等领域都有重要应用。

激光光镊技术的原理应用及发展

激光光镊技术的原理应用及发展

激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。

激光光镊技术已经在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。

激光光镊技术的原理基于光的力学效应。

当激光束聚焦到一个小区域内时,光束中的光子与物质发生相互作用,使得物质受到一个力的作用。

这个力被称为光力学力,它可以通过调节激光束的强度、频率和偏振等参数来控制。

当激光束聚焦到一个微小颗粒上时,光力学力可以使得颗粒受到一个稳定的力,从而实现对其位置的精确控制。

激光光镊技术的应用领域非常广泛。

在生物医学领域,激光光镊技术可以用于细胞操控、细胞分离、细胞注射等操作。

通过激光光镊技术,可以实现对单个细胞的精确操控,从而进行细胞实验、药物筛选等研究。

在材料科学领域,激光光镊技术可以用于纳米材料的制备和操控。

通过激光光镊技术,可以实现对纳米材料的精确操控,从而制备出具有特定结构和功能的纳米材料。

在纳米技术领域,激光光镊技术可以用于纳米的操控和纳米设备的制造。

通过激光光镊技术,可以实现对纳米的精确操控,从而实现纳米设备的制造和操作。

激光光镊技术的发展前景非常广阔。

随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升。

同时,激光光镊技术的应用领域也将不断拓展,将会在更多领域发挥重要作用。

例如,在生物医学领域,激光光镊技术可以用于癌症治疗、基因编辑等前沿研究。

在材料科学领域,激光光镊技术可以用于纳米材料的合成和改性。

在纳米技术领域,激光光镊技术可以用于纳米的制造和应用。

激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。

激光光镊技术在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。

随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升,其应用领域也将不断拓展。

激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。

光镊技术的发展概况

光镊技术的发展概况

光镊技术的发展姓名:***学号:SA********专业:检测技术与自动化装置目录1 引言 (2)2 光镊技术的原理 (4)2.1 光镊技术基础 (4)2.2 光的动量和光压 (5)2.3 新型光镊光场的研究 (7)2.4 应用中的相关理论 (9)3 光镊技术的应用 (11)光镊在生物细胞上的应用研究 (11)4 光镊技术的发展现状 (14)4.1 研究论文的发展势态 (14)4.2 技术专利的情况分析 (14)参考文献 (15)1 引言光具有能量和动量,经典光学主要以电磁辐射本身为研究对象。

而近代光学的发展则是以光与物质相互作用为重要的研究内容。

20世纪60年代激光的发明,为人们研究光与物质相互作用提供了一种崭新的光源,其中高简并度的激光使得光镊技术得以问世。

光镊技术是美国科学家于1986年发明的。

光镊又称为单光束梯度光阱。

简单的说.就是用一束高度汇聚的激光形成的三维陷阱来俘获,操纵控制微小粒子。

自诞生以来,光镊技术已经在微米尺度量级粒子的操纵控制,粒子间的相互作用等方面的研究中发挥了重要作用。

1969年,Ashkin通过理论计算认为聚焦的激光能推动尺寸为几个微米的粒子,并实现了用聚焦的氩离子激光使悬浮在水中的透明胶粒(直径0.6-2.5μm)沿着光轴方向加速推离。

他发现接近光束的微粒也出乎意科地被吸入光束中推离。

在通过用气泡与液滴反复实验后,Ashkin认为光束对折射率比周围介质高的微粒具有横向吸力,但对折射率比周围介质低的微粒具有横向推力。

1970年.Aahkin等首先提出能利用光压(optical pressure)操纵微小粒子的概念。

一直到1986年,Ashkin才发现只需要一束高度聚焦的激光,就可以形成稳定的能量阱能将微粒稳定俘获。

这标志着光镊的诞生,正因为如此.光镊的正式名称为单束光梯度力阱(single—beam optical gradient force trap)。

由于激光聚集可形成光阱,微小物体受光压而被束缚在光阱处,移动光束使微小物体随光阱移动,借此可在显微镜下对微小物体(如病毒、细菌以及细胞内的细胞器及细胞组分等)进行的移位或手术操作。

试述OT的实验的原理及应用

试述OT的实验的原理及应用

试述OT的实验的原理及应用OT(Optical Tweezers,光镊)是一种基于激光束的技术,利用光束对微小物体施加的光强梯度力可将其捕获、操纵及测量。

光镊技术具有极高的精度和灵活性,已在生物医学领域、物理学领域、纳米技术领域等多个领域得到广泛应用。

光镊技术的实验原理是利用激光束对微观物体施加光强梯度力。

当激光束通过具有高折射率和低吸收率的微观物体时,会在物体两侧形成光强梯度。

在光强梯度的作用下,微观物体会朝向光强较高的位置移动。

具体来说,激光束通过一块物质时,光线会一部分被反射,一部分被折射,形成驻波光场。

当微观物体位于驻波光场中心,所受总光学力为零;当微观物体发生偏离时,物体受到光束形成光强梯度力的作用,从而被拉向较强光强区域,最终位置恢复到中心位置。

光镊技术的应用非常广泛。

在生物医学领域,光镊技术可用于单个细胞或细胞内器官的操纵和研究。

通过捕获和操纵细胞,可以研究细胞的力学性质、运动机制以及细胞内分子的相互作用。

同时,光镊技术还可用于研究细胞力的传递和生物流变学等领域。

例如,可以在一个细胞上施加力,观察其对相邻细胞的影响。

此外,光镊还可以用于分析DNA、RNA和蛋白质等分子的物理性质和相互作用,有助于揭示生物分子的结构和功能。

除了生物医学领域,光镊技术也在物理学研究中得到广泛应用。

例如,在凝聚态物理学研究中可以利用光镊技术探索微观粒子间的相互作用力,研究纳米材料的力学性质以及物质间的相互作用。

通过调节光束的参数,可以控制和操纵微观粒子的运动和排列,进而研究凝聚态物理学中的多体现象。

此外,光镊技术还可用于研究和操作纳米材料,如碳纳米管、纳米颗粒等。

光镊技术在纳米技术中也有广泛的应用。

由于光镊技术的高精度和灵活性,它可用于纳米加工和纳米装配。

例如,通过光镊技术可以将多个纳米粒子组装起来构造纳米器件,如纳米电路和纳米机器人。

此外,光镊还可以用于纳米材料的表征和研究。

通过操纵纳米颗粒的运动,可以了解其形态和性质。

光镊技术概论

光镊技术概论

光镊技术概述姓名:刘志辉 学号:SC11009018 系所:009系光镊又称单光束粒子阱,是A.Ashkin [1]在1969年以来关于光与微粒子相互作用实验的基础上于1986年发明的。

单光束粒子阱实质上是光辐射压梯度力阱,是基于散射力和辐射压梯度力相互作用而形成的能够网罗住整个米氏和瑞利散射范围粒子的势阱。

一、光镊技术的基本原理光可以看作是光子流,每个光子都具有动量P [2]:λh C E P == E 是波长为的光子能量。

当光照射到物体时,光子的动量传递给物体并产生压强,称为光压。

光压对于宏观物体的影响可以忽略不计,但对于直径小于100um 的微小粒子,这种辐射压的作用是必须考虑的。

光镊对粒子的俘获作用机制与其尺寸有关。

根据粒子直径(D )和光波长(λ)的大小关系,光镊的作用机制被分为3类:几何光学机制(λ>>D 时)、雷利机制(λ<<D 时)和中间机制(介于前两者之间的情况)。

对于直径大于波长的米氏散射粒子来说,光镊的势阱原理可以用几何光学来解释[3]。

如图1所示。

入射光线a 在粒子小球的作用下而偏离原来的运动方向,粒子小球则受到一个相反的作用力Fa 。

同理可知,光线b 对粒子施加Fb 的作用力。

Fa 和Fb 的合力指向光束的焦点。

这样,就可以通过移动光束的焦点的位置,控制粒子小球前后左右的移动,实现对粒子的捕获和操控。

图1单光束梯度力光阱的几何光学原理对于直径小于激光波长的瑞利散射颗粒,适用于波动光学理论和电磁模型。

波动光学理论认为,在光轴方向有一对作用力:与入射光同向正比于光强的散射力和与光强梯度同向正比与强度梯度的梯度力。

在折射率为的介质中,折射率为 的瑞利粒子所受的背离焦点的散射力为c P n F scat m scat /= (1)这里scat P 为被散射的光功率。

或用光强0I 和有效折射率m p n n m /=表示为m scat n m m r c I F 2224650)21(3128+-=λπ (2) 对于极化率为α的球形瑞利粒子所受的指向焦点的梯度力为2222332)21(22E m m r n E n F m m scat ∇+--=∇-=α (3) 这样,在焦点处形成势阱的标准为指向焦点的梯度力与背离焦点的散射力之比大于1,即两者的合力指向焦点,即有11)2(643320352225≥-+==ωλπr m m n F F R m scat grad(4) 若粒子小球在横向(垂直于光轴方向)偏离中心位置,也会受到一个指向光束中心的作用力使小球锁在焦点处。

有关于光镊原理的生活应用

有关于光镊原理的生活应用

有关于光镊原理的生活应用1. 什么是光镊光镊是指利用光束的力对微小粒子进行捕捉、操作或测量的一种技术。

光镊利用光束与物质之间的相互作用力,通过调节光束的强度、聚焦度和波长等参数,实现对微观颗粒的精确操控。

2. 光镊原理光镊的原理基于光的性质和物质的微观结构。

当光束照射到物质上时,光的能量会被物质吸收,从而产生反作用力。

光镊利用这种反作用力,通过调节光束的参数,使其对微小粒子产生的力达到捕捉或操作的目的。

3. 光镊的生活应用3.1 生物学研究光镊在生物学研究中具有广泛的应用。

通过调节光束的参数,可以将光镊应用于单细胞分析、细胞捕捉和操控、细胞成像等领域。

光镊可以对微小的细胞结构进行精确定位,实现对细胞的非侵入式操作和观察。

3.2 纳米技术研究在纳米技术研究中,光镊也发挥着重要的作用。

通过控制光束的参数,可以实现对纳米粒子的精确定位和操控。

光镊在纳米材料的合成、纳米流体的输送和纳米器件的组装等方面具有潜在的应用价值。

3.3 光学通信光镊在光学通信领域的应用也日趋重要。

光镊可以实现对光纤中的光信号进行控制和调整,提高光信号的传输质量和速率。

光镊在光纤网络的建设和光纤通信设备的优化中有着重要的作用。

3.4 医疗器械光镊在医疗器械领域的应用也逐渐增多。

光镊可以用于人体内部的微创手术,通过控制光束在人体组织中的聚焦和操控,实现对病变组织的准确治疗。

光镊具有非侵入性、高精度和自动化等优势,对提高手术安全性和治疗效果具有重要意义。

3.5 材料科学研究在材料科学研究中,光镊也发挥着关键的作用。

光镊可以对材料的微观结构进行精确分析和操作,帮助科学家研究材料的性质和改善材料的性能。

光镊在材料制备、材料测试和材料表征等方面具有广泛的应用和发展前景。

4. 总结光镊作为一种利用光束对微观颗粒进行捕捉、操作或测量的技术,在生物学研究、纳米技术研究、光学通信、医疗器械和材料科学研究等领域具有广泛的应用。

光镊的原理基于光的性质和物质的微观结构,通过调节光束的参数实现对微小粒子的精确操控。

基于光镊技术的生物分子操作及分析研究

基于光镊技术的生物分子操作及分析研究

基于光镊技术的生物分子操作及分析研究光镊技术是一种应用光学技术进行微量生物分子操作和分析的新技术,取得了不错的研究成果。

该技术在生物领域中的应用越来越广泛,已经成为分子生物学和细胞生物学研究中不可或缺的技术手段。

一、光镊技术的基本原理光镊技术是一种基于激光光束产生光场的技术。

它利用高功率聚焦光束把单个微小分子或一群分子集中到一个小的空间位置,实现对其进行操控和分析。

光镊技术在生物分子操作和分析中的应用主要包括以下几个方面:1.单细胞操作:通过光镊技术可以有效地捕捉、分离和操作单个或几个细胞及其细胞器,从而实现对生物细胞的精细操作。

应用光镊技术,可以有效地研究细胞生理、代谢和基因表达等生物过程。

2.分子操控:通过光镊技术,可以精确地控制和操作单个分子或少量分子。

比如,可以通过光镊技术分辨单个DNA 分子的乘积、拷贝数、末端结构等许多信息。

3.分子分析:光镊技术还可以对生物分子实现高分辨、高灵敏的可视化分析。

应用光学显微技术,对细胞和组织进行定量的三维成像,同时可以实时监测分子运动和反应的动态过程。

此外,还可以通过分子激发、荧光共振、表面增强拉曼散射等技术手段对单个分子进行分析。

二、光镊技术的应用随着生物学研究的不断深入,光镊技术逐渐成为生物领域中不可或缺的技术手段。

具体应用包括:1.单细胞操作:利用光镊技术,可以捕捉、分离并操作单个或几个细胞及其细胞器。

这种操作可以精细地调控细胞生长、分化和转化等生物过程,为生物学研究提供了强有力的工具。

2.DNA操作:应用光镊技术可以对单个 DNA 分子进行操作,可以实现 DNA 复制、酶的作用机理等许多生物学研究的关键问题。

此外,还可以通过操控分子的空间位置,实现分子之间的特定相互作用,从而实现分子间的定量测量。

3.药物筛选:应用光镊技术,可以高效地筛选药物的作用机理和作用效果。

利用光镊技术,可以将目标分子和潜在药物操控在非常小的空间范围内进行反应,对药物的活性和效果进行快速评估。

光镊技术在生物实验中的应用研究

光镊技术在生物实验中的应用研究

光镊技术在生物实验中的应用研究光镊技术是一种利用激光成像技术和激光光束束缚单个或少量微小物体的技术。

它具有快速、准确、精细等特点,并且在生物实验中有着广泛的应用。

一、光镊技术的原理光镊技术是利用激光产生作用力的原理,当激光束照射到微观颗粒上时,由于光学力的作用,颗粒受到的作用力使其在光束的光学势场中处于平衡状态。

这种作用力可以将微观颗粒固定在一个空间位置上,这就是所谓的光学“镊子”。

二、光镊技术在生物实验中的应用1.细胞操纵细胞操纵是光镊技术在生物实验中最常见的应用之一。

通过控制激光束的移动和强度,可以实现对细胞的定向移动、操控、切割等操作,从而实现对细胞的形态、生理和功能进行研究。

2. DNA修复光镊技术还可以应用于DNA修复研究中。

在DNA分子中,由于损伤、烷基化、辐射等因素会导致DNA链断裂或广泛损伤。

利用光镊技术,可以将损伤的DNA链修复还原,从而防止疾病发生。

3. 分子机器的组装与操作分子机器是在生物学和生物医学中起着重要作用的纳米机器。

光镊技术可以应用于分子机器的组装和操作上,通过镊子的作用力将多个分子连接在一起组成复杂纳米结构,实现更为精确的操作和控制。

三、光镊技术的发展前景随着技术的发展和应用场景的拓展,光镊技术在生物实验中的应用前景非常广阔。

未来,光镊技术将在细胞病毒的治疗方面、基因编辑技术中、药物研究和测定中等发挥重要作用。

同时,光镊技术在生物实验中的研究也将不断深入,为人类健康和医学研究提供更为精确的技术支持。

总的来说,光镊技术是一种十分有前途的技术,它在生物实验中的应用已经开始展现出其身手,未来光镊技术的应用前景将会异常广阔。

因此,未来的研究方向也将会越来越多,我们也将会看到更加令人惊喜的高科技的涌现。

光的力学效应——光镊

光的力学效应——光镊
光电效应、康普顿效应……
光的力 用时T时间,那么物体就会收到一 个力。可计算出这个力。
普通光源的力学效应微乎其微! 光子密度低,方向性差。 实验观测和测量极其困难!
1960年激光问世
激光特点:高单色性、高亮度、方向性好。
光镊简介
分选单挑染色体
(a) 游离的水稻中期分裂相细胞; (b) 紫外脉冲光对细胞穿孔使之破裂,释放出染色 体; (c) 荧光激发下观测染色体,用光镊夹持其中单条染色体; (d)~(f) 光镊夹持单条 染色体使其从细胞残骸(染色体群体)中分离出来; (g)~(h) 利用微吸管将光镊分离的染色体富集
操控动物活体内红细胞
光镊技术
——光镊技术的原理与应用
理学院物理包玉
提纲
•光的力学效应原理 •光镊简介 •光镊原理与特点 •光镊的应用
光的力学效应
光的力学效应? 光有力量吗?
从“光与物质 的相互作用” 说起……
光的效应
光的热学效应: 阳光照射我们,我们会感到暖。 (常见的效应)
光的力学效应:
光照射物体交换动量,使光照射的 物体受一个力或力矩,物理发生速 度、角速度、位移的变化(微小难 以察觉)
光镊是以激光的力学效应为基础的以种物理工具,利用强会聚的光场与 微粒相互作用时形成的光学势阱来俘获粒子。 1969年实现了对水中的玻璃小球的捕获。1986年发现单束激光足以形成 三维稳定光学势阱,可以吸引微粒并局限于焦点附近。近年来越来越发 展突出,已在医学界受到广大研究者的青睐。
光悬浮——光捕获——光致旋转
贝塞尔光束同时也属于非衍射光束, 相比于高斯型光束,贝塞尔光束可 传播较远距离而保持中心光斑的大 小和尺寸基本不变。由于贝塞尔光 束在传播过程中具有很好的稳定性, 故被用于引导微粒沿轴向输运距离 可达3 mm,这个间距远远大于高斯 型光束的光镊的轴向捕获深度。并 且,在轴向3 mm 距离中可以实现 非衍射光束还包括马提厄光束、 多个平面长距离捕获多微粒,如图 抛物线光束、艾里光束等。 所示。

光镊技术

光镊技术

光镊技术技术原理:光与物质相互作的本质是光的电磁场与组成物质的带电粒子相互作用的结果,具体的物理过程依赖于与之相互作用的物质的性质。

以透明电介质小球作模型,设小球的大小等于或大于光波长,小球的折射率n1大于周围媒质的折射率n2,采用几何光学近似。

单光束梯度力光镊原理由一束高度会聚的激光束构成的。

在强会聚的光场中,粒子在X—Y—Z三个方向都将受到一指向光最强点(焦点)的梯度力。

Z方向受的力的方向与光传播方向相反,也就是说光对粒子不仅有推力还有拉力,粒子被约束在光最亮点附近。

技术特点:1)光镊是以光场的形式与物体交换动量的结果,光镊是一种特殊的“无形”镊子,没有机械镊子夹持物体有集中的受力点,光镊的操作是非接触的、无损的。

2)光具有的穿透特性,光镊可以越过透明屏障,穿过封闭系统的表层(细胞膜)操控其内部微粒(细胞器),也可以透过封闭的样品池的外壁,操控池内微粒,实现真正的无菌操作。

3)光镊更多的是在液体中工作,能够保持细胞生存的“天然”环境。

因此,光镊技术特别适合用于对活体生物细胞、细胞器以及生物大分子的操控和研究。

4)光镊操控微粒的尺度在几十纳米到几十微米,这也是生物大分子、细胞器、细胞的尺度范围。

在该尺度范围光镊是唯一的操作手。

5)光镊的所有机械部件离捕获对象的距离都远大于捕获对象的尺度(~1000倍),因此光镊是以“遥控”的方式,远距离工作的。

6)光镊操控微粒直接展现在显示屏,是可视性,完全暴露在我们视野中的细胞为研究者提供了进行下一步工作的极大方便。

目前还没有其它实验技术比光镊研究操控活体能如此得心应手。

7)光镊是微小力的探针。

光镊对微粒的操控不是刚性的,类似弹簧,在操作过程中能实时感应微小的负荷。

因此,光镊是极其灵敏的力传感器,力的分辨精度高达几飞牛。

8)光镊与其它技术手段结合,如常规显微镜所配置的荧光,相差,微针等,还有激光刀,近场光学显微镜,共聚焦显微镜,光谱仪等。

目前还没有能够直接深入到细胞内操控单分子的技术和方法,而光镊已实现了在体外操控单个大分子,实时追踪其运动,获取单分子静态和动态的力学性质等,成为生物学领域不可或缺的一种独立的技术。

光镊技术的基本原理

光镊技术的基本原理

光镊技术的基本原理
光镊技术,是一种利用激光束在微观尺度上操纵和捕捉微小物体的技术。

它基于光的电磁力和光的角动量,其基本原理如下:
光的电磁力:当光束与物体相互作用时,会在物体上产生散射力和吸收力。

这些力是由于光子与物体之间的相互作用而产生的。

当物体与激光束有相应的光学特性匹配时,散射与吸收力会使物体朝着光束的方向移动。

光的角动量:激光束携带着角动量,可以通过激光束的自旋、轨道和总角动量来描述。

当激光束穿过粒子时,它转移一部分角动量给粒子,导致粒子自旋或轨道发生变化。

这种角动量转移可以产生力矩,从而使物体受到扭转或旋转的作用。

基于上述原理,光镊技术使用激光束来操纵微观颗粒。

具体步骤如下:
选择适当的光源:通常使用激光器作为光源,激光束应具有适当的波长、功率和光学特性。

聚焦光束:使用透镜或其他光学元件来将光束聚焦到微观尺度。

通过调整聚焦系统,可以改变光线的强度和焦点位置。

捕获微观颗粒:将待捕获的微观颗粒放置在悬浮液中或固体表面上,通过移动聚焦光束,使其与颗粒相互作用。


光束与颗粒之间存在适当的光学相互作用时,颗粒会受到光学力的束缚,被拉近光束的焦点区域。

移动和操纵颗粒:通过调整光束的位置和聚焦,可以操纵和移动捕获的微观颗粒。

通过改变激光束的强度、位置和聚焦点,可以使颗粒在三维空间中做精确的平移、转动和操纵运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

39
三、光镊基本原理
3.5 阱力与束缚条件
③阱力的计算和测量 该粘滞力由斯托克斯定律确定, F 6 rv 粒子粘滞系数;r:粒子半径;v:运动速度,当用红 外光作光阱光源时,小球受力的一个实验经验公式 n 为:t 0.03 n b w / c , b :媒质折射率;W:光功率; F C:光速, n b w / c 是光被小球完全吸收时,小球所受力 即小球受力是完全吸收表面受力的百份之三 。
0 0 0 0
b)对应于不同的物理和生物条件,粒子所处的平衡位置不同,一般说来距 焦点的距离与小球的半径相近 c)在A点右侧近似无限高势垒,在A-B之间,粒子均会被推向A点。 d)形成势垒的因素:光束束腰大小,波长,光功率密度,粒子折射率
38
三、光镊基本原理
3.5 阱力与束缚条件
③阱力的计算和测量 a)计算 Roosen与Ashkin采用几何学分析 Tom Q等发展了新的动力学方法 b)测量 实验上测量捕获力的方法,是将粒子放在已 知粘滞系数的液体中,用光钳拖动粒子,测出光钳克 服粒子粘滞力的最大速度,也就是测量小球在光阱作 用下通过媒质的临界粘滞力。
根据动量守恒原理,它(光线a)必须要给小球施加 一个向左方向的动量,即光线a在小球内折射的结果, 使小球受到一个向左的力。 同理,可以分析,由于光线b的折射,小球受到一个 向右的力,在均匀场中,两力等值,其合力⊥(垂直) 18 向下。
对于图1 A中的均匀光场来说,光线a,b进入小球发 生折射,既2次折射,这里这是折射占主要的量。从图 中可知,比如对于光线a,它向右方折射。 因为光线是带有动量的,它的方向是沿着光传播的 方向,可知光线a最终向右方折射,它的动量由上向下, 19 改变为向右方,这是因为小球的折射率造成的,
dp dt

p t
这意味着光对被照物体施加一个力的作 用,这种由于光辐射对物体产生的力通常称 之为光的辐射压力或光压。
p m v, dp dt m v ma F
11
.
如果光束的作用面积为S,则单位面积上的光压强 为。可以估算出,太阳光垂直照射时,地球表面的光压 为:W=0.5达因/m2,这个量很小。 但由于激光的高亮度、高方向性,发散角为毫弧度。 10mW He-Ne激光,辐射亮度为太阳光的1万倍,与原 子弹爆炸时亮度相当。 )时,其压强为 再将其聚焦到衍射极限光斑,( m W=106达因/m2从而可产生108cm/s2=105g的加速度。 对于微米数量级的小球来说,这个力非常大,每个光子 的动量虽小,但在聚焦后形成的高密度能流下,其力量 非常大,此为光摄的能源所在。

14
三、光镊基本原理
3.2 梯度力
上面所讲的是光子对小球的压力,该压 力方向沿光传播方向,这里尚未说明它形成 光镊作用。那么我们先来观察处在均匀与非 均匀光场中的小球的受力情况。见图1。
15
图1
梯度力的形成
16
图1中假设小球是透明体,这是符合实际情况的。 因为大部分生物细胞的组成是水分子,特别是对脱了 壁的原生质体,近乎是透明的球状体。这里还假设小 球的折射率大于周围媒质的折射率,这也是符合大多数 17 情况的。
12

应当注意的是,如此高的能量密度集中于小球上, 当几毫瓦的激光聚焦成1 m 的衍射极限光斑,会聚 于 m 大小的小球上。当小球与外界绝热时,即使 有千分之一的入射能量(微瓦数量级),被小球吸 收,这微瓦的能量也会使小球温度在毫秒时间内超 过沸点,而被蒸发。 然而,光镊作用下的小球都是浸入液体中的,球被 液体冷却。这时热传导方程与扩散方程形式相同, 水中小球温度变化为:
9
三、光镊基本原理
3.1 光的动量与光辐射压力(光压)
光的动量是光的基本属性之一 光不但具有能量而且有动量 h p hk 光子 h 光与物质相互作用 交换能量 动量的传递 力,光压


c
10
根据牛顿第二定律,作用在物体上的力 F等于光引起的单位时间内物体动量的变化:
F
27
三、光镊基本原理
3.4 单光束梯度力光阱
二维光学势阱实现了对粒子在⊥(垂直)于光传 播方向上的平面内的束缚,但在光传播的Z方向,粒 子一般地受向下的合力和重力(向下),因而在光轴 方向仍是不稳定的。 如果光阱在光传播方向上也能产生对粒子的束缚, 则可以形成一个三维的势阱,从而粒子能在光轴上的 某一个位置达到平衡。 1986年,美国贝尔实验室A.Ashkin利用一束强聚 焦激光实现这一目的。
3
引 言
光镊----光学镊子,顾名思义它是一种 利用光物理性质实现的工具,它应具有 传统的机械镊子或钳子可狭持、操纵微 小物体的功能,故成为光镊或光钳。
4
激光束聚焦 至直径1um
激光光镊对酵母细 胞的捕获和操作 控制曝光时间在样品上 记录下直径变化的点
5
引 言
传统的机械镊子必须用其前端接触到物体,再施加一 定的压力,物体才能被镊住,而后进行翻转,迁移等操纵。 而光镊则大不相同, ①它使物体受到光的束缚而达到“镊”的目的,然后 通过移动光束来迁移或翻转物体 ②与机械镊子相比,它是一种温和的、非机械接触的 方式来夹持和操作物体 ③尤为重要,在以光镊的光为中心的一定区域内,物 体一旦落入这个区域就有自动移向几何中心的可能,尤如 微粒被吸光器吸入,或一个飞行物体坠入宇宙黑洞样,光 镊具有“引力”效应。同时光镊又象一个陷阱。
三、光镊基本原理
3.5 阱力与束缚条件
②Z方向的捕获力定性分析 图5说明会聚高斯光束在传播方向Z, 所受的力F(Z)与 Z 0 / r 的关系。
34
图5 会聚的高斯光束(Z)方向上捕获力的分析 图5说明会聚高斯光束在传播方向Z,所受的力F(Z)与 Z 0 / r 的 关系,图中 Z 0 为球中心到焦点的距离,是一个变量,而r 为粒子的半径,是一个常量。曲线的坐标原点为束腰(或焦 点)处在位置。
三、光镊基本原理
3.5 阱力与束缚条件
①影响光阱的因素 a)主要因素:如果在某个方向上要限制粒子的运动, 就必须使光在该方向上有大的光强梯度 b)其它因素:粒子的物理、生物性质 采用光的波长、功率、会聚后的束腰半径 生物粒子大小、吸收系数 粒子与液体的折射率 球心与光轴的距离和球心与束腰的距离
33
13

T 3W / 8 kr
r:小球半径,K:水中传导率,W:小球获 得的功率。经计算,上述同样的功率(微瓦) 下,小球的温升只有1℃,可以承受。 还应当注意,光摄利用的是光线在小球上的折 射效应,而不是吸收效应。这在下面的受力分 析中进一步明确。而这里要说明的是光子确实 可以对小球形成压力。
25
图3 A,利用粒子受沿光束传播方向的光压与粒子自身的重力相 平衡,粒子被悬浮于某一高度。(注意光压向上,即激光从下 往上照) 图3 B,利用器皿平衡粒子所受沿Z方向的光压,而固定粒子。 图3 C,选用两束相向传播的,完全相同的激光形成双光束激光 26 势阱束缚粒子。
二维势阱,由于在光束传播方向才能束缚粒子,并且系统较 复杂,效果不理想。美国贝尔实验室的A.Ashkin利用强聚焦单光 束激光势阱较理想地解决了这一问题。
36

对图5的讨论如下: a)曲线与水平轴的两交点(A、B)是粒子在Z轴的平衡点,F(z)=0,但两 点的情况大不相同,对于A点,不论增加或减少均受到与移动方向相反 Z F (z) Z F (z) 的力( )、 所以A点是粒子的稳定平衡点。 而对B点, Z F ( z ) Z F ( z ) , 即粒子只要偏离B点,就会受到向相同 方向的力,而被推向更远,所以B点是非稳定平衡点。 37 由此可见,单光束势阱在A点附近,(略高于焦点)
6


同时,“光镊”实际上是以宏观机械镊子对 光的势阱效应的一种形象和通俗的描绘。对 “光镊”的物理性质,人们采用“光学势 垒”“光捕获阱”“光梯度力阱”或“光字势 阱”等物理术语予以描述。
7
研究进展

1970年 贝尔实验室的阿什金就利用多光束激 光的三维势阱成功镊起并移动水溶液中的小 玻璃珠,之后这一激光镊起微粒的技术得到 不断改进,所能捕获的粒子越来越小; 1985年阿什金开始采用单光束镊起细菌及病 毒等微小生物体;
显然对于反射光也可以进行类似的分析。光线a的反射光, 使小球受到向右的力,两发射光的合力是垂直向上的,即与两 折射光的效果相反。但反射光的量小,不起主要作用。 同理,对于图1 B中的非均匀光场,受力分析的结果是, 小球所受到的向左、向右的力并不互相抵消,总的合力把小球 推向光较亮的那一个方向,图1 B是把小球推到右下方。这种由 20 于光场强度不均匀产生的力,称之为梯度力。(由于光场大小 存在梯度而产生的力)。
28
图4 三维光学势阱
29
图4 强聚焦激光高斯光场中粒子受力图。 图4A中,折射光线a、b趋向更平行于光轴(比原光线粒子应 当受到一个向上的合力。小球被拉向焦点方向。
30
图4 强聚焦激光高斯光场中粒子受力图。 图4B中,粒子处于焦点之内(粒子中心0在焦点之内),此 时折射光线a、b与原光线相比,更偏离于光轴,此时折射光线 a、b动量的改变的合成应当向上,因为动量守恒,粒子应当受 到一个向下的力。即粒子受到一个推力,被推向焦点方向。粒 31 子最终在光轴的某一个平衡位置上静止。
8


1987年首先使用514.5nmAr+成功镊起病毒,紧接着 利用1064nmNd:YAG。但由于活性体对可视波段激 光的吸收作用,早期搬运细菌的过程中存在对活细 胞损伤的问题;

后来阿什金发现对于大多数生物细胞和有机体来说 红外光是相对透明的,从而采用800—950nm的红 外激光配合一定的功率操作可不对细胞组织造成损 害,之后这一技术在生物领域得到快速发展。
进一步将该结论推广到更一般的光场强度分布,特别是存在强 度最大点,即光会聚点附近时,在该区域中的粒子将受到一个 指向最亮点的力。即对于粒子来说,不仅有推力,还有拉力。 粒子将被束缚在最亮点。 注意,上述前提是小球折射率大于周围介质的折射率,反之, 21 受力将相反,即光场将粒子推向最暗点。
相关文档
最新文档