测绘及三维建模知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维建模及测绘相关知识点

一、三维建模

三维空间数据模型主要有三种:数字高程建模DEM、数字地面建模DTM、等值线。

地理三维建模:三维建模是指用一定的模型来模拟、表达地学三维现象。

TIN为不规则三角网的缩写,在地理信息系统中有广泛应用:根据区域的有限个点集将区域划分为相等的三角面网络,数字高程有连续的三角面组成,三角面的形状和大小取决于不规则分布的测点的位置和密度,能够避免地形平坦时的数据冗余,又能按地形特征点表示数字高程特征。

三维空间数据不仅指起伏的地形数据,还包括离散点在某一平面的任何属性数据,如某城市的降雨量,某小区域土壤的酸碱度等。

点云数据处理基本描述:点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。

两种方法:点绘制、多边形网格绘制。

(三维数据获取与建模现状:我们身在一个三维的世界中,三维的世界是立体的、真实的。同时,我们处于一个信息化的时代里,信息化的时代是以计算机和数字化为表征的。随着计算机在各行各业的广泛应用,人们开始不满足于计算机仅能显示二维的图像,更希望计算机能表达出具有强烈真实感的现实三维世界。三维建模可以使计算机作到这一点。所谓三维建模,就是利用三维数据将现实中的三维物体或场景在计算机中进行重建,最终实现在计算机上模拟出真实的三维物体或场景。而三维数据就是使用各种三维数据采集仪采集得到的数据,它记录了有限体表面在离散点上的各种物理参量。它包括的最基本的信息是物体的各离散点的三维坐标,其它的可以包括物体表面的颜色、透明度、纹理特征等等。三维建模在建筑、医用图像、文物保护、三维动画游戏、电影特技制作等领域起着重要的作用。一个三维模型的建立过程包括三维初始数据的获取,对初始数据进行诸如去除噪声点、简化等处理,按照不同的方式组织三维数据,最终实现在计算机中绘制出具有三维特征的模型。在三维建模中,最主要的问题就是使用三维数据进行绘制,要使得绘制出的模型有立体感和真实感,达到理想的视觉效果;同时还要较好地组织数据,减少存储空间以便于数据的传输和加快显示速度。多边形网格绘制是目前的标准绘制方法,它把三维模型表面的点连接成以多边形为单位的网格,可以表达复杂的表面,提供更强的适应性,其中尤以三角网格的使用最为广泛。目前国际上多边形网格绘制技术已经很成熟了,而流行的各种3D制作软件,如OPENGIL等,都可以实现三维物体的网格建模和绘制。但最近几年,三维图像处理领域出现并普及了新的工具——三维激光扫描仪,它可以方便快捷地检测一个三维物体表面各点的空间位置,将三维物体表示成空间中大量密集分布的点,我们称之为点云数据。于是又有人提出了点绘制的思想,即在每一个点上绘制一个面或其他几何体,当点云密度足够大时,就可以把整个模型绘制出来。两种方法各有优劣,本文就试图在这两种方法中找到一条中间道路,取其各自的长处而补其不足。)

三维立体导航,采取三维建模的实景路口地图情势,可以显示全国各大城市3万多幅路口实景画面,将庞杂路口完整真实的无差浮现,以最清楚突出的方法领导驾驶者进入目的车道,一目了然,零识别时光。

二、三维数据采集

(一)专业术语

1、空中三角测量

空三处理提供地理参照的影像,是建立所有摄影测量项目的几何级基础。

空中三角测量是立体摄影测量中,根据少量的野外控制点,在室内进行控制点加密,求得加密点的高程和平面位置的测量方法。其主要目的是为缺少野外控制点的地区测图提供绝对定向的控制点。空中三角测量一般分为两种:模拟空中三角测量即光学机械法空中三角测量;解析空中三角测量即俗称的电算加密。模拟空中三角测量是在全能型立体测量仪器(如多倍仪)上进行的空中三角测量。它是在仪器上恢复与摄影时相似或相应的航线立体模型,根据测图需要选定加密点,并测定其高程和平面位置。

航空摄影测量中利用连续摄取的具有一定重叠的航摄像片,依据少量野外控制点,以摄影测量方法建立同实地相应的航线模型或区域网模型(光学的或数字的),从而获取加密点的平面坐标和高程。主要用于测地形图。

2、遥感影像?

凡是指纪录各种地物电磁波大小的胶片(或相片),都称为遥感影像(Remote Sensing Image),在遥感中主要是指航空像片和卫星相片。用计算机处理的遥感图像必须是数字图像。以摄影方式获取的模拟图像必须用图像扫描仪等进行模/数(A/D)转换;以扫描方式获取的数字数据必须转存到一般数字计算机都可以读出的CCT等通用载体上。计算机图像处理要在图像处理系统中进行。图像处理系统是由硬件(计算机、显示器、数字化仪、磁带机等等)和软件(具有数据输入,输出,校正,变换,分类等功能)构成。图像处理内容主要包括校正、变换和分类。

空间分辨率

成像方式分类:

折叠航空摄影成像

摄影成像是通过成像设备获取物体的影像技术。传统摄影成像是依靠光学镜头及放置在焦平面的感光胶片来记录物体影像。数字摄影则通过放置的焦平面的光敏元件,经光/电转换,以数字信号来记录物体的影像。

折叠航空扫描成像

扫描成像是依靠探测元件和扫描镜对目标物体以瞬时视场为单位进行的逐点、逐行取样,以得到目标物的电磁辐射特性信息,形成一定谱段的图像。

折叠航空微波雷达成像

微波成像雷达的工作波长为1mm-1m的微波波段,由于微波雷达是一种自备能源的主动传感器和微波具有穿透云雾的能力,所以微波雷达成像具有全天时、全天候的特点。在城市遥感中,这种成像方式对于那些对微波敏感的目标物的识别,具有重要意义。

3、倾斜相机/倾斜摄影

作为近年来国际上发展十分迅速的一项高新技术,倾斜摄影不仅能够真实反映地物情况,而且可通过先进的定位技术嵌入精确的地理信息,在欧美等发达国家,已经广泛应用于应急指挥、国土安全、城市管理等领域。鉴于该技术的重大意义,我国也将其列入了《国家地理信息产业发展规划(2014-2020年)》。

4、导航定位定向系统(简称:POS系统)是通过全球导航卫星系统(GNSS)获取位置数据作为初始值,通过惯导系统(IMU)获取姿态变化增量,应用卡尔曼滤波器、反馈误差控制迭代运算,生成实时导航数据。

应用POS系统可以得到移动平台位置和姿态的轨迹数据。

能够实现直接地学定位,可以减少或省略空中三角测量的地面控制点。可以与任何类型的量测类型的传感器(航摄像机、机载激光雷达(LIDAR)、高光谱成像仪、机载合成孔径雷达(SAR)和机载干涉雷达(InSAR)等)直接连接使用。

相关文档
最新文档