新《计算机算法设计与分析》课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用分治法解决快速排序问题及用回溯法解决0-1背包问题
一、课程设计目的:
《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:
1、分治法:
(2)快速排序;
2、回溯法:
(2)图的着色。
三、概要设计:
●分治法—快速排序:
分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。分治法的条件:
(1) 该问题的规模缩小到一定的程度就可以容易地解决;
(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;
(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:
(1)将问题拆开;
(2)将答案合并;
●回溯法—0-1背包问题
回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始节点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的或节点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。换句话说,这个节点,这个结点不再是一个活结点。此时,应往回(回溯)移动至最近一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归的在解空间中搜索,直到找到所要求的解或解空间中以无活结点为止。
四、详细设计与实现:
分治法—快速排序
快速排序是基于分治策略的另一个排序算法。其基本思想是,对于输入的子数组[]r p a :,按以下三个步骤进行排序:
(1)、分解(divide) 以元素[]p a 为基准元素将[]r p a :划分为三段[]1:-q p a ,[]q a 和,[]r q a :1+使得[]1:-q p a 中任何一个元素都小于[]q a ,而[]r q a :1+中任何一个元素大于等于[]q a ,下标q 在划分过程中确定。
(2)、递归求解(conquer) 通过递归调用快速排序算法分别对[]1:-q p a 和[]r q a :1+进行排序。
(3)、合并(merge) 由于[]1:-q p a 和[]r q a :1+的排序都是在原位置进行的,所以不必进行任何合并操作就已经排好序了。
算法实现题: 现将数列{12 21 31 45 36 76 66 46 30 7 89 20 2 5 99 47 23 54 51 73}进行快速排序。
源程序如下:
#include
using namespace std;
#define size 20
int partition(int data[],int p,int r)
{
quick_sort(data,0,n-1);
printf("排列后的数列为:\n");
for(i=0;i printf( "%d ",data[i]); printf("\n"); return 0; } 运行结果如下: 图1 图5 ●回溯法—0-1背包问题 ●回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的 所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。 算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。 二、算法框架: 1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。 问题的解空间应到少包含问题的一个(最优)解。 2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点 (根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成 为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。 运用回溯法解题通常包含以下三个步骤: (1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构; (3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下 可用递归函数来实现回溯法。 1 问题描述 对于0-1背包问题回溯法的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1].这4个物品的单位重量价值分别为[3,2,3,5,4].以物品为单位价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装入0.2的物品2.由此可得到一个解为x=[1,0,2,1,1],其相应的价值为22.尽管这不是一个可行解,但可以证明其价值是最有大的上界。因此,对于这个实例,最优值不超过22. 回溯法的基本思想是按深度优先策略,从根节点出发搜索解空间树,算法搜索至解空间的任一点时,先判断该结点是否包含问题的解,如果肯定不包含,则跳过以该结点为根的子树的搜索,逐层向其祖先结点回溯,否则,进入该子树,继续按深度优先进行搜索。