徐州市 2014至2015学年度期末抽测 全市统考 八年级
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题号 1 2 3 4 5 6 7 8 选项 B C B D D B C A (第19题)
2014~2015学年度第一学期期末抽测
八年级数学参考答案
9
.2 10.2014 11.3.1 12.(1,2) 13.3y x = 14.2016y x =+ 15.AB AC =(或BD CE =、B C ∠=∠、ADC AEB ∠=∠、BDC CEB ∠=∠) 16.30
17.(1)原式=13(2)-+- ……………3分 (2)24x = ································ 6分
=4-.……………………4分 2x =±. ···························· 8分
18.(1)图略(画对即可,各2分);…………………………4分
(2)√. ……………………………………………………6分
19.(1)如图; …………………………………………………6分
(注:图像与坐标轴的4个交点、2条直线,各1分)
(2)x >2. …………………………………………………8分
20.(1)AD BC ⊥. …………………………………………1分 ∵AD 是边BC 上的中线(已知),且BC =6,∴132
BD DC BC ===.··········· 2分 在△ABD 中,∵22222243255AD BD AB +=+===,
∴△ABD 是直角三角形(勾股定理的逆定理). ········································ 4分 ∴90ADB AD BC ∠=︒⊥,即. ······························································· 5分
(2)∵AD 是边BC 上的中线,且AD BC ⊥,∴AD 垂直平分BC . ····················· 7分
∴AC =AB =5(线段垂直平分线的性质). ··············································· 8分
21.(1)在△ABC 和△DCB 中,
∵90AB DC A D BC CB =⎧⎪∠=∠=︒⎨⎪=⎩
(已知),(已知),(公共边).………3分 ∴△ABC ≌△DCB (HL ). ········· 5分
(2)∵△ABC ≌△DCB .∴ACB DBC ∠=∠,即ECB EBC ∠=∠. ······················ 7分
∴EB = EC (等角对等边). ·································································· 8分
22.(1)在△ABC 中,∵∠ABC =90°,AB =BC ,∴45A C ∠=∠=︒.
又∵D 是AC 的中点,∴12
BD AC AD ==,BD AC ⊥,45ABD CBD ∠=∠=︒. 在△ADE 和△BDF 中,∵45AE BF DAE DBF AD BD =⎧⎪∠=∠=︒⎨⎪=⎩
(已知),(已证),(已证). ··························· 2分
∴△ADE ≌△BDF (SAS ).∴DE =DF .·················································· 4分
(2)∵△ADE ≌△BDF ,ADE BDF ∠=∠. ··················································· 5分
∵BD AC ⊥(已证),∴90EDF BDE BDF BDE ADE BDA ∠=∠+∠=∠+∠=∠=︒.
在△DEF 中,又∵DE =DF (已证),∴=45DEF ∠︒. ································· 8分
23.(1)根据题意,4个直角三角形全等,小正方形的边长为(b a -),大正方形边长为c .
=4S S S ∆+大正方形小正方形. ······································································· 2分
22222214()222
c ab b a ab b ab a a b =⨯+-=+-+=+. ································· 3分 即222a b c +=. ················································································· 4分 勾股定理:直角三角形两直角边的平方和等于斜边的平方. ························ 5分
(2)由图知,4S S ∆≥大正方形,即2142
c ab ≥⨯,由(1)得:222a b ab +≥. ··········· 6分 由图知,小正方形边长为0时,4S S ∆=大正方形,此时,0b a b a -==,即. ···· 7分 ∴222a b ab +≥,当a b =时,等号成立. ················································ 8分
24.(1)2个变量:室内PM2.5的浓度y (mg/m 3)、时间t (h ); ····························· 2分
(2)点M 表示启动净化器1小时,室内PM2.5浓度达到正常值25 mg/m 3. ·········· 4分
(3)设第1小时内,y 与t 的一次函数表达式为y =kt b +.根据题意,得
085125k b k b ⨯+=⎧⎨⨯+=⎩
,. 解得6085k b =-⎧⎨=⎩,. ∴6085y t =-+. ··································· 7分 (4)根据题意,净化器每小时可使PM2.5的浓度降低60 mg/m 3. ······················· 8分 故所需时间为:2(12525)6013
-÷=(h ). 答:需要213
h (或100min )可使PM2.5的浓度恢复正常. ························ 10分 25.如图,作点A 关于y 轴的对称点'A (1-,4),连'BA ,交y 轴于点'C ,连'CA .
由对称性,知'CA CA =. ··········································································· 1分 △ABC 的周长=''AB CA CB AB CA CB AB BA ++=++≥+()().
线段AB 的长度为定值,当点C 运动到点'C 时,'BC CA +的值最小
(两点间线段最短), 此时'='BC CA A B +.故△ABC 的周长的最小值='AB A B +. ···························· 2分 过点'A 作'A D x ⊥轴,垂足为D (1-,0) .过点A 作AF x ⊥轴,垂足为F (1,0) . 在Rt △AFB 中,
AB =在Rt △'A DB 中,'A △ABC 设'A B (1)420k b k b -⨯+=⎧⎨⨯+=⎩,. 当x =0时,83y =
,即3
∴当点C 运动到'C (0,83)时,△ABC 的周长取得最小值 ················· 8分