二倍角的正弦、余弦和正切公式 说课稿 教案 教学设计

合集下载

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计

3.1.3 二倍角的正弦、余弦、正切公式教学设计王祥教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.教学目标1.知识与技能:通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.情感态度价值观:通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.课时安排1课时教学过程导入新课(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.推进新课新知探究提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写)②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ). ⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉. sin(α+β)=sin (S 2α);cos(α+β)=cosαcosβ-2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k ∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k ∈Z ).若cos2α=2cosα,则2cos 2α-2cosα-1=0,即cosα=231-(cosα=231+舍去). 若ta n2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)例题讲解:例1 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π. 又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--. 于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120-; cos4α=cos[2×(2α)]=1-2sin 22α=1-2×(135)2=129119; tan4α=a a 4cos 4sin =(-169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.课后作业课本习题3.1 A组15、16、17.课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.课后反思:1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力”的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深的留在了学生记忆中.本节课的教学设计流程还是比较流畅的.2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.学生会体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。

《二倍角的正弦余弦正切》说课稿

《二倍角的正弦余弦正切》说课稿

《二倍角的正弦、余弦、正切》说课稿各位专家、同仁:您们好!今天我说课的课题是高一下册第四章第7节第一课时的二倍角的正弦、余弦、正切,现我就教材、教法、学法、教学程序、板书五个方面进行说明。

恳请在座的各位专家、同仁批评指正。

一.说教材1.本节课主要内容是二倍角公式的推导及应用,主要是运用这节知识进行三角的求值、化简、及证明,同时能理解由特殊到一般的化归数学思想方法。

2.地位作用:这是三角函数这一章中的第7节第一课时的内容,它是在学生学过三角函数的诱导公式和两角和与差的正弦、余弦、正切公式之后的又一重要公式,它为今后研究三角函数图象及性质等问题提供了又一必备的要素。

因此它起着承上启下的作用。

同时,也是培养了学生逻辑思维能力和化归的重要数学思想方法。

3.教学目标(1)知识目标:使学生能记住二倍角公式,会运用二倍角公式进行求值、化简和证明,同时使学生懂得这一公式在运用当中所起到的用途。

(2)能力目标:培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想。

(3)德育目标:培养学生认真参与、积极交流的主体意识,锻炼学生善于发现问题的规律和及时解决问题的态度。

4.重点与难点重点:记住二倍角公式,运用二倍角公式进行求值、化简和证明。

难点:在运用当中如何正确恰当运用二倍角公式。

二.说教学方法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)引导发现法。

这能充分调动学生的主动性和积极性。

(2)“从一般到特殊”的化归方法。

这有利于学生对知识进行主动建构;也有利于发挥学生的创造性和发现数学规律。

(3)练习巩固法。

这样更能突出重点、解决难点,使学生的分析问题和解决问题的能力得到进一步的提高。

(4)分析法。

研究较难的证明问题可以从结论出发进行分析化简,然后转化到研究简单问题上来。

二倍角的正弦、余弦、正切公式教学设计

二倍角的正弦、余弦、正切公式教学设计

二倍角的正弦、余弦、正切公式教学设计一. 教学背景(一)指导思想:普通高中数学课程标准(2017年版)(二)国务院办公厅关于新时代推进普通高中育人方式改革的指导意见二. 教材分析(一)课标与教材1.学业要求:能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.教材内容:人教A版数学必修4第三章《三角恒等变换》第一节第三课时(二)地位和作用二倍角的正弦、余弦、正切公式是两角和与差的正弦、余弦、正切公式的延续和拓展,为后面研究简单的三角恒等变换奠定了基础。

三.学情分析通过学情问卷调查表反馈和已有的教学经验,学生的知识储备和可能存在问题如下:1、知识储备:学生已经学习了两角和与差的正弦、余弦、正切公式,这对本节内容的学习起了铺垫作用。

2、存在问题:分析、解决问题的能力还比较薄弱。

四. 教学目标1、通过对实际问题的分析,培养学生的“数学建模”的核心素养。

2、通过学生自主探究二倍角公式及其变形,培养学生“逻辑推理”“数学运算”的核心素养。

五.教学重点和难点(一)教学重点:二倍角公式的推导和理解(二)教学难点:二倍角公式的灵活应用六.教学策略(一)教学形式:活动元学案导学(二)素材准备1.查阅资料、文献,选择恰当的教学活动内容与素材。

2.微课展示。

(三)教学方式1. 教法:引导学生解决生活实际问题,建立数学模型。

从特殊到一般,先猜想再验证。

通过活动元练习来2.学法:小组合作探究,培养学生团结互助的协作精神。

(四)评价方式1.课堂活动学生自评、学生互评、教师点评。

2.课后作业分层诊断评价。

七.教学过程设计【引课】借助课前知识储备,以挂弓山森林公园的真实情境引课。

【活动元一】心动入境,情境引入活动时间活动形式活动过程与结果设计意图【学习导问】在半径为1的半圆上截一个一条边在直径上的内接矩形,设θθ当,=∠BOC为多大时,才能使矩形ABCD面积最大?通过解决在半圆中内接矩形的面积最大值问题引入本节课,培养学生数学建模的核心素养。

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

课题: 二倍角的正弦、余弦、正切公式教材:人教A版高中数学必修4§3.1.3第一课时一、教学目标1.知识目标:以两角和的正弦、余弦、正切公式为基础,推导二倍角的正弦、余弦、正切公式,掌握二倍角公式,运用二倍角公式解决有关问题。

2.能力目标:灵活运用二倍角公式,培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想,提高学生分析问题、解决问题的能力。

3.德育目标:激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识,培养学生的发散性思维、创新意识,提高数学素养。

二、教学重点与难点重点:掌握二倍角公式,灵活运用二倍角公式解决有关问题。

难点:二倍角公式的灵活运用,培养学生的转化、化归的数学思想。

三、教学方法与手段教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学并通过多媒体辅助教学。

四、教学过程二倍角的正弦、余弦、正切公式教案说明在教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学,逐步设疑、诱导、解疑,指导学生去“发现”。

整个教学过程的设计主要体现以下五点:第一、提出问题,纠正学生常犯直觉性错误,激发学生新的求知欲。

引导学生自主探究二倍角公式,让学生亲身经历公式的“发现”过程。

这样设计突出学生的主体地位,能够让学生明白知识的来龙去脉,加深对知识的理解,培养学生的探究意识和丰富的联想能力。

第二、在学生推导出二倍角公式后,立即让学生做些简单练习,目的是为了使学生更好的理解、运用和记忆二倍角公式,以及让学生感到找出C公式变形的必要性。

2第三、在解题教学过程中,启发学生先分析条件与求解目标之间的差异,然后选择适当的公式,明确解题思路,最后严格规范解答过程,培养逻辑思维能力。

通过一题多解训练学生发散性思维,培养学生创新意识,提高学生的数学素养。

第四、为巩固所学知识,本设计通过设置多重练习,让学生能更深刻的认识公式特点,感受公式的各种形式运用,提高灵活运用公式的能力。

二倍角正弦、余弦、正切公式说课一等奖

二倍角正弦、余弦、正切公式说课一等奖
(2)化简1 sin 2 cos2
1 sin 2 cos2
(3)求函数 f x cos 2x 4cos x 的最大值
巴蜀好教育联盟
巴蜀好教育联盟
巴蜀好教育联盟
由于新课改的核心理念是以学生发展为本,所以在本 节课的设计中我以学生活动为主线,创设情境,生成 问题,解决问题,不断渗透学科素养,在教学环节中 我重视过程引导,注重思维培养,让学生体会数学学 习的乐趣。
人教A版数学 必修4第三章 第一节第三 课时
巴蜀好教育联盟
教材分析 学情分析 目标分析 教学重难点 教法学法分析
教学内容
两角和与差的正弦、余 弦、正切公式的延续和 拓展
为后面研究简单的三角 恒等变换奠定了基础
巴蜀好教育联盟
教材分析 学情分析 目标分析 教学重难点 教法学法分析
1、知识储备: 学生已经学习了两角和与差的正弦、余弦、正 切公式,这对本节内容的学习起了铺垫作用。 2、能力素养: 大部分学生对数学的学习有兴趣,并且具备一 定的自学能力,但分析、解决问题的能力还比 较薄弱。
8
8
tan 22.5 (2) 1 tan2 22.5

_______
巴蜀好教育联盟
课堂小结法上:特殊与一般、化归与转化、整体思想
巴蜀好教育联盟
课后检测评价
1、书面作业(A) P135练习:1-4
2、研究性作业(B) (1)求 cos 20 cos 40 cos80 的值
巴蜀好教育联盟
绿水青山就是金山银山
巴活蜀动好元一教:育心联动盟入境,情境引入
巴活蜀动好元一教:育心联动盟入境,情境引入
在半径为1的半圆上截一个一条边在直
径上的内接矩形,设BOC ,当

二倍角的正弦、余弦、正切说课稿北师大版

二倍角的正弦、余弦、正切说课稿北师大版
1.二倍角的正弦公式:\[ \sin 2\alpha = 2\sin\alpha\cos\alpha \]
2.二倍角的余弦公式:\[ \cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1 \]
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解二倍角的正弦、余弦、正切知识点。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
2.二倍角的余弦公式:\[ \cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1 \]
3.二倍角的正切公式:\[ \tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha} \]
-反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
-巩固学生在课堂上学到的二倍角的正弦、余弦、正切知识点和技能。
-通过拓展学习,拓宽学生的知识视野和思维方式。
-通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
学生学习效果
1.知识与技能:
-学生能够准确地记忆和理解二倍角的正弦、余弦、正切公式。
4.数据分析:学生能够运用二倍角的正弦、余弦、正切公式进行数据分析,解决相关的数学问题。
5.数学运算:通过二倍角公式的运用,提高学生的数学运算能力,使学生能够熟练进行相关的计算。

《二倍角的正弦、余弦、正切》说课稿

《二倍角的正弦、余弦、正切》说课稿

《二倍角的正弦、余弦、正切公式》说课稿授课日期:2014年6月12日授课班级:高一(3)班授课人:今天我说课的课题是高一数学必修4第3.1.3第一课时的二倍角的正弦、余弦、正切公式,现我就教材、教法、学法、教学过程、设计感想方面进行说明。

恳请在座的各位领导和老师批评指正。

1.说教材1.本节课主要内容是二倍角公式的推导及应用,主要是运用这节知识进行三角的求值、化简、及证明,同时能理解由特殊到一般的化归数学思想方法。

2.地位作用:这是三角恒等变换这一章中的第1节第3课时的内容,它是在学生学过三角函数的诱导公式和两角和与差的正弦、余弦、正切公式之后的又一重要公式,它为今后研究三角函数图象及性质等问题提供了又一必备的要素。

因此它起着承上启下的作用。

同时,也是培养了学生逻辑思维能力和化归的重要数学思想方法。

3.教学目标(1)知识目标:倍角公式与两角和公式的内在联系,并熟练倍角公式结构。

(2)能力目标:培养学生利用化归思想(指将一般化归为特殊)导出倍角公式,了解倍角公式与两角和公式的内在联系并熟练倍角公式结构。

(3)德育目标:通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神。

4.重点与难点重点:二倍角的正弦、余弦、正切公式。

难点:倍角公式的形成以及公式的变形和应用。

二.说教学方法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)引导发现法。

这能充分调动学生的主动性和积极性。

(2)“从一般到特殊”的化归方法。

这有利于学生对知识进行主动建构;也有利于发挥学生的创造性和发现数学规律。

(3)练习巩固法。

这样更能突出重点、解决难点,使学生的分析问题和解决问题的能力得到进一步的提高。

三.说学法指导教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)由特殊到一般的化归方法:即把两角和与差的正弦、余弦、正切公式当中二角取相等二角时得到新的公式的方法。

人教A版高中数学必修4《二倍角的正弦、余弦、正切公式》说课稿

人教A版高中数学必修4《二倍角的正弦、余弦、正切公式》说课稿

二倍角的正弦、余弦、正切公式说课稿教材:人教A版高中数学必修4§3.1.3第一课时一、教材分析(一)本节教材的地位和作用:教材的地位主要体现在以下几点:1、本节内容是三角函数中最基础的知识之一。

它是在学生学过三角函数的诱导公式和两角和与差的正弦、余弦、正切公式之后的又一重要公式。

2、本节在本章中处于承上启下的地位。

3、三角函数是高考的热点问题,而二倍角的正弦、余弦、正切公式是三角函数求值、化简及证明必备的基础知识点之一。

它为研究三角函数图象及性质等问题提供了又一必备的要素。

本节教材的作用则主要是可以培养学生逻辑思维能力和化归的重要数学思想方法,使学生体验的数学知识发生发展(形成)的过程,增进学生对数学知识的理解,增强学生学数学的兴趣和信心。

(二)、教学内容本节课是在学生初步掌握了同角三角函数的基本关系、三角函数的诱导公式及两角和与差的公式等内容的基础上而安排的,主要内容是二倍角的正弦、余弦、正切公式的推导及应用。

(三)、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定了如下教学目标:1.知识目标:以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,掌握二倍角公式,运用二倍角公式解决有关问题。

2.能力目标:灵活运用二倍角公式,培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想,提高学生分析问题、解决问题的能力。

3.德育目标:激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识,培养学生的发散性思维、创新意识,提高数学素养。

(四)、教学重点、难点重点:理解并掌握二倍角公式;灵活运用二倍角公式解决有关问题。

难点:二倍角公式的灵活运用,培养学生的转化、化归的数学思想。

二、教法分析在教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学,逐步设疑、诱导、解疑,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

《二倍角的正弦、余弦、正切公式》教案(优选.)

《二倍角的正弦、余弦、正切公式》教案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

《二倍角的正弦、余弦、正切公式》教学设计高一A组韩慧芳年级:高一科目:数学内容:二倍角的正弦、余弦、正切公式课型:新课一、教学目标1、知识目标:(1)在理解两角和的正弦、余弦和正切公式的基础上,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。

(2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。

2、能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构,培养逻辑推理能力。

3、情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。

在运用二倍角公式的过程中体会换元的数学思想。

二、教学重难点、关键1、教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式2、教学难点:二倍角的理解及其正用、逆用、变形用。

3、关键:二倍角的理解三、学法指导学法:研讨式教学四、教学设想:1、问题情境复习回顾两角和的正弦、余弦、正切公式()sin sin cos cos sin αβαβαβ+=+;()cos cos cos sin sin αβαβαβ+=-;()tan tan tan 1tan tan αβαβαβ++=-。

思考:在这些和角公式中,如果令βα=,会有怎样的结果呢?2、建构数学公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了αα与2的三角函数之间的关系。

(二倍角的正弦·余弦·正切公式)教学设计

(二倍角的正弦·余弦·正切公式)教学设计

“二倍角的正弦、余弦、正切”教学设计设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构。

发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。

阶段的发展不是间断性的跳跃,而是逐渐、持续的变化。

皮亚杰的认知发展阶段论为发展性辅导中学生智力发展水平的评估和诊断,提供了重要的理论依据。

教学内容:《普通高中课程标准实验教科书(数学)》必修4(人教A版),第三章、第一节、第145-148页。

“二倍角的正弦、余弦、正切”是在研究了两角和与差的三角函数的基础上研究具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简和证明提供了非常有用的理论工具,通过对二倍角公式的推导知道:二倍角公式的内涵是“揭示具有倍数关系的两个角的三角函数的运算规律”,通过推导还让学生了解高中数学中由“一般”到“特殊”的化归数学思想,因此这节课也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力都有重要意义。

教学目标:根据新课程标准的要求、本节教材的特点和学生对三角函数的认知特点,我们把本节课的教学目标确定为:1、能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。

2、掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。

3、通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。

学情分析:我们的学生从认知角度上看,已经比较熟练的掌握了两角和与差的三角函数的基础上。

从学习情感方面看,大部分学生愿意主动学习。

二倍角公式教案

二倍角公式教案

二倍角公式教案二倍角的正弦、余弦、正切公式教学目标:1.学会利用和角公式推导出sin2α,cos2α,tan2α,并认识整个公式体系的生成过程,从而培养逻辑推理能力。

2.记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用公式,掌握基本方法,提高分析问题、解决问题的能力。

教学重难点:二倍角公式的推导及灵活应用,倍角的相对性教学方法:讨论式教学+练教学过程:1.复引入前面我们研究了和差角公式,现在请一个同学回答一下和角公式的内容:sin(α+β)=cos(α+β)=tan(α+β)=有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就来研究二倍角的相关公式。

2.公式推导在和角公式中,若令β=α,会得到如下结果:sin2α=sin(α+α)= sinαcosα+cosαsinα= 2sinαcosαcos2α=cos(α+α)= cosαcosα-sinαsinα= cos2α-sin2αtan2α= tan(α+α)= 2tanα/(1-tan2α)整理得:sin2α=2sinαcosαcos2α= cos2α-sin2αtan2α=2tanα/(1-tan2α)对于cos2α= cos2α-sin2α,还有其他形式:利用公式sin2α+ cos2α=1变形可得:cos2α= cos2α-sin2α=cos2α-(1-cos2α)=2cos2α-1cos2α= cos2α-sin2α=(1-sin2α)-sin2α=1-2sin2α因此:cos2α= cos2α-sin2α=2cos2α-1=1-2sin2α注意:1.要使tan2α=2tanα/(1-tan2α)有意义,α须满足1-tan2α≠0,且α≠kπ+π/2.2.这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去。

在本文中,我们将讨论倍角公式的相对性。

“二倍角的正弦、余弦、正切”的教学设计共3页

“二倍角的正弦、余弦、正切”的教学设计共3页

“二倍角正弦、余弦、正切”教学设计三角函数是中学数学重要内容之一,它基础主要是几何中相似形与圆,研究方法主要是代数中式子变形与图像剖析,因此,三角函数研究已经初步把几何与代数联系起来了,高等数学、物理学、天文学、测量学以及其他各种应用技术学科,都要经常用到三角函数及其性质,所以,这些内容既是解决生产实际问题工具,又是学习高等数学学科基础。

“二倍角正弦、余弦、正切”课堂教学内容较多,分三课时,主要公式有倍角公式、半角公式、与差化积公式、积化与差公式,以下是对第一课时教学设计。

以往对于本节课教学感觉是公式多、逻辑性强,但并不难讲,往往是把公式在黑板上给学生推导出来,让学生强化记住,然后会用公式解决问题就达到目了,结果教师与学生都感到很枯燥乏味。

按照《数学课程标准》要求,学生数学学习活动不应只限于接受、记忆、模仿与练习,还应倡导自主剖析、动手实践、合作交流、阅读自学等学习数学方式,使学生学习过程成为在教师引导下“再创造”过程.那么,如何在教学中体现这个过程,怎样才能使学生积极主动地学习,让学生养成独立思考、积极剖析习惯呢?一、创设问题情境,激发学生学习兴趣以本章引言中与学生生活直接相关绿地面积问题引入新课,培养学生数学建模思想,激发学生学习兴趣。

S=a2?2sinθcosθ这是以θ为自变量函数,当θ取什么值时使s达到最大呢?在上节课基础上,提问正弦、余弦、正切与角公式,欲扬先抑,温故而知新。

二、公式推导在正弦、余弦、正切与角公式基础上请学生推导出:循序而渐进,在已有知识基础上将一般化归为特殊,新知识提出与学习符合学生认知规律。

提出问题:除以上用单角三角函数表示倍角三角函数公式外,你还能够写出更多公式吗?给学生充分自由,引导学生去剖析,对于倍角余弦、正切,学生一定能写出更多公式,教师给予鼓励。

(学生很可能会发现万能公式与二倍角余弦公式其他形式。

)让学生体验数学公式发现与创造历程,发展他们创新意识.三、例题剖析给学生时间阅读教材中例题,培养学生阅读自学能力,发现问题、解决问题能力与数学应用意识。

高中高一数学《二倍角的三角函数》教案设计

高中高一数学《二倍角的三角函数》教案设计

高中高一数学《二倍角的三角函数》教案设计一、教学目标1.知识与技能:掌握二倍角的正弦、余弦、正切函数公式,能够运用这些公式进行计算和化简。

2.过程与方法:通过探究、讨论、练习等方式,培养学生的数学思维能力,提高解题技巧。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。

二、教学重点与难点1.教学重点:二倍角的正弦、余弦、正切函数公式的推导与应用。

2.教学难点:二倍角公式的推导过程及运用过程中的符号变化。

三、教学过程1.导入新课(1)复习回顾:引导学生回顾初中阶段学习的正弦、余弦、正切函数的定义及性质。

(2)提出问题:如何利用已知的三角函数公式来推导二倍角的三角函数公式?2.探究新知(1)引导学生利用正弦、余弦、正切的定义,结合三角形的面积公式,推导出二倍角的正弦、余弦、正切函数公式。

(2)教师引导学生进行推导,并解释推导过程中的关键步骤。

3.应用练习(1)教师给出一些简单的二倍角问题,让学生运用新学的公式进行解答。

(2)学生互相交流,分享解题过程和心得。

(3)教师点评,指出学生解题过程中的优点和不足。

4.拓展延伸(1)引导学生探讨二倍角公式在解三角形、化简三角函数表达式等方面的应用。

(2)学生举例说明,教师点评。

(2)学生反馈学习过程中的疑问和收获。

6.作业布置(1)教材P页习题1、2、3。

(2)思考:如何利用二倍角公式化简三角函数表达式?四、教学反思1.本节课通过引导学生探究二倍角公式的推导过程,让学生体会到了数学的严谨性和美感,提高了学生的学习兴趣。

2.在应用练习环节,学生能够积极参与,互相交流,提高了解题技巧。

3.在拓展延伸环节,学生能够将二倍角公式应用于实际问题,培养了学生的数学思维能力。

4.教学过程中,部分学生对二倍角公式的符号变化掌握不够熟练,需要在课后加强练习。

5.教师在课堂上要关注学生的学习反馈,及时调整教学方法和节奏,提高教学效果。

五、教学评价1.课堂表现:观察学生在课堂上的参与程度、思维活跃度、合作交流情况等。

《二倍角的正弦、余弦、正切公式》教学设计

《二倍角的正弦、余弦、正切公式》教学设计

,求 sin4,cos4,tan4
用、变形用
的值。
3 、思想方法:转化与
例 2.在△ABC 中,cosA
4
= ,tanB=2,求 tan
5
(2A+2B)的值
化归思想
2
课 教学模式: 堂
开始书 倍角公式

倍角公式的理解

学生推导公式


评讲、纠误

投影 形成性练习
和角公式
课程标准:普通高中数学 课程标准(实验教科书): 第一学段:高一年级
引导

学生完成练习
投影 练习提示

归纳、总结
结束 结束
教学内容和 教师的活动
媒体的 应用
3
学生的 活动
教师进行 逻辑判断
第2页
知识点 学习 编 号 目标
练习题目内容
3.1.3—1
理解

1 1.sin cos =
22
2.1-2sin222.5=
1.复习回顾
cos
板 sin

tan
设 计
2.新知探究
cos 2a =
=
=
sin 2a =
;
tan 2a =
.
3.典例讲解
4.归纳小结
例 1. 已 知 1、二倍角正弦、余弦、

sin 2

5 , 13
( 4
, ) 2
正切公式及推导 2、注意公式正用 、逆
利用多媒体与学案导学,通过例题讲解与课堂练 习,启发学生对二倍角的正弦、余弦、正切公式的理解
及其灵活运用
1
知识点 学习 媒体 媒体内 教学 编 号 目标 类型 容要点 作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,
()sin sin cos cos sin αβαβαβ+=+;
()cos cos cos sin sin αβαβαβ+=-;
()tan tan tan αβαβ++=. 的公式呢?(学生自己动手,把上述公式中β看成α即可), sin 2sin cos αα=;
22cos sin ααα=-;

否变成只含有sin α或cos α形式的式子呢?2cos 2αα=;
2cos 21αα=-.
tan 2α= 注意:2例1、已知5sin 2,,1342ππαα=
<<求sin 4,cos 4,tan 4ααα的值. 解:由,42π
π
α<<得22π
απ<<.
又因为5sin 2,13α=12cos 213α===-. 于是512120sin 42sin 2cos 221313169
ααα⎛⎫==⨯⨯-=- ⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭
;120sin 4120169tan 4119cos 4119169
ααα-
===-. 例2、已知1tan 2,3α=求tan α的值.
解:22tan 1tan 21tan 3
ααα==-,由此得2tan 6tan 10αα+-=
解得tan 2α=-+tan 2α=--
(四)小结:。

相关文档
最新文档