关于三相三线智能表错接线的判断
三相三错误接线判断方法
三相三线错误接线判断方法1、测量U10、U20、U30的电压值,哪项为0时,表示该项为B相。
当0电压未出现时,表示B相断相。
当出现电压异常时,例如只有几十伏的电压,(此时的电压大小跟表尾的负载有关联)而非全电压时,则为该元件电压断相。
如例题11.1当出现电压断相时,可简单分为两种情况考虑,一是B相断,此时U10、U20、U30皆不为0V,二是B不断,此时可在U1,U2,U3中找到谁为B相,并能判断出是哪一元件电压断相。
此时无法判断的是哪一相电压断,判断方法为测量全电压与2元件电流夹角,假设电流的状态来反推电压,如果能确定已知的全电压是由哪相与B的组成,则断相的是谁也就可以判断了。
如例题22、测量I1、I2的值,观察是否有异常现象,如果电流很小,我们需判断电流是否短路或开路,短路和开路在表尾体现的电流都十分小,但仍然有区别,短路在表尾仍然有小电流的存在,但是开路是没有的。
另外还有一种情况就是出现很大的电流,电流值是另一元件的1.5倍以上,这种可能是由于在三相三简化接线时,在表尾出现IB电流,而且此时,A或C相电流在CT处极性反接所导致。
我们知道IB电流是由IA和IC在公共线合成,他们遵循IA+IB+IC=0当出现上诉故障时,IB电流值为其它电流的倍。
此时的IB电流就变化为IAC或ICA,其中IAC为A相CT反,ICA为C相CT反;如例题33、测量U12、U32、U31的电压值,当不出现电压断相时,正常时应为相等的全电压。
此时找出B相,使用相序表或者相位伏安表得出正确的相序。
另外还有一种情况就是出现很大的电压,电压值为另一元件的1.73 倍,造成这种现象的原因是该线电压为UA、UC 的合成电压,并此时A和C中必有一极性在PT处反接。
注意此时若使用相序表判断相序,得出的结论与实际结果相反。
如例题4,U12=173V,U30=0V,U13=100V,U32=100V 相序表显示正转,此时的真正相序为ACB,而不是我们所以为的CAB。
三相三线电能表错误接线分析
三相三线电能表错误接线分析
摘要:本文针对三相三线电能表经过电流互感器串联接入计量时的错误接线进行了分析,并计算追补电量。
关键词:三相三线电能表;接线;电流互感器;串联接入
电能表接线错误的分析不论对于现场安装部门还是用电检查、稽查部门都是一个非常重要的课题。
当出现现场接线错误时。
许多现场工作人员对此却很难做出正确的分析判断。
目前已有很多仪器设备可以很容易地测量出现场接线的相量图,本文即介绍根据现场校验仪测量所得相量图来判断其错误接线方式,通过更正系数法计算追补电量。
结语
分析判断电能计量装置的接线的环境条件是三相负荷基本对称、负荷相对稳定。
分析和判断的一般方法和步骤是:正确测量出各驱动元件电流回路、电压回路各相间和对地电压幅值、电压相序、驱动元件的电压与电流的相角,再通过测量电流接线端对地的电压,并确定电流的流向.最后画出相量图.根据负荷情况分析接线的正确性,随着科学技术的高速发展, 电能技术也在不断完善与发展, 利用现场错误接线判别与现场校验仪相结合的方法检查错误接线, 对于各种错误接线形式均能正确判断, 利用校验仪可准确分析并改正错误接线,通过分析判断错误接线形式, 并进行相应的追补电量, 从而为电能的准确计量提供了技术保证。
可大大提高工作效率和正确率,为提高用电及计量管理水平提供必要的技术支持与保证。
参考文献:
[1]白冰. 三相三线有功电能表错误接线解析中国电力出版社.
[2]《供电营业规则》(中华人民共和国电力工业部令第8号1996年10月8日)
[3]电能计量装置现场检验作业指导书(国家电网公司生产输电[2003]21号)。
两元件三相三线电能表错接线快速排查方法
两元件三相三线电能表错接线快速排查方法两元件三相三线电能表错接线快速排查方法摘要:针对高压三相三线两元件计量装置常见错误接线,以及电压互感器极性接反等复杂情况,基于相量图法,提出一种快速排查电能表错误接线的方法,使技术人员及技能比武选手能够快速准确的判断三相三线电能表接线情况,便于退补电量的收取,提高企业经济效益。
关键词:三相三线电能表;错接线;电压互感器极性接反;相量图0引言电能计量装置是供用电双方进行电能贸易结算的工具,同时也是企业加强内部管理,实现经济核算必不可少的手段,因此其准确性、正确性非常受重视。
三相三线电能表广泛应用于10kV以及35kV中性点不接地系统中。
高压大工业用户所使用的经互感器接入的三相三线电能表,因为是电流、电压二次回路的组合比较容易出错,再加上极性接反和断线等有几百种可能的错误接线方式。
以前采用的常规六角图法以及标准电能表法排查错接线检查步骤多,且判断速度慢[1]。
本文提出了一种基于相量图法利用相位伏安表,在不测量三相对地电压的情况下,快速排查错接线的一种方法,便于技能人员快速更正错误接线,提高企业的经济效益。
1常见三相三线有功电能表错误接线分析三相三线电能表常采用经过两台电流互感器及两台电压互感器接线方式。
电流互感器采用两相分相接法,电压互感器采用V/V接法。
这种接线方式既能节省互感器又可满足三相功率表所需的线电压、线电流,广泛地应用于中性点不接地或经消弧线圈接地的35kV及以下的高压三相系统,特别是10kV 三相系统。
1.1.电能表电压相序接错三相三线电能表电压互感器V/V接线时,排除电压互感器断线以及极性接反等情况,电压回路共有6种组合,其中只有UVW顺序接法是正确的[2]。
电能表尾端相序及两个电压元件的角度如表1所示。
表1 电压相序及电压1、2元件角度表1.2电流互感器极性接反3三相三线电能表错接线快速判断方法三相三线电能表错接线判断方法有多种,其中最为常用的方法是在互感器二次回路上带电检查,通过相量图法判断错接线。
三相三线电能表错误接线分析
测量U1、U2、U3对地电 压,对地电压为0V为b
相。
第二步:电压、电流测量
A
测量U12、U32线电压, B
测量I1和I2电流。
C
U12 Ⅰ
1
I1
Ⅱ U32
2
3
I2
三、错误接线检查方法与步骤
第三步:判断电压相 序
测量 U12 与 U32 的相位角,如果为
300°是正相序。 A
若相位角为60°,
三、错误接线检查方法与步骤
P UbcIa cos(90 ) UacIc cos(150 )
UI cos(90 ) cos(150 )
UI (sin cos150 cos sin150 sin )
3 (cos 3 sin )
I1
I2
U12 300° 293° 173°
A
B
C
U12 Ⅰ
1
I1
Ⅱ U32
23
I2
表2
电压、电流测量结果表
U1
U2
U3
U12
U32
U31
I1
I2
0V
100V
100V
100V
99.9V
100V
1.49A 1.50A
三、错误接线检查方法与步骤
第五步:根据测 量结果,画出 相量图。写出 错误功率表达 式。
正确电量 错误电量
KG
P P
3UI cos
3 UI(cos 3 sin) 1
2
3 tan
2
退补电量 W W W 1 KG W
若ΔW >0,意味着什么? 若ΔW<0,又意味着什么?
三相三线有功电能表错误接线的判断方法探究
三相三线有功电能表错误接线的判断方法探究三相三线有功电能表是电力计量重要设备,在整个电力系统电能计量中发挥着不可替代的作用,为了提高电能计量质量就必须完善三相三线有功电能表,控制错误接线问题的出现。
文章分析了三相三线有功电能表错接线识别判断法。
标签:三相三线有功电能表;错误接线;判断方法电能计量装置的正常运作是供电企业抄核收工作开展的前提,能否科学精准地进行电能计量,在一定程度上影响到抄核收工作的质量。
对于高压线路的高供高计用户来说计量装置选择的是三相三线电能表,然而在实际计量中经常出现错接線问题,影响电能计量装置的精准计量,且三相三线电能表错误接线问题不易被察觉,对此有必要掌握科学的计量技术和方法。
只有掌握科学的技术和方法,根据电能表错误接线的具体情况进行科学地预测、判断,才能确保及时发现问题,纠正计量表的错误接线。
1 三相三线有功电能表三相三线有功电能表只有处于正常接线状态时,才能确保其正常运行,从而高效、精准地进行电能计量。
不同于普通的电能表,三相三线有功电能表的接线相对复杂,错接线的问题频繁出现,影响三相三线有功电能表计量功能的准确发挥,对此就要研究错误接线判断法,其中向量图法是一种高效的方法,是在借助大量计量仪器的前提下来测试、测量电能表中的电流与电压,再根据向量图法来判断有无错接线问题。
2 错接线的判断原理三相三线有功电能表,由于存在三种电压Ua,Ub,Uc,对应则会有大概6种接线方法,同时,由于电压互感器极性误接问题,则可能出现20多种错误接线。
类似因为电流Ia,Ib,Ic会有六大接线方式,由于所连接的电流互感器则有四种错误接线,也会出现大概40多种错接线,由此看来错接线的种类较多,这对于错接线的判断会带来较大不良影响。
电能计量设备如果存在错接线问题,通常可以从以下方面入手来判断:测试电压,从中得出电压相序、PT极性等有无反接现象,测试电流分析CT 极性有无反接现象。
测试相角与功率,得出电流电压二者间的夹角。
阐述三相三线电能表错误接线的检测方法
避 免错误 接 线的措 施
关键词 : 三相 三线 ; 电能表 ; 测技 术 检 电 能 表 的 电 压 端 钮 ,如 有两 午 对 地 电 压 为 H 10 , 对地 电 为 0 为 0一相定 为 B 相 , 0 V 一相 , 即两台电 互感器 VV接线 , B 丰 接地。 / 住 l { 3 3 录测量 电流 。 . 3 用卡钳卡住电流进出 线 分别 测m各相 电流的大小 。 3 根据相化角确定电压丰 序 A } 1 川 黑表笔接触 B相 电 , 红表笔接触 另 一 相 电压 , 卡钳 卡住一相 电流 , H 相位 角 , 测 ; 卡钳 不变, B相 电 不变 , 红表笔换 一 电压 相 , 出 测 靠 、 、 定运行 , 安全 稳 不仅需要高质量 、 度的 高精 相电流的另一角度 , 两次测量结果 比较 , 角 讨 表 汁, 量 更需要提倡科学 的检测和分 析手段 , 度小 的一 组对应电压 为 U b a ,角度 大的一组对 通过测 量 、 分析 和判 断 , 时纠正错 误接线 , 及 使 应 电压 U 。根据 U I 存表尾所处位 置 , 1 即 电能计量装置存系统运行 巾发挥最佳效能 。 定 电压 相 序 。 2选择检杏和分 析的方 法 3 . 5作罔 存电力系统和大 1业 电力 J 户中 , 量装 f j 计 根 据 已矢 电 十 序 测 卡 何 。测 出 U I 丌 H H ; 置的接线方式绝大多数为 三丰 线制 , H 采用三 I U J; J的角度。 U ; 在六角 罔上1 时针 出 f f 顷 相两元件电能表计量 电能 。 I l 根据 l I ,, , 上 的位 置 , 确定接 入电能表 使用相位表法带 电检查 电能表接线具体做 的实际 电流 。 根据实测结果 , 图上标 明第 ~组 存 一 法是 , 根据相位 表测 Ⅲ的电压 、 电流 、 相位 角联 元件接入 的电雁 、 电流及其相位 角 , 二组 元件 第 合绘 出六角罔 , 判断电能表错误 的拨线形式 , 接人 的电 、 及其相位 角。最 后 , 电流 根据各元 原理 是 : 一 电压 为参 考相 量 可测Ⅲ 三相 电 件所l 电 、电流硬其相位 角分别 写出功率表 用 个 』 』 口 流相量 , 或用 一个 电流参考相量测 出三相 电压 达式 、 总功率表达 式 、 计算斧 错 电量 , 并将错 误 十量 , 月 知道 了三相电压 、 电流相量 , 也就确 定 了 接线更正 。 鼍 电压 、 相 电流相 序。 相位表法可 以直接 凄 电 4榆测与分析过程 _注意事项 十 J 压与 电流之 间的l 角行I 卡 H 在六角罔纸 卜 ,而凡 41安 全问题 . 操作 简 、 辅助设 备少 , 冀方法 准确 , 易掌 测 容 电II ̄ I I电检查是 工作 互感 器二次 回路 握 ,通过多年 的现场实践 , 解决 了许多技术难 上 , 必须严格遵守《 电业安仝 一作规 》 I 的规定 , 题, 至今一直被推 J运用 。 一 特别 是要 泮意 电流互 感器 二 次 叫路 不 允许 开 3检测与分析 路 ,j l为电流互感 器是在短路状态 下一作 的 , 大 [ 一 3 正确使片测量:具 . 1 】 旦二次开路 , 则二次电流 的去磁作门不 复存 在 , j 以使片 M 2 0 j G 0 0型相 位表 为例 ,根 掘 自 这样二次线圈感应 的电势非 常商 , S 对人 身和设 己的工作 经验 , 具体 做法是 : 量 电压 , 测 将旋 钮 备造 成极 大危 险 .电压 互感器二次 路 不允许 开关 选择 “ ”电压线 插入标 有 “ 的捕孔 , u, U” 并 短 路 ,因为有 时继电保护 与计量共刖一绀 电压 注意黑 、 红笔的颜色与相位表插-x 应 ; 钮开 fq 旋 L 感 器 , 旦 电压互感器二次短路 , 一 一 不仅会损 坏 关选择 “ 测量 电流 , 电流卡钳连线 插入标 有 儿感器本 身 , 会使保护装置 误动 , l ” 将 还 造成严重后 “’ I的插孔 , 种组合使 得测量 相位 “” 以电 果 。 这 ‘时 p 压为参 考量。如果使用 “ I组 合形式 则以电 u” “” 4 . 握关弛 点 2把 流为参考量 , 测量电压 、 电流应选择与被测量相 4 . B相 电压 为公共端 测量卡 位 、 .1以 2 H 定 对应的档位 ,测电流时注意流入卡钳 的极性 和 电脎牛 序 ,黑表笔必须 接触判 明的 l H H {卡 电压 , 使电流线处于卡钳中间 ,以减少 工具带来 的 红表笔依 次接触 另外 两干电 测相位 ;这样得 日 误差。 出的电压埘应 U ( u ) 或( 。 或 、 , U ) u 3 . 2测黾 的选择 4. .2确定 电压相序的依据。以某~相 电流 2 现场运行 的计量装置 ,为了便丁对 电能表 进仃 }试 与维护 , { l ! l J 互感 器二次侧与 电能表之 间 是通过各种 试验接线端子( 或转 接线盒 ) 构成 网 路, 如果选枉试验接线端 子测量 , 当互感器二次 到接线端 子的连线正确 ,而接线端子剑 电能表 接线错 误, 这样测量便没有 意义 , l 到真实 为r 得 可信 的测量结 果 , 量点选 存电能表表尾处 , 测 效 果更佳。 3 _ 3测量 的 3 . 记 录测昔 电 . 别测量 电能表端钮 .1 3 . 分
对新型三相三线电能表错接线快速判别方法的分析
对新型三相三线电能表错接线快速判别方法的分析摘要:新型三相三线电能表的现场接线较为复杂,容易出现错接线问题,需要快速、精准对其进行判别。
本文首先分析新型三相三线电能表错接线的判别原理,介绍其接线方式、判别流程以及具体判别方法。
在此基础上,提出一种利用旋转相量图的快速判别方法。
关键字:三相三线电能表;错接线问题;快速判别方法前言:电能表是电费计量装置,如果出现错接线问题,会导致计量结果出现错误,损害电力供应双方的利益,也容易引起电力公司与用户之间的纠纷。
在众多电能计量错误的案例中,由电能表错接线引起的计费错误占据较大比例。
这是由于新型三相三线电能表的接线过程较为复杂,容易出现错误。
因此,在完成接线后,要采用快速、有效的方法对其接线正确性进行判断,发现错误及时更正。
一、新型三相三线电能表的错接线判别原理(一)判别原理新型三相三线电能表主要被应用与高压计量,整个计量系统由电压、电流互感器和三相三线电能表组成,装置之间的接线情况较为复杂,容易出现错误,而且采用常规方法难以有效判别。
分别用Ua、Ub、Uc表示三相电压,用Ia、Ib、Ic 表示三线电流。
接入电表端的电压接线情况包括UaUbUc、UaUcUb、UbUaUc等六种,再加上电压互感器的极性接入错误,共有24种接线方式。
电流接线情况于此类似,电能表端的接入方式有6种,再加上电流互感器可能出现的4种误接线情况,也有24种接线方式。
电压和电流的接线组合则由576种可能,任何一个环节出现错误,都会影响最后的计量结果[1]。
根据这一情况,对新型三相三线电能表的错接线情况进行判别,主要包括以下几个步骤:(1)电压测量,判断电压相序是否正确,验证电压互感器极性;(2)电流测量,验证电流互感器极性;(3)相角或功率测量,验证电压电流的相夹角;(4)在六角图上绘制电压和电流的矢量图;(5)根据相位角余弦值判断电压和电流的矢量相别。
(二)基本判别方法根据上述原理,在实际判别过程中,首先假设电能表的电压接线正确,即UaUbUc相序正确。
三相三线电能表错误接线判断与分析 刘琛
三相三线电能表错误接线判断与分析刘琛摘要:电能计量装置的准确性直接影响贸易结算的公正性及电力企业内部经济技术指标的制定。
通过对三相三线电能表错误接线判断与分析,及时发现和更正错误接线,并正确地对错误电量进行更正,降低计量线损是当前计量工作的重点。
关键词:电能表;错误接线;判断分析引言为保证电能计量准确,电能表的接线必须正确。
一般情况下,电能表、互感器在安装前都是经过检验合格后才进行安装,二者基本误差很小,而接线错误会带来百分之几百的误差,一线之差可能导致几百万千瓦时的电量之差。
由于电力系统和重要电力用户的电能计量装置都属于高压三相三线有功电能计量,所以下面就系统地分析这种计量方式下的错误接线情况并规范解题方法和步骤。
一、检查接线(一)规范着装工作时应穿长袖工作服、穿绝缘鞋、并戴手套和安全帽,工作服扣子要扣上,袖口扣子也要扣上。
(二)测量二次电流、电压值和电压与电流的相位,并填写电能表错误接线检查记录。
假定三相电路对称,电压线和电流线没有互相接错,电压、电流回路没有短路和断路。
测量数据为:电压为U12=100V、U32=100V、U31=100V、U10=0V,电流为I1=1.5A、I2=1.5A,相位角U12^I1=110°、U12^I2=170°、U32^I1=170°、U32^I2=230°(三)判断电压、电流相序电压相序分为正相序、逆相序。
正相序包括三种:Ua、Ub、Uc;Uc、Ua、Ub;Ub、Uc、Ua。
逆相序包括三种:Uc、Ub、Ua;Ua、Uc、Ub;Ub、Ua、Uc。
如果(U32^I1- U12^I1)或(U32^I2- U12^I2)的相位差为60°或-300°,那么电压相序为正相序,如U10=0V,U1则为b相,电压相序则为Ub、Uc、Ua;如果相位差为-60°或300°,那么电压相序为逆相序,如U30=0V,U3则为b相,电压相序则为Ua、Uc、Ub。
PT断线三相三线电能表错接线的判断方法分析
PT断线三相三线电能表错接线的判断方法分析摘要三相三线两元件的电能表由于是由A、C两相电流和A、B、C三相电压组合而成,容易造成错接线。
PT有时候会发生断线,当碰上PT断线的三相三线电能表的带电错接线判断时,难度就会加大。
本文总结出适用于電压正相序和逆相序情况下,三相三线电能表在错接线带电检查时,判别PT断线的相量图法。
关键词三相三线电能表;错接线;PT断线;相量图判别法前言电能计量是电力商品交易的“一杆秤”,它的准确与否直接涉及供用电双方的经济利益,电能计量装置互感器二次回路有无断线、极性是否接反、电压回路相序接线是否正确,都将直接地影响电能计量的准确程度。
因此,作为计量测试人员,熟悉和掌握电能表的带电检查接线的方法便显得尤为重要。
而三相三线电能表由于是由A、C两相电流和A、B、C三相电压组合而成,容易由于错接线而造成计量失准,是带电检查及判断错接线的一个难点。
三相三线电能表的带电检查错接线的常见方法有实负荷比较法、力矩法和六角相量图法等。
其中实负荷比较法和力矩法都很难判定是哪种错误接线;而六角相量图法则能够通过相量分析来精确地判断属于何种误接线。
1 相量图判别法错接线判断的前提条件(1)假定为三相三线的对称电路,电能表的电流线和电压线没有互相接错,电压、电流回路没有短路和开路,没有B相电流接入电能表的电流回路,没有极性接反。
(2)接入电能表电压端钮的电压只有6种可能:A—B—C、B—C—A、C—A—B、C—B—A、B—A—C、A—C—B;通过电能表电流回路的电流只有Ia、-Ia、Ic、-Ic四种,共可构成8种电流组合。
共可组成48种常见的错接线类型,其中电压为正相序的有24种、逆相序的有24种。
(3)用相量法进行判断的前提条件是必须先确定电压的相序以及用户的负荷性质为感性还是容性,否则将可能做出错误的判断[1]。
2 PT(vv接)一、二次断线,负载接一只多功能表的情况2.1 电压一次断A相的接线原理图和等效电路图如下从等效原理图可以看出一次A相断线后,二次ab相没有感应电动势,ab线圈只起到一个导线作用,故:Uab=0,Ubc=100V,是正常值,因为a、b同电位,故,Uac=Uab+Ubc=0+100V=100V。
三相三线电能计量装置误接线快速判断
三相三线电能计量装置误接线快速判断摘要:介绍了三相三线电能计量装置中电能表错误接线的分析过程,提出了错误接线更正系数的快速计算方法,为实际工作提供了有效的参考。
关键词:电能计量装置;错误接线;更正系数0、引言随着电力体制改革的不断深入,用户数量的不断增加,电能计量装置也随之增长,电能计量装置作为“公平秤”,其作用越来越重要。
电能计量是否准确,除了采用高准确度的计量装置准确计量电能外,还必须减少电能计量装置错误接线造成的电量不准。
一旦发生错误接线,可能会使电能计量的误差很大,这会给客户或供电企业带来极大的经济损失。
为了把握好电能计量这一重要环节,电能计量人员必须具备更高的理论基础和专业素质、技能,必须能根据现场测量数据快速判断诸多电能计量中存在的问题,计算和追补因错误接线造成的流失电量,挽回经济损失。
在电力系统和电力用户中,计量装置的错误接线是时有发生的。
单相电能表接线较为简单,出现接线错误时容易分析,三相四线电能表采用分相法即可分析出接线正确与否。
而经电流互感器(TA)、电压互感器(TV)接入的三相三线电能表误接线的种类和几率较多,出现接线错误,且不易分析判断,文章主要介绍三相三线计量装置错误接线的分析与判断,该方法也同样适用于经互感器接入的三相四线电能表接线的检查。
1、判断电能表电流端钮所属相别先判断电流回路接地是否正确,可用一根两端带夹子的短路导线来确定,将导线夹子一端接地,另一端依次连接电能表电流端钮,若电能表转速变慢,则该端钮没有接地,若电能表转速无变化,则该端钮就是接地点,若电能表转速都无变化,说明电流回路未接地或电能表电流端钮两端接地,遇此情况应先查明处理后,再做其他测试。
用钳型电流表依次测量电能表电流端钮进线及出线端公共连线电流,当电能表电流端钮进线及出线端公共连线电流值接近相等时,即IN=I1=I2,说明I1、I2二相电流极性相同。
当电能表出线端公共连线电流接近电能表电流端钮进线电流的倍时,即IN= I1= I2,说明其中I1、I2有一相极性接反;当电能表出线端公共连线电流为零,而电能表电流端钮进线电流不为零时,说明电能表出线端公共连线回路断开,遇此情况,应先连通电能表出线端公共连线回路,再做其他检测。
三相三线电能表错误接线判断及更正方法探讨
引言 电能表 是电能计 量 的重 要量 具, 三相三 线 电能表所 计 电量较大 , 为保 证 电 能计 量的准确 可靠, 求 电能 表必须接 线正确, 则将 可 能产生很 大的误差 , 要 否 因 此倍 受供 、 用双 方的重 视 文 以感应 式 电能表为 例, 本 通过 测量 接入 电能表 的 电压 电流及 其相互 问 的相位 、相 序, 而画 出 向量 图, 进 对照 图表 即可方 便 的判 断 出在一定 条件下 电能表 4 8种接线 方式 的方法 。 1IK O V三相 三线 制有 功 电能 计量 装置 错 误接 线 的种 类 1K 0 V三相三 线制 两元件 有 功电能 计量装 置, 同时需配 装 电压互感 器 (v T) 和 电流 互感器 (A 来 缩小接 入 电能表 的 电压 和 电流 , T) 由于 配件 多、连 线多 , 往 往 容易将 线头 接错, 形成 错 误的接 线方 式。接线 错误 可分 为电压互 感器 (V 、 T) 电流互感 器 (A 输 出端 二次连 线误 接线 和 电能表 电压 、电流 输入 端二 次连线 T) 误 接线 。 1 1 电压 互感 器 (v 、电流互 感器 (A 输 出端二 次连 线误 接线 . T) T) 电压 互感器 (V 、电流互 感器 (A 输 出端二 次连线 误接 线包 括 电压 互感 T) T)
2三相 三线 电能 表接 线错 误 的判 别 判断 接 线错 误先 要用 数 字相 位 伏安 表进 行 准确 测量 , 然后 分析 判 断。
另外 就是 充填技 术本 身, 它应该 包括 充填 系统与 开采 系统 的协调 : 充填 运输 系 统 的畅通 : 后材 料的力 学特 性等 。 利解 决上述 问题 将根本 改变 将来 我 国 充填 顺 经济 发达 区域 的开采技 术 。为 了降 低充填 成本 , 于岩层 控 制的关 键层 理论, 基 提 出了部分 充填 ( 带充填) 条 控制 开采 沉 陷的思 路 : 充填 部分采 空 区, 仅 只要 保 证未 充填采空 区的宽度 小于覆岩 主关键 层的初 次破断跨 距, 且充 填条带 能保持 长期稳 定, 就可有 效控 制地表 沉 陷。 现阶 段研 究重点 在于研 发新 型充填 材料, 尽可 能利 用矿井 固体废 料, 减少 固体污 染 。例 如 以固体废 弃物 ( 电厂粉 煤灰 、矸 石等) 骨料, P 、s 系 列 为 以 L L 为胶结 材料 , 形成 固 体废 物 膏 体材 料 充填 井下 采 空区, 决 了地表 开采 沉 陷、 解 地 下水 流失破 坏 以及 采 出率低 等重 大科学 技术 问题 。 近年 来, 国矿业 大学在 中 低 成本 膏体 充填材 料的开 发研制和 充填工 艺的研究 方面取 得 了突破 性 的进 展, 达 到 国际先进 水 平 。 离层注浆减 沉技术 是确 定覆 岩 中的关键层位 置, 掌握 其离层 与破断特 征参 数, 是注 浆减 沉技术 应用 可行 性分析 、 钻孔布 置与注 浆工 艺设 计及 减沉效 果评 价 的基础 。关键层 初 次破断 前的 离层 区发育 、离层 量大, 易于注浆 充填 而一 旦关键 层初 次破 断后, 关键层 下离 层量 明显变 小, 仅为 关键层 初次 破断前 的1 / 3 14 注浆 难度 增加 。 -/ , 因此, 离层 注浆 必须在 关键 层I 初次破 断前进 行 。 孔 f 缶 钻 布置及 最 佳的注 浆 减沉效 果应 保证 关键层 始 终不 发生 初次破 断 。 3 3 煤与煤 层气 共采 . 煤 层气 即瓦斯, 长期 以来被 看作 危害矿 井安 全的罪魁 祸 首, 以往 煤矿 对其 处理方 法都是 直接 排入大 气, 在~定 程度 上加剧 了全 球的温 室效 应, 这 也是 一 种资源 的浪 费 。煤层气 作 为一种 高 效 、清 洁 的能源 , 中蕴 藏着 巨大 的经 济 其 效益 、环境 利 益 。我国 的煤 层 气储 量非 常 丰 富, 有着 十 分广 阔 的应用 前 景 。 瓦斯 既是矿 井有 害气体 也是洁 净 能源 , 使其资 源化 的技术 途径主 要有 : ① 采 前抽 采 。若 能在 开采 前将 煤层 内瓦 斯抽 出, 是瓦 斯利 用 、改善煤 矿 安全 的 最 好办 法 。 由于 我 国大 部分 煤 体透 气性 低, 本煤 层 抽 放瓦 斯有 技 术难 度 。 在 ② 煤与 瓦斯共采 。开采 后 围岩压力 降低 , 大量瓦 斯在 采空 区释放 , 形成煤 与 瓦 斯共 采 体, 瓦斯 抽采 的好 时机 。⑧废 弃 矿井抽 采 瓦斯 。废 弃矿 井煤层 经 采 是 动而 充满 瓦斯, 可利 用采 动后岩 体 内裂隙场 的分 布及 钻孔, 将瓦 斯抽 排管装 在 井 下 、 封 闭 口后 ,抽 出瓦 斯 。 ④ 回 风 井 回收 瓦 斯 。 淮 南矿 区有 丰 富的煤层 气资源 , 过合 理的规 划和 布置, 通 依据 流场模 拟软 件C S LW F 数 值模 拟结 果, 已发生 卸压 ( 高透 气性) 瓦斯 丰富 的区 O F O 和C D 在 提 且 域布 置钻孔 , 过地面 钻孔抽 采采 动 区和采 空区 卸压 的方式抽 放 瓦斯, 通 从而 从 卸压覆 岩 中俘 获更 多 的释 放 瓦斯 , 使抽 采 率在 7 %以上 。 0 绿色 开采技术 中的煤与 煤层气共采 技术, 用煤炭 开采过程 中岩层移 动形 利 成的离 层与裂 隙分 布规律 , 开采 卸压 原理, 及 使原 聚集在 煤炭 微裂 隙中 的瓦斯 通 过 “ 气 ”裂 隙逐 步 释 放 ,实 现 煤 与 煤层 气 共 采 导 近年来, 随着对关键 层破断前 后裂 隙分 布规 律以及采 动矿 山压 力引起 的岩 层 移动 规 律的深 入 研究 , 国 学者 提 出 了 … 形 圈理 论 。当采 空 区面 积达 我 0 到 一定 值 后, 导气 ”裂 隙 的分 布 呈现 “ “ 0”形 圈特 征 , 是 正 常回 采 期 间 它 邻近 层 卸压 瓦斯 流 向采空 区 的主 要通 道, 这对 卸 压瓦 斯抽 放 具有 重 要意 义 。 3 4 煤 层巷道 支护 技术 与减 少矸石 排放技 术 . 采矿 引起的矸 石排放对 环境形成 影 响, 减少矸石 排放 的主要措 施是将巷 而 道设 置在 煤层 内 。巷道维 护是 煤矿 的永 恒主 题 。过去 , 于煤 巷 围岩 是 大变 鉴 形且 不 可 抗 拒 ,因此 维 护 原 理 是 : 大 断 面预 留量 一 可缩 性 支 架 一 巷 旁充 “ 填 ” 目前 推行 锚 杆 支护 , 先 是 能否 在煤 巷 中 全面 使 用锚 杆 支 护 。显 然 , 。 首
三相三线电能表错误接线的判断方法
三相三线电能表错误接线的判断方法摘要:三相三线电能表的计量在供电系统中占据重要的作用,在电能表的安装接线过程中,错误接线不可避免,因此及时、迅速地查找错误接线并进行快速判断显得非常必要。
本文介绍了三相三线电能表的错误接线判断方法关键词:三相三线电能表;正确接线;判断电能表是电能计量的重要量具,其本身存在有误差。
如电能表潜动、电能表的误差等,很容易引起计量误差。
错误接线包括互感器的误接线、断线、电能表的误接线或断线,无论接线错在哪里,最终都反映在电能计量装置发生偏差。
这个偏差远远大于本身引起的计量误差,所以正确接线很重要。
再者三相三线电能表所计电量较大,为保证电能计量的准确可靠,要求电能表必须接线正确,否则将可能产生很大的损失或误差。
正确接线只有一种,但是错误接线存在七百多种。
笔者以三相三线制两元件有功电能表,电压互感器V/V接线B相接地为例,通过现场测量接入电能表的电压、电流及其相互间的相位、相序,介绍测量和判断的方法,即可方便判断出电能表接线方式。
按照此方法操作,浅显易懂,操作清晰,判断简化,方便实用。
1 电压回路的判断方法(1)测量电压值(指线电压)。
用万能表或相位伏安表的电压档,测量电能表进线盒电压端子2、4、6(A、B、C)间的线电压并做好记录。
三个线电压如接近相等,约为100V,则说明电压互感器(TV)极性正确或均接反;如各线电压相差较大,且有某线间电压明显小于100V,则说明电压回路存在断线或接触不良故障;当有某线电压接近 U(173V),则说明有一只TV极性接反。
(2)判断B相。
检查时将电压表一端接地,另一端以此分别触及电能表电压端子2、4、6,对地无电压者即为B相,并做好记录。
如皆有电压,则说明电压互感器(TV)不是V/V接线B相接地的接线方式,其可能原因是TV为Y/Y0接线或V/V接线而未将B相接地。
(3)测定三相电压的排列顺序(相序)。
用相位伏安表或相序表都行,目前相序表使用普遍又方便。
三相三线和三相四线错误接线判断处理
三相三线和三相四线错误接线判断处理【摘要】三相三线错误接线判断原理、三相三线测量数据、错误的相量图、更正系数、追退电量、错误接线图、三相四线测量数据、三相四线的错误向量图及更正系数和错误接线图、【关键词】元件、相别、相电压、线电压、电流、夹角、参考点、相量图、更正系数、接线图前言:电能计量装置准确与否直接关系企业的经济效益和社会的效益,掌握电能计量装置接线检测是每个计量工作者必须具备技能,掌握错误接线判断分析、以便计算更正系数,追退电量,维护企业和用电户的合法权益。
1、三相三线错误接线判断处理1.1三相三线错误接线判断原理三相三线电能计量装置电能表二元件构造正常接线第一元件:电压、电流为 Uab Ia第二元件:电压、电流为 Ucb Ic判断错误接线需测量数据,一般用,元件指的表尾一般用1、2、3来表示,表示接入的位置,所以,测量数据元件表示:第一元件:电压、电流为 U12 I1第二元件:电压、电流为 U32 I3这样画向量图时就可以把元件和相分开、元件指的表尾一般用1、2、3来表示,相别用A B C来表示1.2、三相三线需要测量数据(1)测量赋值-伏安相位仪测量:测量电压、电流的大小,能够判断是否存在断线问题U12 = U32= U31= I1= I3=U1-地= U2-地= U3-地=(2)需要测量相位:∠U12U32=∠U12I1 =、∠U32I3=、∠I1I2 =(3)相序判断∠U12U32= 300° 表示正相序 abc、bcc cab∠U12U32= 60°表示逆相序acb bac cba(4)三相三线需要找参考点用伏安相位仪电压测量黑笔按电能表装置上Ub(零)电压参考点红笔分别接电能表尾三元件U1 U2 U3哪个与Ub(零)参考电压为零,则表示该元件为Ub 例如:1 2 30(B)1.3、根据电压相别绘电压向量图(1)可以先以相别定坐标,建立坐标系,然后根据电压相序标注元件电压,电压 Ua Ub Uc注意因是矢量,所以应点点(3)根据前面判断的电压相序,以及接地相,判断第一、第二元件接入的电压,然后在相量图上标出U1 U2 U3 ,再画出U12 U32 。
三相三错误接线判断方法
三相三线错误接线判断方法1、测量U10、U20、U30的电压值,哪项为0时,表示该项为B相。
当0电压未出现时,表示B相断相。
当出现电压异常时,例如只有几十伏的电压,(此时的电压大小跟表尾的负载有关联)而非全电压时,则为该元件电压断相。
如例题11.1当出现电压断相时,可简单分为两种情况考虑,一是B相断,此时U10、U20、U30皆不为0V,二是B不断,此时可在U1,U2,U3中找到谁为B相,并能判断出是哪一元件电压断相。
此时无法判断的是哪一相电压断,判断方法为测量全电压与2元件电流夹角,假设电流的状态来反推电压,如果能确定已知的全电压是由哪相与B的组成,则断相的是谁也就可以判断了。
如例题22、测量I1、I2的值,观察是否有异常现象,如果电流很小,我们需判断电流是否短路或开路,短路和开路在表尾体现的电流都十分小,但仍然有区别,短路在表尾仍然有小电流的存在,但是开路是没有的。
另外还有一种情况就是出现很大的电流,电流值是另一元件的1.5倍以上,这种可能是由于在三相三简化接线时,在表尾出现IB电流,而且此时,A或C相电流在CT处极性反接所导致。
我们知道IB电流是由IA和IC在公共线合成,他们遵循IA+IB+IC=0当出现上诉故障时,IB电流值为其它电流的倍。
此时的IB电流就变化为IAC或ICA,其中IAC为A相CT反,ICA为C相CT反;如例题33、测量U12、U32、U31的电压值,当不出现电压断相时,正常时应为相等的全电压。
此时找出B相,使用相序表或者相位伏安表得出正确的相序。
另外还有一种情况就是出现很大的电压,电压值为另一元件的1.73 倍,造成这种现象的原因是该线电压为UA、UC 的合成电压,并此时A和C中必有一极性在PT处反接。
注意此时若使用相序表判断相序,得出的结论与实际结果相反。
如例题4,U12=173V,U30=0V,U13=100V,U32=100V 相序表显示正转,此时的真正相序为ACB,而不是我们所以为的CAB。
三相三线智能表错误接线分析与处理-电力论文-水利论文
三相三线智能表错误接线分析与处理-电力论文-水利论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——1 前言经济的快速发展,产业结构的不断优化,使我国的电力产业也要随之不断更新优化,来供应工农业的使用。
目前,我国已经建立了一个完善的智能表,三相三线智能表作为电力的主要载体对于整个国家、整个社会的每一个生产部门都具有十分重要的地位,因此人们在日常生活中越来越离不开电能,就使得三相三线智能表的安全和稳定运行十分重要。
2 三相三线的内涵在当今社会的快速发展中,我们所接触日常生活的负载,例如:电灯、电视机、电冰箱、电风扇等家用电器及单相电动机,它们工作时都是用两根导线接到电路中,这些都属于单相负载。
如果这三相电路中的每一根线路所接的负载的阻抗和性质都相同,就可以认为这三根电路中负载是对称的。
在其中的负载对称的条件下,因为各相电流间的位相彼此相差120,所以,在每一时间通过中线的电流之和都应为零,如把中线去掉,用三相三线制供电是可以的。
三相三线智能表的错误接线的种类有以下几点:三相电路的对称;电流回路接线的正确;电压为正相序,电压回路无断线故障,电压互感器原边绕组接线正确。
3 三相三线智能表错误接线的分析科学技术的发展,使越来越多的电力系统建立起来,三相三线智能表在电力系统中的起到重要的作用,但是三相三线智能表装置自身存在着很多的问题,这些问题直接影响着三相三线智能表的电力系统的安全和正常运行。
如何避免三相三线智能表所出现的错误接线,使其在运行的过程中能更好的工作,是现在广大工作者面对的问题。
对此分析如下:3.1 三相三线智能表的相序显示功能对于很多的三相三线智能表都具有这种相序测量功能,其中主要是以电压相序为主。
如果电压相序接反的话,就会造成电能表屏幕上会显示逆相序,同时还会使电压标识符不断的闪烁。
严重的影响三相三线智能表的正常运行。
3.2 三相三线智能表的有功功率示值显示一般的有功功率显示都是通过按键调出来的,如了解智能表的功率显示值就可以直接通过屏幕显示的汉字和一些显示的代码进行专业上的判断。
三相三线电能表电压回路错误接线判别方法探讨
三相三线电能表电压回路错误接线判别方法探讨摘要:三相三线电能表电压回路接线一旦发生错误,就会对电能表性能的发挥及准确性产生严重的影响,甚至导致事故的出现。
本文就三相三线电能表电压回路错误接线判别方法进行探讨。
关键字:三相三线;电压回路;判别方法1前言在供电行业中,10kV供电系统为中性点不接地系统,电能计量装置普遍采用三相三线接线方式。
由于该系统用户多且用电量大,若现场运行的电能表存在接线错误或电压电流回路存在故障都会使电能计量产生较大差错,因此加强对电能表现场校验和维护管理尤为重要[1]。
检查电能表接线的方法很多,如:六角图法、瓦秒法、力矩法、相位伏安法以及采用现场校验标准仪等。
在这些方法中,力矩法现场检查错接线所用工具简单、方便灵活,但要通过此种方法来具体分析电能表可能属于哪一种错误接线是非常困难的,有时甚至是不可能的。
为了使电能表现场检验人员能够快捷准确地对电能表的错误接线种类作出判断并及时予以纠正,我们采用了相位伏安法。
该方法具有安全可靠、测试准确、操作简捷、易学易会等特点,可广泛用于三相三线高压电能计量的接线检查,具有较好的实用价值。
2做好相关的准备工作全面做好准备工作与检查工作有助于及时发现并控制电能计量装置接线错误的情况,在准备阶段,用电检查人员需做好如下准备工作:①要准备好检查过程中所使用到的设备与工具,比如螺丝刀、扳手、试电笔、万用表、梯子等等,针对检查对象上月与本月的用电情况进行比较,分析是否存在异常,同时再将其与往年的用电情况再次比较,预判用户是否存在窃电情况,从而为后续的取证做充分准备。
在检查过程中,工作人员要戴好绝缘手套,确保保护器正常高效运行,并为可能进行的高空作业做好安全防护准备。
②要认真核实检查电能计量装置的户号、型号规格,对需要安装的位置周边磁场干扰情况进行分析,全方位检查电能表接线的固定程度,判断其是否倾斜,观察各个配置及安装的牢固性,通常以摸、听、看掌握运行情况。
三相三线有功电能表错误接线的判断方法分析
三相三线有功电能表错误接线的判断方法分析当今电力工业发展速度迅猛,为了保证电力工业工作能够安全、可靠、准确的运行,我们必须依靠安装在电力生产场所的电能测量电压、电流和功率等参数的仪器仪表来保证。
三相三线有功电能表一般有着五根到七根接线,并不复杂的结构,往往在接线时候会误接和漏接,特别是配有电流电压传感器的时候,电能表的接线往往就会出现错乱现象,接错的情况下,有可能指针不动或者倒转,这种接错方式很容易发现,接线人员可以及时的发现,给予重接。
但是如果指针正常转动,粗心的接线人员很容易忽视,那个时候测量出来的数据偏差将会非常大,这也是计量不准的主要原因之一。
1 对于三相三线有功电能表的介绍交流的能表的正确接线是保证电能表的正常工作的基本条件,因此要准确的计量电能,不仅仅要对电能表本身的精确度进行调整,对于外在的接线也要注意,并且接线引起来的误差往往很大。
研究人员在测量的时候,如果对于数据的大小有所怀疑,首先要对电能表的接线进行检查。
相对于三相四线有功电能表而言三相三线有功电能表接线比较复杂,更加容易接错,并且不容易被判断出来,因此对于三相三线有功电能表的研究有一定的代表意义。
分析电能表的接线错误的方法有很多种,当前采用的典型方法为向量图法,所谓的向量图法就是利用计量仪器对于流经电能表的电流电压的研究,绘出相应的电流电压向量图,然后在结合电路中的负载情况判断三相电能表的接线对错。
如若有误,可以再表中找到相应改进的途径。
2 电能表错误接线判断方法造成哪几种后果1)电压回路的判断方法:首先确定PT及二次回路的运行状态是否正确,测量电压表的三个电压端间的电压高低正常是电能表的电压值应该在接近100伏特,如果一个电压值明显高于100伏特,那么就说明有一根线接错了,电压互感器的极性接反。
相关人员应该及时的把线路连接正确。
其次是确定相序的正确性,若是有相序表,可以应用相序表进行测量,相序表连接之后,同向是连接正确,异向应该检查电路是否有连接错误,如果没有想学表,那么也可以用电压表来代替,测量电能表的进线端和电压互感器的同名端电压,如果电压为零则为同向,不为零就是异向。
关于三相三线智能表错接线的判断
关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况图1 U ab*I a与U cb*I c两组电能和图2 U ca*I c与U ba*I b两组电能和图3 U bc*I b与U ac*I a两组电能和说明:图2和图3 在实际情况下和图1是完全一样的。
仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。
图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。
由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。
了解这一点,就会发现A、B、C实际是我们人为定义的。
二、三相三线接线中,几个特点需了解1、正常接线情况下,如果电压电流均以U ab作为参考方向的话,那么A相(U ab)电压角为0°,C相(U cb)电压角为300°,A相电流角(Ia与U ab)为30°附近,C相电流角(Ic 与U ab)为270°附近。
2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差为60°,则一定有一相电流是接反的。
3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为所谓的A、B、C只是一个参考的方向。
目的是要通过接线调整,满足上述3个条件的情况。
4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电流采样的。
通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。
三、案例分析案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。
通过遥控器显示:A相电压角0 ;C相电压角300; A相电流角275; C相电流角330根据角度,画出向量图如上,根据本文二中关于三相三线接线中的特点可以分析如下:1、C相与A相电压角度为300°,符合正相序的特点。
三相三线电能计量装置错误接线的判断和预防
三相三线电能计量装置错误接线的判断和预防1. 引言为保证电能计量装置计量数据的准确性,必须保证其中的电能表接线正确。
电能表本身的计量的误差通常只有百分之几,可是一旦其计量回路的接线错误,所造成的误差可能就会激增到百分之几百。
这样,一旦计量出现几分误差,会造成几百几千分的误差量,导致大量的用电量差错,给企业和用户带来极大的经济损失和不便。
因此,对现场电能计量装置等设备的接线问题一定要有足够重视,确保电能表在正常的接线状态下计量电能。
电能表出现接线错误的种类数量很多,通常有:电流、电压互感器接反; 电流、电压回路断路或断路; 电能表的电流元件、电压元件不是接入对应相别的电流、电压等。
在这里,因为三相三线的高压计量装置是广泛应用于电力用户和电力系统的电能计量装置,因此,这里只分析三相三线电能计量装置错误接线的相关内容。
2.三相三线电能计量装置错误接线的判断方法为保证计量内容的准确性,电能计量装置的接线步骤是关键,必须保证电能计量装置的接线正确,并在其运行前和运行中进行定期检修,保证接线情况良好。
接线检查分为带电检查和停电检查。
以下情况需要停电检查:新装的电流、电压互感器; 更换的电流、电压互感器; 投入运行前的二次回路电能计量装置。
还有,在无法判断接线是否正确时已经投入使用的电能计量装置或需要进一步核实带电检查的结果时同样需进行停电检查,这里需要检查的内容是:核对电流、电压互感器的极性、变比、接线组别; 进行二次电缆的导通和接线端子的检查。
在对计量装置进行停电检查结束后,投入运用时要进行带电检查,同时进行周期检查时也需进行带电检查,从而确保电能计量装置的正确接线。
2.1有功电能计量装置的计量无论电能表所接负载是容性还是感性,只要其接线正确,有功功率的传输方向保持不变,则计量表都是处于正转状态。
也就是说,不能因为观察到电能表处于正转状态就判断其接线一定正确。
当然,若是电能表不转、反转或着随着(功率因数)的值时而反转,时而正转,则可以判断此时的电能表可能出现接线错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于三相三线智能表错
接线的判断
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况
图1 U
ab *I
a
与U
cb
*I
c
两组电能和
图2 U
ca *I
c
与U
ba
*I
b
两组电能和
图3 U
bc *I
b
与U
ac
*I
a
两组电能和
说明:图2和图3 在实际情况下和图1是完全一样的。
仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。
图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。
由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3
的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。
了解这一点,就会发现A、B、C实际是我们人为定义的。
二、三相三线接线中,几个特点需了解
1、正常接线情况下,如果电压电流均以U ab作为参考方向的话,那么A
相(U
ab )电压角为0°,C相(U
cb
)电压角为300°,A相电流角(Ia
与U
ab )为30°附近,C相电流角(Ic与U
ab
)为270°附近。
2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差
为60°,则一定有一相电流是接反的。
3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为
所谓的A、B、C只是一个参考的方向。
目的是要通过接线调整,满足上述3个条件的情况。
4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电
流采样的。
通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。
三、案例分析
案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。
通过遥控器显示:A相电压角0 ;C相电压角 300; A相电流角275; C 相电流角330
根据角度,画出向量图如上,根据本文二中关于三相三线接线中的特点可以分析如下:
1、C相与A相电压角度为300°,符合正相序的特点。
2、A相电流角与C相电流角为60°,说明有一相电流接反了。
3、Ia与靠近U C,符合C相的电流特点,说明错把C相的电流接入表
的A相回路了。
4、Ic与U a和U C均不靠近,它与U b的角度为180°,符合B相电流接
反的样子。
说明错把B相电流接入了C相的回路中了。
5、以上说明,表计的电流互感器相别搞错了,因为没有把A相电流互
感器的接线接入表内,而误把B相电流接入了表内吗,同时还存在电流相别接错接反的问题。
6、由于调整电流互感器是很困难的,母排上不好动(除非母排上已经
有3个电流互感器)。
所以只有通过调整电压线,才能达到正确计量的目的。
在只有B、C相电流的情况下,符合图2的状态,调整参考图2的接线方式。
7、目前错误接线状态如下图
8、根据图2调整接线,先调电压,原A—B,原B—C,原C—A,再调电
),原C相电流流,原A相电流不变(实际来自C相互感器,应该是I
c
(实际来自B相互感器,应该是I
)接线正负交换。
b
9、接线调整完以后,完全符合图2的接线,表上应该无逆相序提示,无
电流反向提示。