第三章地球参考系与参考框架

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(地球)参心坐标系 参考椭球定位与定向的实现方法
建立(地球)参心坐标系,需进行下面几个工作: ①选择或求定椭球的几何参数(长短半径); ②确定椭球中心位置(定位); ③确定椭球短轴的指向(定向); ④建立大地原点。
参考椭球的定位与定向
椭球中 心 O相 对于地 心的平 移参数 三个绕坐标 轴的旋转参 数(表示参 考椭球定向)
地心地固大地坐标系
地球椭球的中心与地球质心 重合,椭球面与大地水准面在 全球范围内最佳符合,椭球短 轴与地球自转轴重合(过地球 质心并指向北极),大地纬度, 大地经度,大地高。
地球北极是地心地固坐标系的基准指向点,地球北极的变动将引起坐标轴 方向的变化。
协议地球坐标系
以协议地极CIP(Conventional Terrestrial Pole)为指 向点的地球坐标系称为协议地球坐标系 CTS(Conventional Terrestrial System),而以瞬时 极为指向点的地球坐标系称为瞬时地球坐标系。在大 地测量中采用的地心地固坐标系大多采用协议地极原 点CIO(国际协议原点)为指向点,因而也是协议地球坐 标系,一般情况下协议地球坐标系和地心地固坐标系 代表相同的含义。
确定椭球的定位 和定向
多点定位
一点定位的结果在较大范围内往往难以使椭球面与大地水 准面有较好的密合。所以在国家或地区的天文大地测量工作 进行到一定的时候或基本完成后,利用许多拉普拉斯点(即 测定了天文经度、天文纬度和天文方位角的大地点)的测量 成果和已有的椭球参数,按照广义弧度测量方程按 N 2 =最 2 小(或 =最小)这一条件,通过计算进行新的定位和 定向,从而建立新的参心大地坐标系。按这种方法进行参考 椭球的定位和定向,由于包含了许多拉普拉斯点,因此通常 称为多点定位法。 多点定位的结果使椭球面在大地原点不再同大地水准面相 切,但在所使用的天文大地网资料的范围内,椭球面与大 地水准面有最佳的密合。
LK K K sec K BK K K AK K K tgK H K H正K N K
K 0, K 0, N K 0
LK K , BK K , AK K H K H 正K
x y z 0
表明在大地原点K 处,椭球的法线方 向和铅垂线方向重 合,椭球面和大地 水准面相切
大地原点和大地起算数据
大地测量基准,也叫 大地测量起算数据
一定的参考椭球和一定的大地原点起算数据, 确定了一定的坐标系。通常就是用参考椭球 和大地原点上的起算数据的确立作为一个参 心大地坐标系建成的标志。
我国大地坐标系 1954年北京坐标系
建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等 锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大 边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及 东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。 1954年北京坐标系归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c. 大地原点在原苏联的普尔科沃; d. 采用多点定位法进行椭球定位; e. 高程基准为 1956年青岛验潮站求出的黄海平均海水面; f. 高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。 按我 国天文水准路线推算而得 。
X2 X 1 0 Z Y X 1 X 0 Y (1 m) Y Y Y 0 X 1 0 2 1 Z Z2 Z1 Y X 0 Z1 Z 0
坐标系的类型
参心坐标系:以参考椭球为基准的坐标系 地心坐标系:以总地球椭球为基准的坐标系。
无论参心坐标系还是地心坐标系均可分为空间直角坐标 系和大地坐标系两种,它们都与地球体固连在一起,与地球同 步运动,因而又称为地固坐标系,以地心为原点的地固坐标系 则称地心地固坐标系,主要用于描述地面点的相对位置;另 一类是空间固定坐标系与地球自转无关,称为天文坐标系或 天球坐标系或惯性坐标系,主要用于描述卫星和地球的运行 位置和状态。
1954年北京坐标系的缺点:
①椭球参数有较大误差。与现代精确的椭球参数相比,长半轴约大109m; ②参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,东部地 区大地水准面差距最大+68m。使得大比例尺地图反映地面的精度受到影响, 也对观测元素的归算提出了严格要求; ③几何大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时 采用赫尔默特1900年—1909年正常重力公式,与这个公式相应的赫尔默特 扁球不是旋转椭球,它与克拉索夫斯基椭球不一致,给实际工作带来麻烦; ④定向不明确。椭球短轴的指向既不是国际上较普遍采用的国际协议(习用) 原点CIO(Conventional International Origin),也不是我国地极原点;起 始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面, 从而给坐标换算带来一些不便和误差。 另外,该坐标系是按局部平差逐步提供大地点成果的,因而不可避免地出现一 些矛盾和不够合理的地方。
在三维空间直角坐标系中,具有相同原点的两坐标系间的变换 一般需要在三个坐标平面上,通过三次旋转才能完成。如图所 示,设旋转次序为:
X , Y , Z 为三维空间直角坐标变换的三个旋转角,也称欧勒角
不同空间直角坐标之间的变换
当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在 三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致, 从而还有一个尺度变化参数,共计有七个参数 相应的坐标变换公式为:
椭球定向是指确定椭球旋转轴的方向,不论是局部定位还是 地心定位,都应满足两个平行条件: ①椭球短轴平行于地球自转轴; ②大地起始子午面平行于天文起始子午面
参考椭球
具有确定参数(长半径a和扁率α),经过局 部定位和定向,同某一地区大地水准面最 佳拟合的地球椭球,叫做参考椭球。
除了满足地心定位和双平行条件外,在确 定椭球参数时能使它在全球范围内与大 地体最密合的地球椭球,叫做总地球椭球。
复习
一、建立大地坐标系的基本原理
1、椭球定位、定向的概念
大地坐标系是建立在一定的大地基准上的用于表达地球表面 空间位置及其相对关系的数学参照系,这里所说的大地基准 是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和 定向。 椭球定位是指确定椭球中心的位置,可分为两类:局部定位和 地心定位。局部定位要求在一定范围内椭球面与大地水准面 有最佳的符合,而对椭球的中心位置无特殊要求;地心定位要 求在全球范围内椭球面与大地水准面有最佳的符合,同时要求 椭球中心与地球质心一致或最为接近。
K ,K , NK
x , y , z
天文坐标
大地坐标
得到K点相应的大地经度 LK ,大地纬度 BK ,至某一 相邻点的大地方位角 AK 和大地高 H K
LK K K sec K BK K K AK K K tgK H K H正K N K
一点定位
equatorial radius of the Earth a 6378137 m
f:=1 : 298.257222101
geocentric gravitational constant GM (including the atmosphere)
3986005 ·108 m3s-2
dynamical form factor (excluding permanent tides)
angular velocity of the Earth
J2 w
108263 ·10-8 7292115 ·10-11 rad s-1
不同坐标系之间的变换
欧勒角
对于二维直角坐标,如图所 示,有:
x2 cos sin x1 y sin cos y 1 2
O1 X1Y1Z1
X 0 , Y0 , Z0
x , y , z
O X YZ
参考椭球定位定向方法
选定某一适宜的点K作为大地原点,在该点上实施精密的天 文测量和高程测量,由此得到该点的天文经度 K,天文纬 度 K,至某一相邻点的天文方位角 K 和正高 H正K
大地原点垂线偏差的 子午圈分量和卯酉 圈分量及该点的大地 水准面差距
Geodetic network of China (horizontal datum)
Triangulation and traverse points
48433
Laplacian points
458
Starting lines
467
Geodetic origin,PR China
新1954北京坐标系 将C80大地坐标系的空间直角坐标经过三个平移参 数平移变换至克拉索夫斯基椭球中心,椭球参数保 持与1954年北京坐标系相同。
《地壳形变》
第三章 地球参考系与参考框架
武汉大学 许才军
《地壳形变》
1、绪论 2、地壳形变测量 3、地球参考系与参考框架 4、板块构造学说与活动地块学说 5、地壳运动监测与数据处理 6、地壳应力与应变分析 7、连续形变、应变观测与数据处理 8、地震活动的大地测量研究方法
一、建立大地坐标系的基本原理(椭球定 位、定向的概念 ,坐标系类型及转换关 系 )(复习) 二、参考系统、参考框架和参考基准 三、建立全球最优的协议地球参考架CTRF 四、协议地球参考架的维持 五、ITRF国际地球参考框架及ITRF框架之 间的转换
问题:Geodetic Reference System 1980 (GRS80 )与C80有何不同?
Geodetic Reference System 1980 (GRS80)
Adopted by the International Association of Geodesy (IAG) during the General Assembly 1979
上式为两个不同空间直角坐标之间的转换 模型(布尔莎模型),其中含有7个转换参 数,为了求得7个转换参数,至少需要3个 公共点,当多于3个公共点时,可按最小 二乘法求得7个参数的最或是值。
地心坐标系
地心地固空间直角坐标系
原点O与地球质心重合,Z轴指向地球北极,X轴指向格林尼治 平均子午面与赤道的交点,Y轴垂直于XOZ平面构成右手坐标系。
西安1980(C80)坐标系统
1980国家大地坐标系
C80坐标系是在完成全国天文大地网基础上建立的。根据椭球定 位的基本原理,在建立C80坐标系时有以下先决条件: (1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇; (2)C80坐标系是参心坐标系,极点采纳我国在1949到1977年 期间36个台站的观测资料归算得到的1968年极原点,即 JYD1968.0,起始子午线采纳格林尼治子午线 ; (3)椭球参数采用IUGG 1975年大会推荐的(IAG-75椭球)参数 因而可得C80椭球两个最常用的几何参数为: 长轴:6378140±5(m);扁率:1:298.257 (4)多点定位;椭球定位时按我国范围内高程异常值平方和最 小为原则求解参数 (5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准
建立地心坐标系的方法
直接法
所谓直接法,就是通过一定的观测资料,直接求得点的 地心坐标的方法,如天文重力法和卫星大地测量动力法。
间Байду номын сангаас法
所谓间接法就是通过一定的资料,求得地心坐标系和 参心坐标系间的转换参数,而后按其转换参数和参心坐标, 间接求得点的地心坐标的方法,如应用全球天文大地水准 面差距法以及利用卫星网与地面网重合点的两套坐标建立 地心坐标转换参数等方法。
20世纪60年代以来,美苏等国家利用卫星观测等资 料开展了建立地心坐标系的工作。美国国防部(DOD) 曾先后建立过世界大地坐标系(World Geodetic System,简称WGS)WGS-60,WGS-66,WGS-72,并于 1984年开始,经过多年修正和完善,建立起更为精 确的地心坐标系统,称为WGS-84。
相关文档
最新文档