第一学期期末考试高三数学理科试题
2023届四川省泸县第四中学高三上学期期末考试数学(理)试题(解析版)
![2023届四川省泸县第四中学高三上学期期末考试数学(理)试题(解析版)](https://img.taocdn.com/s3/m/6ca70aff81eb6294dd88d0d233d4b14e85243eb0.png)
2023届四川省泸县第四中学高三上学期期末考试数学(理)试题一、单选题1.设集合{}2A x x =<,{}230B x x x =-<,则A B ⋃=( ).A .()2,3-B .()2,0-C .()0,2D .()2,3【答案】A【分析】解绝对值不等式、一元二次不等式分别求集合A 、B ,再由集合并运算求A B ⋃. 【详解】由题设{|22}A x x =-<<,{|03}B x x =<<, 所以(2,3)A B =-. 故选:A2.若复数()()211i z x x =-++为纯虚数(i 为虚数单位),则实数x 的值为( )A .-1B .0C .1D .-1或1【答案】C【分析】根据纯虚数的定义列出方程(组)求解.【详解】由已知得21010x x ⎧-=⎨+≠⎩,解得1x =,故选:C3.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是( )A .0.005a =B .估计这批产品该项质量指标的众数为45C .估计这批产品该项质量指标的中位数为60D .从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.5 【答案】C【分析】利用各组的频率之和为1,求得a 的值,判定A ;根据众数和中位数的概念判定BC ;根据频率估计概率值,从而判定D.【详解】()0.0350.0300.0200.010101a ++++⨯=,解得0.005a =,故A 正确; 频率最大的一组为第二组,中间值为4050452+=,所以众数为45,故B 正确; 质量指标大于等于60的有两组,频率之和为()0.0200.010100.30.5+⨯=<,所以60不是中位数,故C 错误;由于质量指标在[50,70)之间的频率之和为()0.030.02100.5+⨯=,可以近似认为从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.5,故D 正确. 故选:C4.若实数x ,y 满足约束条件2301030x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为( ).A .1-B .4C .5D .14【答案】B【分析】由题设作出不等式组表示的区域,结合2z x y =+的几何意义即可求出答案. 【详解】作出不等式组表示的区域如下图中阴影部分,直线2z x y =+化为:1122y x+z =-表示斜率为12-的一组平行线,当1122y x+z =-经过点B 有最小值,由302101x y x x y y +-==⎧⎧⇒⎨⎨-+==⎩⎩,所以()2,1B ,则2z x y =+的最小值为:224z =+=.故选:B.5.执行下面的程序框图,如果输出的n =4,则输入的t 的最小值为( )A .14B .18C .116D .132【答案】C【分析】由已知的程序语句可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运算过程,即可得解.【详解】解:执行下面的程序框图,已知S =1,n =0,m =12; 执行循环体S =12,m =14,n =1;S =14,m =18,n =2;S =18,m =116,n =3;S =116,m =132,n =4; 如果输出的n =4,则输入的t 的最小值为116. 故选:C .6.一个容器装有细沙3cm a ,细沙从容器底部一个细微的小孔慢慢地匀速漏出,min t 后剩余的细沙量为()3cm bty ae-=,经过8min 后发现容器内还有一半的沙子,若容器中的沙子只有开始时的八分之一,则需再经过的时间为( ). A .24min B .26min C .8min D .16min【答案】D【分析】依题意有8b ae -= 12a ,解得ln28b =,得到ln 28t y ae -=,再令8a y =,求解得到t 的值,减去最初的8min 即得所求. 【详解】依题意有8b ae -=12a ,即8b e -= 12,两边取对数得ln281ln28ln ln2,,28t b b y ae --==-∴=∴= , 当容器中只有开始时的八分之一,则有ln2ln2881188t t ae a e --=∴=, 两边取对数得ln21ln 3ln2,2488t t -==-∴=, 所以再经过的时间为()24816min -=. 故选:D .7.已知α满足sin()4πα+,则2tan tan 1αα=+( )A .3B .﹣3C .49D .49-【答案】D【分析】首先化简sin()4πα+得到8sin 29α=-,接着化切为弦将2tan tan 1αα+表示成1sin 22α,代入求解即可.【详解】解:∵sin()cos )4a παα+=+,即1sin cos 3αα+=,平方可得112sin cos 9αα+=,∴8sin 29α=-, 故222tan 12sin cos 14sin 2tan 12sin cos 29ααααααα=⨯==-++;故选:D .【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可.(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,2π⎛⎫⎪⎝⎭,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,22ππ⎛⎫- ⎪⎝⎭,选正弦较好.8.已知曲线322y x x x =-++在1x =处的切线为l ,若l 与222:250C x y ax a +-+-=相切,则实数=a ( ) A .2或3- B .2-或3 C .2 D .3【答案】A【分析】根据导数的几何意义求出切线方程,将圆的方程配成标准式,即可得到圆心坐标与半径,再根据直线与圆相切,圆心到直线的距离等于半径,即可得到方程,解得即可; 【详解】解:因为322y x x x =-++,当1x =时3y =,又2321y x x '=-+,所以1|2x y ='=,所以曲线322y x x x =-++在1x =处的切线为()321y x -=-,即210x y -+=,又222:250C x y ax a +-+-=,即()22:5C x a y -+=,即圆心(),0C a ,半径r =因为直线l 与C 相切,所以圆心到直线的距离d ==2a =或3a =-;故选:A9.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是( ) A .25B .12C .35D .310【答案】D【分析】根据题意,设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题,进而()()()3135210P AB P A P B ==⨯=.【详解】设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题,所以第一次和第二次都抽到理科题的概率是()()()3135210P AB P A P B ==⨯=.故选:D.10.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x=,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x = 为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃. 故选:A【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.11.已知曲线1C :e x y =上一点11(,)A x y ,曲线2C :1ln ()y x x m =+-(0)m >上一点22(,)B x y ,当12y y =时,对于任意12,x x 都有e AB ≥恒成立,则m 的最小值为( )A .e 1-BC .1D .e 1+【答案】A【分析】根据题中条件,得到()12e 1ln xx m =+-,21e x x -≥,推出()2e 201ln e x x m -<+-≤;证明ln 1x x ≤-,分离参数得2e2ex m x -≥-,构造函数求出2e2ex x --的最大值,即可得出结果.【详解】因为当12y y =时,对于任意12,x x 都有e AB ≥恒成立,所以有:()12e 1ln xx m =+-,21e x x -≥,()2e 201ln e x x m -∴<+-≤,21ex m ∴>+,令()ln 1g x x x =-+,则()111x g x x x-'=-=, 所以当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 因此()()10g x g ≤=,即ln 1x x ≤-显然恒成立;因为21x m e->,所以()22ln 1x m x m -≤--,即()221ln x m x m +-≤-;为使()2e21ln e x x m -+-≤恒成立,只需2e2ex x m --≤恒成立;即2e2ex m x -≥-恒成立;令()e e x f x x -=-,则()e1e x f x -=-',由0f x解得e x <;由()0f x '<解得e x >;所以()f x 在(),e -∞上单调递增;在()e,+∞上单调递减; 所以()()max e e 1f x f ==-;e 1m ∴≥-,因此m 的最小值为e 1-.故选:A12.在三棱锥-P ABC 中,已知2PA AB AC ===,2PAB π∠=,23BAC π∠=,D 是线段BC 上的点,2BD DC =,AD PB ⊥.若三棱锥-P ABC 的各顶点都在球O 的球面上,则球O 的半径为( )A .1 BC D 【答案】D【分析】在ABC 中,由余弦定理,求得BC =得到BD =证得AB AD ⊥,进而证得AB ⊥平面PAB ,得到PA AD ⊥,证得PA ⊥平面ABC ,结合球的截面圆的性质,即可求得球O 的半径.【详解】如图所示,在ABC 中,因为2AB AC ==,23BAC π∠=, 可得222212cos 22222()232BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯-=,又因为2BD DC =,所以433BD =, 由6ABC π∠=,2AB =,可得233AD =,可得22BD AB AD =+,所以AB AD ⊥, 又由AD PB ⊥,PB AB B ⋂=且,PB AB ⊂平面PAB ,所以AD ⊥平面PAB , 又由PA ⊂平面PAB ,所以PA AD ⊥, 又由2PAB π∠=,即PA AB ⊥,且AB AD A ⋂=,可得PA ⊥平面ABC ,设ABC 外接圆的半径为r ,则24sin BDr A==,可得2r =,即12AO =, 设三棱锥-P ABC 的外接球的半径为R ,可得22222221111()2152PA R AO OO AO =+=+=+=,即5R =. 球O 的半径为5. 故选:D.【点睛】解决与球有关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程:(1)定球心:如果是内切球,球心到切点的距离相等且为半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素间的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球半径的方程,并求解.二、填空题13.已知椭圆22x y 12516+=,则椭圆的焦点坐标是______.【答案】()3,0-,()3,0【分析】通过标准方程确定2a 和2b ,根据,,a b c 的关系,得到焦点(),0c ±. 【详解】由题意得:225a =,216b = 由222a b c =+得:25163c =-= ∴焦点坐标为()3,0±本题正确结果:()3,0-,()3,0【点睛】本题考查了椭圆标准方程的定义和简单几何性质,属于基础题. 14.某正三棱锥正视图如图所示,则侧视图的面积为_______.【答案】63【分析】本题首先可根据正三棱锥正视图绘出原图,然后通过原图得出正三棱锥的侧视图,即可求出结果.【详解】如图,根据正三棱锥正视图可绘出原图,正三棱锥高为22534-=,底面边长为6,结合原图易知,ABC 即正三棱锥的侧视图,BC 为底面三角形的高, 则侧视图的面积1334632S , 故答案为:6315.已知AB ,CD 是过抛物线28y x =焦点F 且互相垂直的两弦,则11AF BF CF DF+⋅⋅的值为__________. 【答案】116【分析】设直线AB 、CD 的方程联立抛物线,若11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,应用韦达定理求12x x +、12x x 、34x x +、34x x ,根据抛物线的定义易得12(2)(2)AF BF x x ⋅=++、34(2)(2)CF DF x x ⋅=++,进而求目标式的值. 【详解】由题设,直线AB 、CD 的斜率一定存在,设AB 为(2)y k x =-,11(,)A x y ,22(,)B x y ,联立抛物线方程,可得2222(48)40k x k x k -++=且264(1)0k ∆=+>,∴21224(2)k x x k ++=,124x x =,而1||2AF x =+,2||2BF x =+,∴2121212216(1)(2)(2)2()4k AF BF x x x x x x k +⋅=++=+++=,由CD AB ⊥,设CD 为2xy k-=,33(,)C x y ,44(,)D x y ,联立抛物线,可得22(84)40x k x -++=,同理有23484x x k +=+,344x x =,∴216(1)CF DF k ⋅=+,综上,222111116(1)16(1)16k AF BF CF DF k k +=+=⋅⋅++. 故答案为:116. 【点睛】关键点点睛:设直线方程联立抛物线,结合韦达定理及抛物线的定义求AF BF ⋅、CF DF ⋅,进而求目标式的值.16.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论:①203f π⎛⎫= ⎪⎝⎭;②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解;④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦. 其中所有正确结论的编号为________. 【答案】①②④.【分析】①利用函数()()f a f b =-⇔()f x 关于点(,0)2a b+对称.即可得出答案. ②利用函数()()f a x f x -=⇔()f x 关于2ax =轴对称,再结合①即可得出答案. ③利用函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调,即可求出周期的取值范围,当T 取最小值时,实数解最多.求出其实数解即可判断.④利用函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点结合①可得出81033w <≤,再结合()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调时3w ≤,即可得出ω的取值范围. 【详解】①因为73124f f ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭且73212423πππ+=,所以203f π⎛⎫= ⎪⎝⎭.①正确. ②因为5()6f x f x π⎛⎫-= ⎪⎝⎭所以()f x 的对称轴为255162x ππ==, 125=3244TT ππππ-==⇒.②正确. ③在一个周期内()1f x =只有一个实数解,函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调且203f π⎛⎫= ⎪⎝⎭,522)6334(T πππ-=≥.当23T π=时,()sin3f x x =,()1f x =在区间[)0,2π上实数解最多为53,,662πππ共3个.③错误 ④函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,213251325632632222T T w w ππππππ-≤⇒-≤⋅<⋅<,解得81033w <≤;又因为函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调且203f π⎛⎫= ⎪⎝⎭,522)6334(T πππ-=≥,即2233w w ππ⇒≤≥, 所以8,33w ⎛⎤∈⎥⎝⎦.④正确 故填:①②④.【点睛】本题考查三角函数曲线.属于难题.熟练掌握三角函数曲线的性质是解本题的关键.三、解答题17.ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ; (2)若6a c +=,ABC 面积为2,求b .【答案】(1)1517;(2)2. 【详解】试题分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B ,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABCSac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.18.体育中考(简称体考)是通过组织统一测试对初中毕业生身体素质作出科学评价的一种方式,即通过测量考生身高、体重、肺活量和测试考生运动成绩等指标来进行体质评价.已知某地区今年参加体考的非城镇与城镇学生人数之比为1:3,为了调研该地区体考水平,从参加体考的学生中,按非城镇与城镇学生用分层抽样方法抽取200人的体考成绩作为样本,得到成绩的频率分布直方图(如图所示),体考成绩分布在[]0,60范围内,且规定分数在40分以上的成绩为“优良”,其余成绩为“不优良”.(1)将下面的22⨯列联表补充完整,根据表中数据回答,是否有百分之九十的把握认为“优良”与“城镇学生”有关?类别 非城镇学生城镇学生合计 优良不优良 115合计200(2)现从该地区今年参加体考的大量学生中,随机抽取3名学生,并将上述调查所得的频率视为概率,试以概率相关知识回答,在这3名学生中,成绩为“优良”人数的期望值为多少? 附参考公式与数据:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0k2.0722.7063.841【答案】(1)填表见解析,没有;(2)34.【分析】(1)根据题中信息完善22⨯列联表,并计算出2K 的观测值,结合临界值表可得出结论;(2)记3人中成绩为“优良”的人数为随机变量X ,由条件可知1~3,4X B ⎛⎫⎪⎝⎭,利用二项分布的期望公式可求得结果.【详解】(1)根据题意以及频率分布直方图,因为非城镇与城镇学生人数之比为1:3,且样本容量为200, 所以非城镇学生人数为50,城镇学生人数为150, 故城镇学生优良人数为15011535-=,又因为优良学生的人数为()0.0050.021020050+⨯⨯=,所以非城镇优良学生共为503515-=,则非城镇不优良学生人数为501535-=,代入数据计算()222001511535350.889 2.7065015050150K ⨯-⨯=≈<⨯⨯⨯,所以没有百分之九十的把握认为“优良”与“城镇学生”有关; (2)由题意及频率分布直方图可知,成绩“优良”的概率为5012004p ==, 记3人中成绩为“优良”的人数为随机变量X ,则1~3,4X B ⎛⎫⎪⎝⎭,所以()13344E X =⨯=,故成绩为“优良”人数的期望值为34.【点睛】方法点睛:求随机变量的期望和方差的基本方法如下: (1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求(),aX b a b R +∈的期望与方差,利用期望和方差的性质(()()E aX b aE X b +=+,()()2D aX b a D X +=)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算.19.如图,在三棱锥-P ABC 中,ABC 为直角三角形,90ACB ∠=,PAC △是边长为4的等边三角形,BC =P AC B --的大小为60,点M 为P A 的中点.(1)请你判断平面P AB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由; (2)求CM 与平面PBC 所成角的正弦值. 【答案】(1)垂直,证明见解析;(2)3913. 【分析】(1)平面PAB ⊥平面ABC ;分别取AC ,AB 的中点D ,E ,连接PD ,DE ,PE ,则PDE ∠为二面角P AC B --的平面角,即60PDE ∠=,进而根据勾股定理得PE ED ⊥,根据AC ⊥平面PED 得AC PE ⊥,进而可得答案;(2)根据题意,以点C 为原点,CA ,CB 分别为x ,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,利用坐标法求解即可. 【详解】(1)平面PAB ⊥平面ABC 理由如下:如图,分别取AC ,AB 的中点D ,E ,连接PD ,DE ,PE ,则//DE BC .因为90ACB ∠=,3BC = 所以DE AC ⊥,3DE因为PAC △是边长为4的等边三角形, 所以PD AC ⊥,23PD =于是,PDE ∠为二面角P AC B --的平面角,则60PDE ∠=,在PDE △中,由余弦定理,得222cos603PE PD DE PD DE =+-⋅=, 所以222=PD PE ED +, 所以PE ED ⊥.因为ED AC ⊥,PD AC ⊥,ED PD D =, 所以AC ⊥平面PED , 所以AC PE ⊥. 又ACED D =,所以PE ⊥平面ABC因为PE ⊂平面ABC . 所以平面PAB ⊥平面ABC .(2)以点C 为原点,CA ,CB 分别为x ,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则(0,23,0)B ,(4,0,0)A ,3,0)E ,3,3)P ,33)2M 332CM →⎛⎫= ⎪ ⎪⎝⎭,()0,23,0CB →=,()3,3CP →=.设平面PBC 的一个法向量为()111,,n x y z →=, 则00n CB n CP ⎧⋅=⎨⋅=⎩,即1111230,2330x y z ⎧=⎪⎨+=⎪⎩ 取13x =,则()3,0,2n →=-.所以CM 与平面PBC 所成角的正弦值sin cos,CM nθ→→===【点睛】本题考查面面垂直的证明,线面所成角的求解,考查空间想象能力,逻辑推理能力,数学运算能力,是中档题.本题第一问在探究过程中,先假设平面PAB⊥平面ABC,再根据逻辑关系推理论证,关键在于分别取AC,AB的中点D,E,连接PD,DE,PE,构造辅助线.20.已知椭圆()222210x ya ba b+=>>F,上顶点为A,左顶点为B,且||||10FA FB⋅=+(1)求椭圆的方程;(2)已知()4,0C-,()4,0D,点P在椭圆上,直线PC,PD分别与椭圆交于另一点M,N,若CP CMλ=,DP DNμ=,求证:λμ+为定值.【答案】(1)221105x y+=;(2)证明见解析.【分析】(1)先表示出,FA FB,然后计算出FA FB⋅,结合离心率公式cea=和222a b c=+求解出22,a b的值,则椭圆方程可求;(2)设出,,P M N的坐标,通过将向量共线表示为坐标关系可得到,λμ的关系式①,再通过点差法分别求得,λμ满足的关系式②和关系式③,通过将关系式②和③作差可得,λμ的关系式④,再结合关系式①可证明λμ+为定值.【详解】解:()1设(),0F c.由题意得||FA a=,||FB a c=+,ca=,222a b c=+,()||||10FA FB a a c∴⋅=+=+解得210a=,25b=.∴椭圆的方程为221105x y+=.()2设()00,P x y,()11,M x y,()22,N x y.由CP CMλ=,DP DNμ=,得()()00114,4,x y x yλ+=+,()()00224,4,x y x yμ-=-,()010141,,x xy yλλλ⎧-=-∴⎨=⎩,()020241,,x xy yμμμ⎧-=-⎨=⎩()1284x xλμλμ∴-=-+,①又点P ,M ,N 均在椭圆上,由220022222111,105,105x y x y λλλ⎧+=⎪⎪⎨⎪+=⎪⎩且01,y y λ=得()()01012110x x x x λλλ-+=-, ()01512x x λλ∴+=-+.②同理,由220022222221,105,105x y x y μμμ⎧+=⎪⎪⎨⎪+=⎪⎩且02,y y μ=得()()22002110x x x x μμμ-+=-()02512x x μμ∴+=+.③ 联立②③得()12552x x λμλμ-=-+-.④ 联立①④得263λμ+=, λμ∴+为定值263. 【点睛】关键点点睛:解答本题第二问的关键在于对于向量共线的坐标表示以及点差法求解参数与坐标之间的关系,每一步都是通过构建关于,λμ的方程,结合联立方程的思想完成证明. 21.已知函数()ln a xf x bx x=+在1x =处的切线方程为1y x =-. (1)求函数()y f x =的解析式;(2)若不等式()f x kx ≤在区间()0,∞+上恒成立,求实数k 的取值范围; (3)求证:444ln 2ln 3ln 1232n n e+++<. 【答案】(1)()ln x f x x =;(2)1,2e ⎡⎫+∞⎪⎢⎣⎭;(3)证明见解析. 【分析】(1)求得函数()y f x =的导数,由题意得出()()1110f f ⎧=⎪⎨='⎪⎩,可得出关于a 、b 的方程组,解出这两个未知数的值,即可得出函数()y f x =的解析式; (2)利用参变量法得出2ln xk x ≥对任意的()0,x ∈+∞恒成立,构造函数()2ln x g x x=,利用导数求得函数()y g x =在区间()0,∞+上的最大值,即可得出实数k 的取值范围; (3)由(2)可知,当x >()ln 2x x f x x e =≤,变形得出42ln 112x x e x≤⋅,利用放缩法得出()42ln 111112221n n n e n e n n ⎛⎫≤⋅<-≥ ⎪-⎝⎭,依次得到4ln 2111222e ⎛⎫<- ⎪⎝⎭,4ln 31113223e ⎛⎫<- ⎪⎝⎭,,()4ln 111221n n n e n n ⎛⎫<-≥ ⎪-⎝⎭,利用不等式的可加性即可证得所证不等式成立. 【详解】(1)()ln a xf x bx x =+,该函数的定义域为()0,∞+,()()21ln a x f x b x -'=+, 由题意可知,点()()1,1f 在直线1y x =-上,()10f ∴=, 由题意得()()1011f b f a b ⎧==⎪⎨=+'=⎪⎩,解得10a b =⎧⎨=⎩,()ln x f x x ∴=;(2)对任意的()0,x ∈+∞,由()f x kx ≤,得ln x kx x≥,即2ln xk x ≥,令()2ln xg x x =,其中0x >,则()max k g x ≥, ()312ln xg x x -'=,令()0g x '=,可得x =所以,函数()y g x =在x ()max 12g x g e==. 12k e ∴≥,因此,实数k 的取值范围是1,2e ⎡⎫+∞⎪⎢⎣⎭;(3)由(2)可知,当x >()ln 2x x f x x e =≤,则42ln 112x x e x≤⋅, 当2n ≥时,42ln 11111221n n e n e n n ⎛⎫<⋅=- ⎪-⎝⎭, 4ln 2111222e ⎛⎫∴<- ⎪⎝⎭,4ln 31113223e ⎛⎫<- ⎪⎝⎭,,4ln 11121n n e n n ⎛⎫<- ⎪-⎝⎭, 上述不等式全部相加得444ln 2ln 3ln 11112322n n e n e⎛⎫+++<-<⎪⎝⎭. 因此,对任意的2n ≥,444ln 2ln 3ln 1232n n e+++<. 【点睛】本题考查利用导数的几何意义求函数解析式、利用导数研究不等式恒成立问题,同时也考查了利用导数证明函数不等式,考查运算求解能力与推理能力,属于难题.22.在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l的极坐标方程是()sin ρθθ=:3OM πθ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(1)2cos ρθ=;(2)2【分析】(1)先由圆的参数方程消去参数,得到圆的普通方程,再由极坐标与直角坐标的互化公式,即可得出圆的极坐标方程;(2)由题意,先设,P Q 两点的极坐标为:1(,)ρθP ,2(,)ρθQ ,将3πθ=代入直线l 的极坐标方程,得到2ρ;将3πθ=代入圆的极坐标方程,得到1ρ,再由12ρρ=-PQ ,即可得出结果.【详解】(1)因为,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),消去参数可得:()2211x y -+=;把cos sin x y ρθρθ=⎧⎨=⎩代入()2211x y -+=,化简得:2cos ρθ=,即为此圆的极坐标方程; (2)设,P Q 两点的极坐标为:1(,)ρθP ,2(,)ρθQ ,因为直线l的极坐标方程是()sin ρθθ=:3OM πθ=,将3πθ=代入()sin ρθθ=12ρ⎫=⎪⎪⎝⎭23ρ=; 将3πθ=代入2cos ρθ=得12cos13πρ==,所以122PQ ρρ=-=.【点睛】本题主要考查圆的参数方程与普通方程的互化,直角坐标方程与极坐标方程的互化,以及极坐标下的两点间距离,熟记公式即可,属于常考题型. 23.设()|1||3|f x x x =+--.(1)对一切x R ∈,不等式()f x m ≥恒成立,求实数m 的取值范围;(2)已知0,0,()a b f x >>最大值为M ,(2)2a b M ab +=,且224128a b +≤,求证:216a b +=. 【答案】(1)(,4]-∞-;(2)证明见解析.【分析】(1)由零点分段法可得4,1()22,134,3x f x x x x -≤-⎧⎪=--<<⎨⎪≥⎩,求得()f x 的最小值后,即可得实数m 的取值范围;第 21 页 共 21 页 (2)由题意转化条件得2(2)1a b ab+=,利用基本不等式可得216a b +≤、216a b +≥,即可得证. 【详解】(1)由题意4,1()1322,134,3x f x x x x x x -≤-⎧⎪=+--=--<<⎨⎪≥⎩, 所以[]min ()4f x =-,所以,实数m 的取值范围是(,4]-∞-;(2)证明:由(1)知,4M =,由(2)2a b M ab +=得2(2)1a b ab+=,224128a b +≤,所以216a b +≤≤=,当且仅当2b a =,且224128a b +=,即4a =,8b =时,等号成立;2(2)42(2)242416a b a b a b a b ab b a ⎛⎫+⎛⎫+=+⋅=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当4a b b a =,且2(2)1a b ab+=,即4a =,8b =时,等号成立; 综上所述,216a b +=.【点睛】本题考查了绝对值不等式恒成立问题的解决,考查了利用基本不等式证明不等式的应用及运算求解能力,属于中档题.。
四川省泸县第四中学2022-2023学年高三上学期期末考试数学(理)试题含答案
![四川省泸县第四中学2022-2023学年高三上学期期末考试数学(理)试题含答案](https://img.taocdn.com/s3/m/7f219f1b0166f5335a8102d276a20029bc64637c.png)
四川省泸县四中高2023届高三上期末考试理科数学本试卷共4页。
考试结束后,只将答题卡交回注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2A x x =<,{}230B x x x =-<,则A B ⋃=A .()2,3-B .()2,0-C .()0,2D .()2,32.若复数()()211i z x x =-++为纯虚数(i 为虚数单位),则实数x 的值为A .-1B .0C .1D .-1或13.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是A .0.005a =B .估计这批产品该项质量指标的众数为45C .估计这批产品该项质量指标的中位数为60D .从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.54.若实数x ,y 满足约束条件2301030x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为A .1-B .4C .5D .145.执行下面的程序框图,如果输出的n =4,则输入的t 的最小值为A .14B .18C .116D .1326.一个容器装有细沙3cm a ,细沙从容器底部一个细微的小孔慢慢地匀速漏出,min t 后剩余的细沙量为()3cm bt y ae -=,经过8min 后发现容器内还有一半的沙子,若容器中的沙子只有开始时的八分之一,则需再经过的时间为A .24min B .26min C .8min D .16min7.已知α满足sin()4πα+2tan tan 1αα=+A .3B .﹣3C .49D .49-8.已知曲线322y x x x =-++在1x =处的切线为l ,若l 与222:250C x y ax a +-+-= 相切,则实数=a A .2或3-B .2-或3C .2D .39.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是A .25B .12C .35D .31010.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞11.已知双曲线1C :x y e =上一点11(,)A x y ,曲线2C :1ln ()y x x m =+-(0)m >上一点22(,)B x y ,当12y y =时,对于任意1x ,2x 都有AB e ≥恒成立,则m 的最小值为A .1e -B C .1D .1e +12.在三棱锥-P ABC 中,已知2PA AB AC ===,2PAB π∠=,23BAC π∠=,D 是线段BC 上的点,2BD DC =,AD PB ⊥.若三棱锥-P ABC 的各顶点都在球O 的球面上,则球O 的半径为A .1B CD二、填空题:本题共4小题,每小题5分,共20分.13.已知椭圆22x y 12516+=,则椭圆的焦点坐标是______.14.某正三棱锥正视图如图所示,则侧视图的面积为_______.15.已知AB ,CD 是过抛物线28y x =焦点F 且互相垂直的两弦,则11AF BF CF DF+⋅⋅的值为__________.16.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论:①203f π⎛⎫= ⎪⎝⎭;②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解;④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦.其中所有正确结论的编号为________.三、解答题:共70分。
高三理科上学期期末考试及答案
![高三理科上学期期末考试及答案](https://img.taocdn.com/s3/m/6556a63777232f60ddcca1a0.png)
汕头市金山中学高三上学期期末考试高三理科数学试卷一﹑选择题(每小题5分,共40分)1.已知集合⎭⎬⎫⎩⎨⎧≥-=0)1(3x xx M ,{}R x x y y N ∈+==,132,则M ⋂N = A. ∅ B. {}1≥x x C. {}1>x x D. {}01<≥x x x 或 2.若)(x f 为奇函数且在+∞,0()上递增,又0)2(=f ,则0)()(>--xx f x f 的解集是A.)2,0()0,2(⋃-B.)2,0()2,(⋃-∞C.),2()0,2(+∞⋃-D.),2()2,(+∞⋃--∞3.已知向量a ,b 满足4,1==b a ,且2=⋅b a ,则a 与b 的夹角为A.6πB.4πC.3πD.2π4.已知2tan sin 3,0,cos()26ππαααα⋅=-<<-则的值是 A .0 B .32 C .1 D .125.在等差数列中,21232a a +=,则的值是A. 24B. 48C. 96D. 无法确定6.在O 点测量到远处有一物体在做匀速直线运动,开始时该物体位于P 点,一分钟后,其位置在Q,点且∠POQ =90°,再过二分钟后,该物体位于R 点,且∠QOR =60°,则tan 2∠OPQ 的值等于A .427B .239C .49D .以上均不正确7.已知函数()223a bx ax x x f +++=在1=x 处有极值为10,则()2f 的值等于A.9B.11C.18D. 11或188.已知x 1是方程2010lg =x x 的根,x 2是方程201010=⋅x x 的根,则x 1·x 2=A .22010B .C . 22011D .二﹑填空题(每小题5分,共30分)9.已知等比数列{}n a ,前n 项和为c S nn +=3,其中c 是常数,则数列通项=n a *** . ⒑ 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则a = *** . ⒒如图中的三个直角三角形是一个体积为20cm 3的几何体的三视图,则h = *** cm .}{n a 1532a a +OM12π56πxy12.如图是函数在一个 周期内的图象,、分别是最大、最小值点,且,则= *** , A= *** . 13.设b 3是a -1和a +1的等比中项,则b a 3+的最大值是 *** .⒕已知函数)(x f 满足:),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==, 则=)2010(f *** .三、解答题(共80分)15. 在ABC ∆中,内角,,A B C 的对边分别为c b a ,,,3π=B, 4cos ,5A b ==。
高三上学期期末考试(数学理)(附答案)
![高三上学期期末考试(数学理)(附答案)](https://img.taocdn.com/s3/m/a5a2306c52ea551811a6871b.png)
上海市崇明县高三上学期期末考试试卷 高三数学(理科)(满分150分,答题时间120分钟 编辑:刘彦利)注意:在本试卷纸上答题无效,必须在答题纸上的规定位置按照要求答题. 一、填空题(每小题4分,共56分)1、设}5,4,3,2,1{=U ,{}1)43(log 22=+-=x x x M ,那么=M C U .2、若函数)(x f y =是函数x y a log =(1,0≠>a a )的反函数, 且2)1(=-f ,则=)(x f .3、一个三阶行列式按某一列展开等于22113311332232 ba b a ba b a ba ba ++,那么这个三阶行列式可能是 .(答案不唯一) 4、已知6π-=x 是方程3)tan(3=+αx 的一个解,)0(,πα-∈,则=α .5、右图是一个算法的流程图,最后输出的 =W .6、若圆锥的侧面积为π20,且母线与底面所成的角的余弦值为54,则该圆锥的体积为.7、已知二项展开式5522105)1(x a x a x a a ax +⋯+++=-中,803=a ,则5210a a a a +⋯+++等于 .8、复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a .9、已知nS 是数列{}n a 前n 项和,2,111+==+n n a a a (*N n ∈),则limnn n na S →∞=。
10、定义在R 上的函数)(x f 满足⎩⎨⎧---=+)1()()4(log )1(2x f x f x x f 0,0,>≤x x ,计算)2010(f 的值等于 .11、如图,在半径为3的球面上有A 、B 、C 三点,︒=∠90ABC ,BC BA =,球心O 到平面ABC 的距离是223,则B 、C 两点的球面距离是 .12、若命题p :34-x ≤1;命题q :)2)((---m x m x ≤0,且p 是q 的充分不必要条件,则实数m 的取值范围是 .13、给定两个长度为1的平面向量OA 和OB ,它们的夹角为︒120.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若OB y OA x OC +=,其中R y x ∈,,则y x + 的取值范围是 . 14、已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 .二、选择题(每小题4分,共16分)15、公差不为零的等差数列{}n a 的前n 项和为n S . 若31-=a 且4a 是3a 与7a 的等比中项, 则10S 等于 …………………………………………………………………………………( ) (A )18(B )24(C )60(D )9016、函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=4cos 12sin 2ππx x y 的最大值、最小值分别为 …………………………( ) (A )2,2-(B )21,23-(C )21,23(D )23,21- 17、投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数))((mi n ni m -+为实数的概率为 …………………………………………………………………………………………( )((A )31(B )41(C )61(D )12118、定义在R 上的偶函数)(x f 满足:对任意的]0,(,21-∞∈x x )(21x x ≠,有0))()()((1212>--x f x f x x 恒成立. 则当*N n ∈时,有……………………………( )(A ))1()()1(-<-<+n f n f n f (B ))1()()1(+<-<-n f n f n f (C ))1()1()(+<-<-n f n f n f(D ))()1()1(n f n f n f -<-<+三、解答题(本大题共有5题,满分78分,解答下列各题必须写出必要的步骤) 19、(本题满分14分,第1小题6分,第2小题8分) 设函数xx x f 2sin )32cos()(++=π.(1)求函数)(x f 的最大值和最小正周期;(2)设C B A ,,为∆ABC 的三个内角,41)2(-=C f ,且C 为锐角,35=∆ABC S ,4=a , 求c 边的长.20、(本题满分14分,第1小题6分,第2小题8分)如图,在直四棱柱D C B A ABCD ''''-中,底面ABCD 为等腰梯形,AB ∥CD ,4=AB , 2==CD BC ,21=AA ,E 、F 、G 分别是棱11B A 、AB 、11D A 的中点.(1)证明:直线GE ⊥平面1FCC ; (2)求二面角C FC B --1的大小.ABF CDEGA1D1 C1B121、(本题满分16分,第1小题3分,第2小题5分,第3小题8分)某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。
第一学期期末考试高三数学理科试题
![第一学期期末考试高三数学理科试题](https://img.taocdn.com/s3/m/e097684250e2524de4187e27.png)
第一学期期末考试高三数学理科试题温馨提示:1、全卷满分150分,考试时间120分钟.编辑人:丁济亮2、考生务必将自己的姓名、考号、班级、学校等填写在答题卡指定位置;交卷时只交答题卡.一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将选项代号填涂在答题卡上相应位置. 1.设:f x →2x 是集合M 到集合N 的映射,若N ={1,2},则M 不可能是A 、{-1}B 、{-2,2}C 、{1,2,2}D 、{-2,-1,1,2}2.已知函数()y f x =的图象是连续不断的曲线,且有如下的对应值表A 、2个B 、3个C 、4个D 、5个3.复数ii-+22表示复平面内点位于 A 、第一象限 B 、第二象限C 、第三象限D 、第四象限4.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是 A 、5 B 、6C 、7D 、85.由直线1,2,02x x y ===,及曲线1y x=所围图形的面积为 A 、154B 、174C 、1ln 22D 、2ln26.命题“x x R e x ∃∈<,”的否定是A 、x x R e x ∃∈,>B 、x x R e x ∀∈,≥C 、x x R e x ∃∈,≥D 、x x R e x ∀∈,>7.若x ,y 满足1122x y x y x y +⎧⎪--⎨⎪-⎩≥≥≤且z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是A 、(-1,2)B 、(-2,4)C 、(-4,0]D 、(-4,2)8.已知函数7(13)10(6)()(6)x a x a x f x ax --+⎧=⎨>⎩≤若数列{a n }满足a n =()f n (n ∈N +)且{a n }是递减数列,则实数a 的取值范围是 A 、(31,1) B 、(31,21) C 、(31,85) D 、(85,1)9.函数[]sin ,π,πy x x x =+∈-的大致图象是A 、B 、C 、D 、10.7,在该几何体的正视图中,这条棱的投影是长为6的线段。
高三数学上学期期末考试试卷 理含解析 试题
![高三数学上学期期末考试试卷 理含解析 试题](https://img.taocdn.com/s3/m/67332cd48ad63186bceb19e8b8f67c1cfbd6ee56.png)
实验2021-2021学年度上学期期末考试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日高三理科数学试题第一卷选择题〔一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的〕1.集合A=,B=,那么A B中元素的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,根据直线与圆的位置关系,即可求解集合中元素的个数,得到答案。
【详解】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又由圆与直线相交于两点,那么中有两个元素,应选C.【点睛】求集合的根本运算时,要认清集合元素的属性(是点集、数集或者其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.,是虚数单位,假设,,那么〔〕A. 1或者B. 或者C.D.【答案】A【解析】由得,所以,应选A.【名师点睛】复数的一共轭复数是,据此结合条件,求得的方程即可.3.某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图复原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,那么AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.应选:.4.函数的最小正周期为〔〕A. B. C. D.【答案】C【解析】分析:根据正弦函数的周期公式直接求解即可.详解:由题函数的最小正周期应选C.点睛:此题考察正弦函数的周期,属根底题.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为,那么展开式中含的项为,展开式中含的项为,故的系数为,选C.【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项一共有几项,进展相加即可.这类问题的易错点主要是未能分析清楚构成这一项的详细情况,尤其是两个二项展开式中的不同.6.椭圆的离心率是A. B. C. D.【答案】D【解析】【分析】根据椭圆的方程求得,得到,再利用离心率的定义,即可求解。
高三理科数学第一学期期末考试
![高三理科数学第一学期期末考试](https://img.taocdn.com/s3/m/3bc7e294f5335a8103d220de.png)
高三理科数学第一学期期末考试数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前;考生务必将自己的姓名、准考证号、考试科目、试卷类型用铅笔涂写在答题卡上。
2.第小题选出答案后;用铅笔把题答卡上对应题目的答案标号涂黑。
如需改动;用橡皮擦干净后;再选涂其他答案标号。
一、选择题:本大题共12小题;每小题5分;共60分。
在每小题给出的四个选项中;只有一项是符合题目要求的。
1.已知集合A C xy x A R U U 则集合},11|{,-=== ( )A .}10|{<≤x xB .}10|{≥<x x x 或C .}1|{≥x xD .}0|{<x x2.已知向量b a b a n b a ⋅=+==||),,2(),1,1(若;则n= ( )A .-3B .-1C .1D .33.有关命题的说法错误的是( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则” B .“x=1”是“0232=+-x x ”的充分不必要条件 C .若q p ∧为假命题;则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ;则01,:2≥++∈∀⌝x x R x p 均有4.三视图如右图的几何体的全面积是 ( )A .22+B .21+C .32+D .31+5.已知函数]4,3[)0(sin 2)(ππωω->=在区间x x f上的最大值是2;则ω的最小值等于( )A .32 B .23C .2D .36.设a,b 是两个实数;且a ≠b ;①,322355b a b a b a +>+②)1(222--≥+b a b a ;③ 2>+abb a 。
上述三个式子恒成立的有 ( )A .0个B .1个C .2个D .3个7.各项都是正数的等比数列}{n a 的公比1≠q ;且132,21,a a a 成等差数列;则5443a a a a ++的值为( )A .251- B .215+ C .215- D .215+或215- 8.设)()(,)()(x f y x f y x f x f '=='和将的导函数是函数的图象画在同一个直角坐标系 中;不可能正确的是( )9.已知}02,0,4|),{(},0,0,6|),{(≥-≥≤=≥≥≤+=Ωy x y x y x A y x y x y x ;若向区域Ω上随机投一点P ;则点P 落入区域A 的概率为 ( )A .92B .32 C .31 D .91 10.6个人分乘两辆不同的汽车;每辆车最多坐4人;则不同的乘法方法数为( )A .40种B .50种C .60种D .70种11.已知抛物线1)0(222222=->=by a x p px y 与双曲线有相同的焦点F ;点A 是两曲线的交点;且AF ⊥x 轴;则双曲线的离心率为 ( )A .215+ B .13+ C .12+D .2122+ 12.一次研究性课堂上;老师给出函数)(||1)(R x x xx f ∈+=;甲、乙、丙三位同学在研究此函数时分别给出命题:甲:函数)1,1()(-的值域为x f ; 乙:若21x x ≠则一定有)()(21x f x f ≠;丙:若规定*||1)()),(()(),()(11N n x n xx f x f f x f x f x f n n n ∈+===-对任意则恒成立你认为上述三个命题中正确的个数有( )A .3个B .2个C .1个D .0个第Ⅱ卷(非选择题;共90分)注意事项:1.用0.5mm 的中性笔答在答题纸相应的位置内。
高三上学期期末考试数学(理)试卷含答案
![高三上学期期末考试数学(理)试卷含答案](https://img.taocdn.com/s3/m/59487aa2102de2bd960588ce.png)
第一学期期末考试试卷高三年级数学(理科) 座位号_____第I卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡上.)1. 已知M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N等于 ( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}2.已知向量a与b的夹角为30°,且|a|=3,|b|=2,则|a-b|的值为( ) A.1 B.3 C.13 D.213.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.124.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是( )A.(cos θ,sin θ) B.(-cos θ,sin θ)C.(sin θ,cos θ) D.(-sin θ,cos θ)5.若(x-1)8=1+a1x+a2x2+…+a8x8,则a5=( )A.56 B.-56 C.35 D.-356.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程是( )A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9 7.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)8.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移23π个单位D .向右平移23π个单位9.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1( )A .60°B .90°C .120°D .135°10. 已知空间两条不同的直线m ,n 和两个不同的平面α,β,则下列命题中正确的是( )A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ∥α,n ⊥β,α⊥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ⊥α,n ⊥β,α⊥β,则m ⊥n 11.在等差数列中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .60012.若定义在R 上的二次函数bax a x f x +-=4)(2[0,2]上是增函数,且f(m)≥f(0),则实数m 的取值范围是( )A .[0,4]B [0,2]C .(-∞,0]D .(-∞,0] [)∞+,4Y第II 卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.14如果直线x +y +2a =0和圆x 2+y 2=4相交于A ,B 两点,且弦长|AB |=2,则实数a =________.15.函数223(0)()2ln,(0)x x xf xx x⎧++≤=⎨-+>⎩的零点个数是_____________16.设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为______________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知数列{a n}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.(1)求a1+a2+a3+a4+a5;(2)设b n=10-a n,数列{b n}的前n项和为S n,若b1≠b2,则n为何值时,S n最大?S n最大值是多少?18.(12分如图所示,正四棱锥S-ABCD中,高SO=4,E是BC边的中点,AB=6,求正四棱锥S-ABCD的斜高、侧面积、体积.19.(12分)已知函数()22sin 23sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 的最大值及取最大值时x 的集合.20.(12分)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.21.(12分)已知函数f(x)=x+ax+b(x≠0),其中a,b∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;(2)讨论函数f(x)的单调性.22.(12分)已知直线x-my+3=0和圆x2+y2-6x+5=0.(1)当直线与圆相切时,求实数m的值;(2)当直线与圆相交,且所得弦长2为时,求实数m的值.永昌四中2018—2019学年第一学期期末试卷答案高三年级 数学(理科)一、选择题二、填空题13. 45- ; 14. 2626-或 .15. 1 ; 16. (x +1)2+(y 2=1.三、解答题:17. 解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.-------- ----------------2 当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;-----------------4 当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.-------------------5 (2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,-----------------7∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25.---------9 ∴当n =5时,S n 取得最大值,最大值为25.------------------10 18. 解:在Rt △SOE 中OE =3,SO =4,所以斜高为:SE ===5.----------------------2 侧面积为:0.5×6×5×4=60.-----------------6体积为:(1/3)×62×4=48. --------------------------1219.解:由已知,()2cos 22sin(2)6f x x x x π=-=- (4)(1)由222262k x k πππππ-≤-≤+,k Z ∈,得增区间为[,]()63k k k Z ππππ-+∈.………8(2)当2262x k πππ-=+,k Z ∈,即sin(2)16x π-=时,()f x 取最大值2, (10)此时x 的集合为{|,}3x x k k Z ππ=+∈ (12)20.解:(1)由抛物线的定义得|AF |=2+p/2.因为|AF |=3,即2+p/2=3,解得p =2,------------------------2 所以抛物线E 的方程为y 2=4x .------------------------------------4 (2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2.由抛物线的对称性,不妨设A (2,2).由A (2,2),F (1,0)可得直线AF 的方程为y =2(x -1).-------------6 由得2x 2-5x +2=0,---------------------------8 解得x =2或x =,从而B . 又G (-1,0),所以k GA ==,------------------------------------------10k GB ==-,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.-------------------------1221.解:(1)f ′(x )=1-a x2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9, 所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-a x2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a ,当x变化时,f′(x),f(x)的变化情况如下表:a)上是减函数.22.解:(1)∵圆x2+y2-6x+5=0可化为(x-3)2+y2=4,∴圆心为(3,0).--------------------------------------------------------4 ∵直线x-my+3=0与圆相切,r=2,解得m=±2.------------------------------------------------------6(2)圆心(3,0)到直线x-my+3=0的距离d由r=2得, 3+3m2=36,------------------------------------10解得m2=11,故m=±11.-------------------------------------12。
第一学期高三年级期末理科数学试题与答案
![第一学期高三年级期末理科数学试题与答案](https://img.taocdn.com/s3/m/e3168acffad6195f302ba6b1.png)
第一学期高三年级期末理科数学试题与答案数学试卷【理科】第Ⅰ卷【选择题 共40分】一、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 【1】若集合{}2,1,0,1,2Α=--.{}2|1Βx x =>.则=ΑΒA .{|11}x x x <->或B .{}2,2-C .{}2 D .{0}(2) 下列函数中.在区间(0,)+∞上为增函数的是A.y =1y x =C. 1()2x y =D. 12log y x =(3) 已知两点(0,0),(2,0)O A -.以线段OA 为直径的圆的方程是A .22(1)4x y -+=B .22(1)4x y ++= C .22(1)1x y -+= D .22(1)1x y ++= (4) 在ABC ∆中.3,2,3a c B π===.则b =A .19B .7C .⑸ 某三棱锥的三视图如图所示.则该三 棱锥四个面的面积中最大的是B. 3C.D.【6】已知函数f (x ) 的部分对应值如表所示. 数列{}n a 满足11,a =且对任意*n ∈N .点1(,)n n a a +都在函数()f x 的图象上.则2016a 的值为x1 2 3 4 ()f x3124A . 1 B.2 C. 3 D.4俯视图侧(左)视图正(主)视图⑺ 若,x y 满足0,30,30,y x y kx y ≥⎧⎪-+≥⎨⎪-+≥⎩且2z x y =+的最大值为4.则k 的值为A .32-B . 32C .23-D .23【8】某大学进行自主招生时.需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:逻辑思维成绩排名总成绩排名200200O 甲乙下列叙述一定正确的是A .甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中.甲同学更靠前D .乙同学的总成绩排名比丙同学的总成绩排名更靠前第Ⅱ卷【非选择题 共110分】二、填空题【本大题共6小题.每小题5分.共30分】【9】在261(2)x x -的展开式中.常数项是 【用数字作答】.【10】双曲线22:1916x y C -=的渐近线方程为__________________;某抛物线的焦点与双曲线C 的右焦点重合.则此抛物线的标准方程为____________.【11】执行如图所示的程序框图.逻辑思维成绩排名200200阅读表达成绩排名O 丙输出的S 值为_______.【12】将序号为1.2.3.4的四张电影票全部分给3人.每人至少一张. 要求分给同一人的两张电影票连号.那么不同的分法种数为________________.【用数字作答】 【13】如图.在矩形ABCD 中.3DP PC =.若,PB mAB nAD =+则m =______;n =_________.【14】已知函数2()|3|,.f x x x x =-∈R 若方程()|1|0f x a x -+=恰有4个互异的实数根.则实数a的取值范围是_____________________.三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) 【15】【本小题满分13分】已知函数2()3sin(π)cos cos f x x x x --.【I 】 求函数()f x 的最小正周期; 【II 】求函数()f x 的单调递减区间.(16)【本小题满分13分】小王为了锻炼身体.每天坚持“健步走”, 并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图【图1】及相应的消耗能量数据表【表1】如下.频数(天)319181716PDCBA图1 表1【Ⅰ】求小王这8天 “健步走”步数的平均数;【Ⅱ】从步数为16千步.17千步.18千步的几天中任选2天.设小王这2天通过健步走消耗的“能量和”为X .求X 的分布列.【17】【本小题满分14分】在四棱锥P ABCD -中.平面PAD ⊥平面ABCD .PAD ∆为等边三角形,12AB AD CD==,AB AD ⊥,//AB CD ,点M 是PC 的中点.【I 】求证://MB 平面PAD ; 【II 】求二面角P BC D --的余弦值; 【III 】在线段PB 上是否存在点N .使得DN ⊥平面PBC ?若存在,请求出PNPB的值;若不存在,请说明理由.【18】【本小题满分13分】已知函数()()2ln 1f x x =+.【Ⅰ】若函数()f x 在点()()00P x f x ,处的切线方程为2y x =.求切点P 的坐标;【Ⅱ】求证:当[0,e 1]x ∈-时.()22f x x x ≥-;【其中e 2.71828=⋅⋅⋅】【Ⅲ】确定非负实数a 的取值范围.使得()()220,x f x x a x ∀≥≥-成立.P MD CBA【19】【本小题满分13分】已知椭圆C 2222:1(0)x y a b a b +=>>的离心率为2,点1)2在椭圆C 上.直线l 过点(1,1).且与椭圆C 交于A .B 两点.线段AB 的中点为M .【I 】求椭圆C 的方程;【Ⅱ】点O 为坐标原点.延长线段OM 与椭圆C 交于点P .四边形OAPB 能否为平行四边形?若能.求出此时直线l 的方程.若不能.说明理由.【20】【本小题满分14分】对于任意的*n ∈N .记集合{1,2,3,,}n E n =⋅⋅⋅.,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭.若集合A 满足下列条件:①nA P ⊆;②12,x x A ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.则称A 具有性质Ω.如当2n =时.2{1,2}E =.2{1,P =.122,x x P ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.所以2P 具有性质Ω.(Ⅰ) 写出集合35,P P 中的元素个数.并判断3P 是否具有性质Ω.【Ⅱ】证明:不存在,A B 具有性质Ω.且A B =∅.使15E A B =.【Ⅲ】若存在,A B 具有性质Ω.且A B =∅.使n P A B=.求n 的最大值.昌平区2015-2016学年第一学期高三年级期末质量抽测数学试卷参考答案及评分标准 【理科】 2016.1二、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 题号 1 2 3 4 5 6 7 8 答案 BA D D CB A C二、填空题【本大题共6小题.每小题5分.共30分】【9】60 【10】24;203y x y x=±= 【11】 52 【12】18 【13】1;14- 【14】 (0,1)(9,)+∞三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) (15)【本小题满分13分】 解:【I 】2()3sin cos cos f x x x x-311sin 2cos 222x x --π1sin(2)62x --所以 最小正周期2π2ππ.2Tω …………………………..7分(II) 由ππ3π2π22π,,262k x k k ≤≤∈Z得π5πππ,.36k x k k ≤≤∈Z ………………………11分所以函数()f x 的单调递减区间是π5π[π,π],.36k k k ∈Z ……………13分(16)【本小题满分13分】解: (I) 小王这8天 “健步走”步数的平均数为16317218119217.258⨯+⨯+⨯+⨯=【千步】. …………………………..4分【II 】X 的各种取值可能为800.840.880.920.23261(800)5C P X C ===,1132262(840),5C C P X C ===112312264(880),15C C C P X C +=== 1121262(920),15C C P X C === X 的分布列为:X800 840880 920 P 1525 415 215…………………………..13分 【17】【本小题满分14分】【Ⅰ】证明:取PD 中点H ,连结,MH AH . 因为 M 为PC 中点 ,所以 1//,2HM CD HM CD=.因为1//,2AB CD AB CD=.所以//AB HM 且AB HM =. 所以四边形ABMH 为平行四边形,所以 //BM AH .因为 BM PAD ⊄平面,AH ⊂平面PAD ,所以//BM 平面PAD . …………………………..4分【Ⅱ】 取AD 中点O ,连结.PO因为 PA PD =, 所以PO AD ⊥.因为 平面PAD ⊥平面ABCD , 平面PAD平面ABCD AD =,PO ⊂平面PAD ,所以PO ABCD ⊥平面.取BC 中点K ,连结OK ,则//.OK AB 以O 为原点,如图建立空间直角坐标系, 设2,AB = 则(1,0,0),(1,2,0),(1,4,0),(1,0,0),A B C D P --(2,2,0),(1,2,BC PB =-=-. 平面BCD 的法向量(0,0,OP =,设平面PBC 的法向量(,,)n x y z =,由0,0,BC n PB n ⎧⋅=⎪⎨⋅=⎪⎩得220,20.x y x y -+=⎧⎪⎨+-=⎪⎩令1x =.则(1,1,3)n =.15cos ,5||||OP n OP n OP n ⋅<>==.C由图可知.二面角P BC D --是锐二面角.所以二面角P BC D --的余弦值为5. …………………………..9分【Ⅲ】 不存在.设点(,,)N x y z ,且 ,[0,1]PNPB λλ=∈ ,则,PN PB λ=所以(,,(1,2,x y z λ-=.则,2,.x y z λλ⎧=⎪=⎨⎪=⎩所以(,2)N λλ, (1,2)DN λλ=+.若 DN PBC ⊥平面,则//DN n ,即12λλ+==.此方程无解,所以在线段PB 上不存在点N ,使得DN PBC ⊥平面. …………………………..14分【18】【本小题满分13分】 【Ⅰ】解:定义域为(1,)-+∞.()2'1f x x =+.由题意.()0'2f x =.所以()00,00x f ==.即切点P 的坐标为(0,0). ………3分【Ⅱ】证明:当[0,e 1]x ∈-时.()22f x x x ≥-.可转化为当[0,e 1]x ∈-时.()220f x x x -+≥恒成立.设()2()2g x f x x x =-+.所以原问题转化为当[0,e 1]x ∈-时.()min 0g x ≥恒成立.所以2242'()2211xg x x x x -=-+=++. 令'()0g x =.则1x =【舍】.2x =所以()g x .'()g x 变化如下:x1)-e 1-'()g x + 0 - ()g x(0)g↗极大值↘(e 1)g -因为()(0)000g f =-=.2(e 1)2(e 1)2(e 1)2(e 1)(3e)0g -=--+-=+-->.所以min ()0g x =.当[0,e 1]x ∈-时.()22f x x x ≥-成立. ………………..8分【Ⅲ】解:()()20,2x f x a x x ∀≥≥-.可转化为当0x ≥时.()()220f x a x x --≥恒成立.设()()2()2h x f x a x x =--.所以222(1)'()2211ax a h x a ax x x +-=-+=++.⑴当0a =时.对于任意的0x ≥.2'()01h x x =>+.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==.所以命题成立.当0a >时.令'()0h x =.则210ax a +-=.⑵当10a -≥.即01a <≤时.对于任意的0x ≥.'()0h x >.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==. 所以命题成立.⑶当10a -<.即1a >时.则1x =【舍】.20x =>. 所以()h x .'()h x 变化如下:x0 2(0,)x 2x 2(,)x +∞'()h x- 0 + ()h x↘ 极小值↗因为()min2()()00h x h x h =<=.所以.当0x ≥时.命题不成立.综上.非负实数a 的取值范围为[0,1]. …………………………..13分【19】【本小题满分13分】解:【I】由题意得22222311,4.c e a ab a bc ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩ 解得224,1a b ==. 所以椭圆C 的方程为22 1.4x y += …………………………..5分【Ⅱ】四边形OAPB 能为平行四边形.法一:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意; 【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41kmkm k m x x k -=-+->+=+故1224241M x x kmx k +==-+.241M M m y kx m k =+=+.于是直线OM 的斜率14M OM M y k x k ==-.即14OM k k ⋅=-. 由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-.因此24(1)41M k k x k -=+.OM 的方程为14y xk =-.设点P 的横坐标为P x .由221,41,4y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩得2221641Pk x k =+.即P x =. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2P Mx x =24(1)241k k k -=⨯+.由0k ≠.得35,.88k m ==满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . ………………………….13分 法二:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意;【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41km km k m x x k -=-+->+=+ 故1224241M x x km x k +==-+. 241M M my kx m k =+=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2,2.P M P M x x y y =⎧⎨=⎩. 则2222()()82114441km m k k -++=+.由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-. 则2222(164)(1))1(41k k k +-+=.则2(41)(83)0k k +-= . 则35,.88k m == 满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . …………………………..13分【20】【本小题满分14分】(Ⅰ) 解:集合35,P P 中的元素个数分别为9.23.3P 不具有性质Ω. ……………..6分【Ⅱ】证明:假设存在,A B 具有性质Ω.且AB =∅.使15E A B =.其中15{1,2,3,,15}E =⋅⋅⋅. 因为151E ∈.所以1A B ∈.不妨设1A ∈.因为2132+=.所以3A ∉.3B ∈.同理6A ∈.10B ∈.15A ∈.因为21154+=.这与A 具有性质Ω矛盾.所以假设不成立.即不存在,A B 具有性质Ω.且A B =∅.使15E A B =.…..10分【Ⅲ】因为当15n ≥时.15n E P ⊆.由【Ⅱ】知.不存在,A B 具有性质Ω.且A B =∅.使n P A B =.若14,n =当1b =时.1414x x a E E ⎧⎫=∈=⎨⎬⎩⎭.取{}11,2,4,6,9,11,13A =.{}13,5,7,8,10,12,14B =.则11,A B 具有性质Ω.且11A B =∅.使1411E A B =.当4b =时.集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合为13513{,,,,}2222⋅⋅⋅.令215911{,,,}2222A =.23713{,,}222B =.则22,A B 具有性质Ω.且22A B =∅.使2213513{,,,,}2222A B ⋅⋅⋅=.当9b =时.集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合12457810111314{,,,,,,,,,}3333333333.令31451013{,,,,}33333A =.32781114{,,,,}33333B =.则33,A B 具有性质Ω.且33A B =∅.使3312457810111314{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数.它与14P 中的任何其他数之和都不是整数.因此.令123A A A A C =.123B B B B =.则A B =∅.且14P A B =.综上.所求n 的最大值为14. ……………..14分。
第一学期期末高三数学理科测试试题
![第一学期期末高三数学理科测试试题](https://img.taocdn.com/s3/m/94249c18998fcc22bcd10dfd.png)
第一学期期末高三数学理科测试试题金山区_学年第一学期期末考试高三数学理科测试试题满分150分,完卷时间为120分钟,答案请写在答题纸上一.填空题(每小题4分,共44分)1.已知集合P={__2–9_lt;0},Q={yy=2_,__Icirc;Z},则P∩Q =.2.若复数为实数,则实数.3.函数f(_)=1+log2 _(_≥2)的反函数f –1(_) = .4.函数,__Icirc;[4,6]的最小值.5.若方程表示椭圆,则的取值范围是.6.方程sin_+cos_= –1在[0,π]内的解为.7.向量与的夹角为,,,则.8.直线_+y–2=0截圆_2+y2=4得的劣弧所对的圆心角的大小为.9.在实数等比数列{an}中a1+a2+a3=2,a4+a5+a6=16,则a7+a8+a9= .10.定义在R上的偶函数f(_),满足f(2+_) = f(2–_),且当__Icirc;[0,2]时,f(_)=,则f(_)= .11.正数数列{an}中,对于任意n_Icirc;N_,an是方程(n2+n)_2+(n2+n–1)_–1=0的根,Sn是正数数列{an}的前n项和,则.二.选择题(每小题4分,共16分)12.在复平面内,复数z=对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限(D)第四象限13.命题:〝对任意的,〞的否定是( )(A)不存在,; (B)存在,;(C)存在,; (D)对任意的,.14.已知A(1,0).B(7,8),若点和点到直线l的距离都为5,且满足上述条件的直线l 共有n条,则n的值是( )(A) 1 (B) 2 (C) 3 (D) 415.已知直线l:(m+1)_–my+2m–=0与圆C:_2+y2=2相切,且满足上述条件的直线l 共有n条,则n的值为( )(A) 0 (B) 1 (C) 2 (D) 以上答案都不对三.解答题(本大题满分90分)16.(本大题12分)设函数f(_)= ,(1)化简f(_)的表达式,求f(_)的定义域,并求出f(_)的最大值和最小值;(2)若锐角a满足cosa=,求f(a)的值.17.(本大题12分)复数是一元二次方程a_2+b_+1=0(a.b_Icirc;R)的根,(1)求a和b的值;(2)若,求u.18.(本大题14分)在△ABC中,a.b.c分别是角A.B.C的对边,且满足,(1)求角B的度数;(2)若b=,a+c=5,求a和c的值.19.(本大题16分)设为实数,函数f(_)=__–a,其中__Icirc;R.(1)判断函数f(_)的奇偶性,并加以证明;(2)写出函数f(_)的单调区间.20.(本大题18分)阅读下面所给材料:已知数列{an},a1=2,an=3an–1+2,求数列的通项an.解:令an=an–1=_,则有_=3_+2,所以_= –1,故原递推式an=3an–1+2可转化为:an+1=3(an–1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.根据上述材料所给出提示,解答下列问题:已知数列{an},a1=1,an=3an–1+4,(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;(2)若记Sn=,求Sn;(3)若数列{bn}满足:b1=10,bn+i=100,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn.21.(本大题18分)(1)已知平面上两定点.,且动点M的坐标满足=0,求动点的轨迹方程;(2)若把(1)的M的轨迹图像向右平移一个单位,再向下平移一个单位,恰与直线_+ky–3=0 相切,试求实数k的值;(3)如图1,l是经过椭圆长轴顶点A且与长轴垂直的直线,E.F是两个焦点,点P_Icirc;l,P不与A重合.若,证明:.类比此结论到双曲线,是经过焦点且与实轴垂直的直线,是两个顶点,点P_Icirc;l,P不与重合(如图2).若,试求角的取值范围._学年度第一学期高三数学期末考试试题答案(理)_年1月一.填空题:1.{–2,0, 2} 2.2 3.2_–1 (_≥2) 4.5 5.–6_lt;k_lt;4且k_sup1;–16.π7.28.60o9.128 10.2 11.1二.选择题:12.A 13.C 14.C 15.B三.解答题:16.(1)函数f(_)= ===2sin_+2cos_ ……5分f(_)的定义域为{___sup1;kπ+,k_Icirc;Z},……………………………………………………6分又f(_)=2sin(_+)……………………………………………………………………7分f(_)ma_=2,f(_)min=–2……………………………………………………………9分(2)若锐角a满足cosa=,则sina=…………………………………………………10分f(a)= (12)分17.(1)由题得,…………………………………………………………2分方程a_2+b_+1=0是实系数一元二次方程,故它的另一个根为…………4分由韦达定理知:,得……………………6分(2)由(1)知,设……………………7分则:,得……8分,所以……………………12分18.(1)由题,由正弦定理得:,……2分……………………………………………3分sin(B+C)+ 2cosB sinA=0 …………………………………………………………………4分sinA+2cosB sinA=0……………………………………………(只要写出本行,给5分)5分因为 ,所以cosB= –,所以B=120o………………………………………7分(2)由余弦定理得:,………………………………………9分19=(a+c)2–2ac–2accos120o,所以ac=6…………………………………………………11分由,得或………………………………(缺一解,扣1分)14分19.(1)当a=0时,f(_)=__,所以f(_)为奇函数…………………………………………1分因为定义域为R关于原点对称,且f(–_)=–_–_=–f(_),所以f(_)为奇函数.……3分当a_sup1;0时,f(_)=__–a为非奇非偶函数, (4)分f(a)=0,f(–a)=–a2a,所以f(–a)_sup1; f(a),f(–a) _sup1; – f(a)所以f(_)是非奇非偶函数 (6)分(2)当a=0时,,的单调递增区间为;……8分当a_gt;0时,f(_)的单调递增区间为和;……………………………………10分f(_)的单调递减区间为;……………………………………………………12分当a_lt;0时,f(_)的单调递增区间为和;……………………………………14分f(_)的单调递减区间为………………………………………………………16分20.(1) 令an=an–1=_,则有_=3_+4,所以_= –2,故原递推式an=3an–1+4可转化为:an+2=3(an–1+2),因此数列{an+2}是首项为a1+2,公比为3的等比数列.所以an+2=(a1+2)_acute;3n–1,所以an=3n–2;…………………………………………2分对于an=3an–1+4,可以看成把直线y=3_+4的方程改写成点斜式方程,该点就是它与直线y=_的交点.……………………………………………………4分(2)令dk===()2=()2(–)……………………………………………7分Sn==d1+d2+……+dn=()2[()+()+()+……+()]=()2[]………………………………………………………………10分Sn=()2……………………………………………………………………12分(3)数列{bn}满足:b1=10,bn+i=100,所以bn_gt;0,lg bn+i=lg(100)令cn=lgbn,则cn+1=3cn+2,………………………………………………………14分所以cn+2=3(cn–1+2),因此数列{cn+2}是首项为c1+2,公比为3的等比数列.所以cn+2=(c1+2)_acute;3n–1,所以cn=3n–2,…………………………………………16分lgbn=cn=3n–2;bn=…………………………………………………………18分21.(1)设,由得,此即点的轨迹方程.…3分(2)将_2+y2=4向右平移一个单位,再向下平移一个单位后,得到圆(_–1)2+(y+1)2=4…………………………………………………………………5分依题意有,得k=0或……………………………………………8分(3)(ⅰ)证明:不妨设点P在A的上方,并设, 则………………………………………10分所以……………12分所以.显然a为锐角,即:……………………14分(ⅱ)不妨设点在的上方,并设,则,所以由于且,a为锐角,故.……………18分。
内蒙古自治区呼和浩特市2023-2024学年高三上学期期末学业质量监测试题 数学(理)含答案
![内蒙古自治区呼和浩特市2023-2024学年高三上学期期末学业质量监测试题 数学(理)含答案](https://img.taocdn.com/s3/m/6b62bf3a03768e9951e79b89680203d8ce2f6ae8.png)
呼和浩特市2023—2024学年第一学期高三年级学业质量监测理科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.本试卷满分150分,考试时长120分钟.2.作答时,将答案写在答题卡上,写在本试卷上无效.一、选择题:本大题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合题目要求的1.已知复数z 的共轭复数是z ,满足()1i i z +=-,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A x y ⎧⎪==⎨⎪⎩,(){}2lg 2B x y x x ==-,则A B = ()A.()1,2B.()0,3C.()(),12,-∞+∞ D.()(),03,-∞+∞ 3.已知向量()4,m a = ,()2,4n = ,若()()m n m n +⊥-,则a =()A.2B.4C.2±D.4±4.已知一个正三棱柱的三视图如下图所示,则该三棱柱的体积为()A. B.12C. D.165.俗话说“斜风细雨不须归”,在自然界中,下雨大多伴随着刮风.已知某地8月份刮风的概率为1331,下雨的概率为1131,既刮风又下雨的概率为731.记事件A 为“8月份某天刮风”,事件B 为“8月份某天下雨”,则()P B A =()A.711 B.713C.731D.11316.在斜三角形ABC 中,若45C ∠=︒,则()()1tan 1tan A B --=()A.1B.1- D.27.直线310kx y k --+=(k ∈R )截圆22280x y x +--=所得弦长的最小值是()A.2C.4D.68.已知函数()332x xf x --=,若()()210f a f a -+<,则实数a 的取值范围为()A.10,3⎛⎫ ⎪⎝⎭B.11,32⎛⎫⎪⎝⎭C.1,3⎛⎫-∞ ⎪⎝⎭D.1,3⎛⎫+∞ ⎪⎝⎭9.在ABC △中,AD 为A ∠的角平分线,D 在线段BC 上,若2AB =,1AD AC ==,则BD =()A.2C.2D.210.小明将Rt ABD △与等边BCD △摆成如图所示的四面体,其中4AB =,2BC =,若AB ⊥平面BCD ,则四面体ABCD 外接球的表面积为()A.163B.163π C.643π D.2711.过抛物线24y x =的焦点F 作一条直线l 交抛物线于A 、B 两点,且4AF BF=,若抛物线的准线与x 轴交于点P ,则P 点到直线l 的距离为()A.65B.85 C.125D.16512.若向量()11,a x y = ,()22,b x y =,则以a 、b 为邻边的平行四边形的面积S 可以用a 、b 的外积a b ⨯ 表示出来,即1221S a b x y x y =⨯=-.已知在平面直角坐标系中,(cos A α、()sin 2,2cos B αα,0,2πα⎡⎤∈⎢⎥⎣⎦,则OAB △面积的最大值为()A.1C.2D.3二、填空题:本大题共4小题,每小题5分,共20分.13.521x ⎛⎫ ⎪⎝⎭的展开式中常数项为______.14.将函数()()sin 2f x x ϕ=+(02πϕ<<)的图象向右平移3π个单位后,所得到的函数图象关于y 轴对称,则ϕ=______.15.已知双曲线C :22221x y a b -=(0a >,0b >)的左右焦点分別为1F 、2F ,过2F 的直线l 与双曲线C 交于A 、B 两点(A 在第一象限,B 在第四象限),若221::3:1:3AF BF BF =,则该双曲线的离心率为______.16.已知函数()()3221xf x e x x a x =+-+-,当()0,x ∈+∞时,()0f x >恒成立.则实数a 的取值范围是______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个学生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)2023年秋末冬初,某市发生了一次流感聅病,某医疗团队为研究本地的流感疾病与当地居民生活习惯(良好、不够良好)的关系,在已患该疾病的病例中随机调查了100人(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:良好不够良好病例组2575对照组4555(1)分别估计病例组和对照组中生活习惯为良好的概率;(2)能否有99%的把握认为感染此次流感疾病与生活习惯有关?附:()()()()()22n ad bc K a b c d a c b d -=++++()2P K k≥0.0500.0100.001k3.8416.63510.82818.(12分)已知正方体ABCD A B C D '-'''的棱长为2,M 为BB '的中点,N 为DC 的中点.(1)求证://BN 平面DMC ';(2)求平面DMC '与平面A B C D ''''夹角的余弦值.19.(12分)已知正项数列{}n a 满足:22333122n n n a a a ⎛⎫+++⋅⋅⋅+= ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若3nn n a b =,求数列{}n b 的前n 项和n S .20.(12分)已知椭圆C 的方程为22221x y a b +=(0a b >>),离心率为32,点31,2⎛⎫ ⎪ ⎪⎝⎭在椭圆上.其左右顶点分别为1A 、2A ,左右焦点分别为1F 、2F .(1)求椭圆C 的方程;(2)直线l 过x 轴上的定点E (E 点不与1A 、2A 重合),且交椭圆C 于P 、Q 两点(0p y >,0Q y <),当满足1257A P A Qk k =时,求E 点的坐标.21.(12分)已知函数()2ln 1f x x x x=++.(1)求()f x 在1x =处的切线方程;(2)若()()g x xf x =,且()()()12124g x g x x x +=<,求证:122x x +>.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为3sin x y θθ⎧=⎪⎨=⎪⎩(02θπ≤<),曲线2C 的参数方程为cos306sin 30x t y t =-︒⎧⎨=+︒⎩(t 为参数).(1)求曲线1C 的普通方程;(2)若()0,1A ,)B,在曲线2C 上任取一点C ,求ABC △的面积.23.[选修4-5:不等式选讲](10分)已知函数()22f x x x =+-.(1)求不等式()3f x x ≤的解集;(2)将函数()f x 的图象与直线4y =围成图形的面积记为t ,若正数a 、b 、c 满足2a b c t ++=,求证:4≥.2024高三理科数学参考答案一、选择题123456789101112BDCABDCCBCBA二、填空题13.8014.6π15.216.(),e -∞三、解答题17.(1)由调查数据,病例组为生活习惯为良好的频率250.25100=,因此病例组为生活习惯为良好的概率的估计值为0.25;对照组为生活习惯为良好的频率450.45100=因此对照组为生活习惯为良好的概率的估计值为0.45.(2)()22200255575458008.7911001007013091K ⨯⨯-⨯==≈⨯⨯⨯由于8.791 6.635>,故有99%的把我说患有该疾病与生活习惯有关.18.(1)证明:取DC '中点E ,连接NE 、ME 、BN ∵E 、N 为中点,∴////EN CC BM'又∵1EN BM ==,∴四边形NEMB 为平行四边形∴//BN EM又∵BN ⊄平面DMC ',EM ⊂平面DMC '∴//BN 平面DMC '(2)解:以D 点为原点,DA 为x 轴,DC 为y 轴,DD '为z 轴,建立空间直角坐标系,则()0,0,0D ,()0,2,2C ',()2,2,1M 设m ⊥ 平面A B C D '''',则()0,0,1m =设n ⊥ 平面DMC ',(),,n x y z =()1,2,2n DC n n DM⎧⊥⎪⇒=-⎨⊥⎪⎩',2cos ,3m n m n m n ⋅==⋅∴平面DMC '与平面A B C D ''''夹角的余弦值为2319.解:(1)当1n =时,2311112a +⎛⎫== ⎪⎝⎭,∴11a =当1n >时,()()2222331122n n n n n a n ⎡⎤-+-⎛⎫+=-=⎢ ⎪⎢⎥⎝⎭⎣⎦,∴n a n =1n =时,符合上式,∴n a n=(2)133nn n n b n ⎛⎫==⋅ ⎪⎝⎭()123111111123133333n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()23111111111221333333n nn n S n n n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+-⋅+-⋅+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∴1231121111113333333n nn n S n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3134342n n n S ⎛⎫⎛⎫=-⋅+ ⎪⎪⎝⎭⎝⎭20.解:(1)由题知222::4:1:3a b c =,又223141a b +=,所以24a =,21b =,故椭圆的标准方程为2214x y +=(2)设直线l 的方程为x ty m =+,()11,P x y ,()22,Q x y ,()12,0A -,()22,0A ,(),0E m 联立2214x ty m x y =+⎧⎪⎨+=⎪⎩,得()2224240t y tmy m +++-=,0∆≥由韦达定理,得12224tmy y t +=-+,212244m y y t -=+由题得,12122572y x x y -=⋅+(*)∵221114x y +=,∴()()2211114422x y x x -==-+,2222242x y y x --=+∴()()()1212121244*2222y y y y x x ty m ty m --=⋅=++⎤⎡⎤++++⎣⎦⎦()()()1222121242222y y mmt y y t m y y m --==++++++,解得13m =故直线l 的方程为13x ty =+,经过x 轴上的定点1,03E ⎛⎫⎪⎝⎭.21.(1)解:()0,x ∈+∞,()2222ln 1f x x x x-=++',()13f '=,()12f =故()f x 在1x =处的切线方程为31y x =-(2)证明:()22ln g x x x x =++(0x >)()12g =,()2210g x x x=++>'∵()()()12124g x g x x x +=<∴1201x x <<<,121x ->()()122121222x x x x g x g x +>⇔>>-⇔-()()()()111142240g x g x g x g x ->-⇔+--<()()240g x g x +--<⇔(01x <<)下证:()()240g x g x +--<(01x <<)令()()()24h x g x g x =+--()()()()()()()322412ln 2ln 2222x h x x x x x x x x x '-'⎡⎤=+++-+-+-=⎣⎦-∵01x <<,∴()0h x '>又()()()11140h g g =+-=,∴()0h x <,即()()()12240012g x g x x x x +--<<<⇔+>.22.解:(1)1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(02a π≤<),可得1C 的普通方程为2213x y +=(2)2C的普通方程为0x -=,直线AB的斜率为3=-,直线AB的方程为:13y x =-+,即0x +=.则2C 上任意一点C 到直线AB 的距离2d =,易得2AB =,所以,11535322222ABC S AB d =⋅=⨯⨯=△.23.解:(1)由223x x x +-≤可得2x x -≤,即()222x x -≤,解得1x ≥.所以不等式的解集为[)1,+∞.(2)()32,02,0232,2x x f x x x x x -+≤⎧⎪=+<<⎨⎪-≥⎩,由图可知:12822233t ⎛⎫=⨯+⨯= ⎪⎝⎭,则()()823a b c a b b c ++==+++≥+23a bc ===时,等号成立)即43≥+4≥.。
高三上学期期末考试数学(理)试卷及答案解析
![高三上学期期末考试数学(理)试卷及答案解析](https://img.taocdn.com/s3/m/9816e842312b3169a451a4db.png)
高三级上学期·期末考理科数学试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应位置.)1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}2.复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i3.已知向量=(1,2),=(a,﹣1),若⊥,则实数a的值为()A.﹣2 B.﹣C.D.24.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m5.下列函数中,在其定义域内既是奇函数又是增函数的是()A.y= B.y=x2C.y=x3D.y=sinx6.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平行移动个单位B.向左平行移动个单位C.向右平行移动个单位D.向右平行移动个单位7.不等式组,所表示的平面区域的面积等于()A. B.C. D.8.执行如图所示的程序框图,则输出s的值等于()A.1 B. C.0 D.﹣9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.96 B. C. D.10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱 C.钱D.钱11.设F1,F2分别为椭圆C1: +=1(a>b>0)与双曲线C2:﹣=1(a1>0,b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e=,则双曲线C2的离心率e1为()A.B.C. D.12.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx﹣2在x=1处有极值,则ab的最大值()A.2 B.3 C.6 D.9二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡相应题中的横线上. 13.已知等比数列{a n }的公比q 为正数,且a 3a 9=2a 52,则q= .14.已知函数f (x )=lnx ﹣ax 2,且函数f (x )在点(2,f (2))处的切线的斜率是,则a= . 15.在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .16.下列四个命题:①一个命题的逆命题为真,则它的否命题一定为真;②等差数列{a n }中,a 1=2,a 1,a 3,a 4成等比数列,则公差为﹣; ③已知a >0,b >0,a+b=1,则+的最小值为5+2;④在△ABC 中,若sin 2A <sin 2B+sin 2C ,则△ABC 为锐角三角形. 其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三.解答题(共6题,共70分) 17.(本题满分12分)设数列{a n }的前n 项和为S n ,已知ba n ﹣2n =(b ﹣1)S n (Ⅰ)证明:当b=2时,{a n ﹣n •2n ﹣1}是等比数列; (Ⅱ)求{a n }的通项公式.18.(本题满分12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证: (1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .19.(本题满分12分)某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,如图是根据上述分组得到的频率分布直方图.(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计本年级800名学生中,成绩属于第三组的人数;(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取1名学生组成一个实验组,求所抽取的2名同学中恰好为一名男生和一名女生的概率.20.(本题满分12分)如图,已知椭圆+y2=1的四个顶点分别为A1,A2,B1,B2,左右焦点分别为F1,F2,若圆C:(x﹣3)2+(y﹣3)2=r2(0<r<3)上有且只有一个点P满足=.(1)求圆C的半径r;(2)若点Q为圆C上的一个动点,直线QB1交椭圆于点D,交直线A2B2于点E,求的最大值.21.(本题满分12分)已知函数f(x)=﹣,(x∈R),其中m>0(Ⅰ)当m=2时,求曲线y=f(x)在点(3,f(3))处的切线的方程;(Ⅱ)若f(x)在()上存在单调递增区间,求m的取值范围(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2且x1<x2,若对任意的x∈,f(x)>f(1)恒成立.求m的取值范围【选做题】请考生从22、23题中任选一题作答,共10分22.(选修4-4.坐标系与参数方程)在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.23.(选修4-5.不等式选讲)已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)求实数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证: +≥.普宁市华侨中学2017届高三级上学期·期末考理科数学参考答案1.B. 2.B. 3.D. 4.B . 5.C. 6.B. 7.C. 8.A. 9.C. 10.B. 11.B. 12.D.13.. 14. 15.. 16.①③.17.解:(Ⅰ)当b=2时,由题意知2a1﹣2=a1,解得a1=2,且ba n﹣2n=(b﹣1)S nba n+1﹣2n+1=(b﹣1)S n+1两式相减得b(a n+1﹣a n)﹣2n=(b﹣1)a n+1即a n+1=ba n+2n①(3分)当b=2时,由①知a n+1=2a n+2n于是a n+1﹣(n+1)•2n=2a n+2n﹣(n+1)•2n=2(a n﹣n•2n﹣1)又a1﹣1•20=1≠0,所以{a n﹣n•2n﹣1}是首项为1,公比为2的等比数列.(6分)(Ⅱ)当b=2时,由(Ⅰ)知a n﹣n•2n﹣1=2n﹣1,即a n=(n+1)2n﹣1当b≠2时,由①得==因此=即(10分)所以.(12分)18.(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(6分)(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.(12分)19.(1)由频率分布直方图,得成绩小于13秒的频率为0.06,∴该样本在这次百米测试中成绩优秀的人数为:0.06×50=3(人).(3分)由频率分布直方图,得第三组[14,15)的频率为0.38,∴估计本年级800名学生中,成绩属于第三组的人数为:800×0.38=304(人).(6分)(2)由频率分布直方图,得第一组的频率为0.06,第五组的频率为0.08,∴第一组有50×0.06=3人,第五组有50×0.08=4人,∵样本中第一组只有一名女生,第五组只有一名男生,∴第一组中有1名女生2名男生,第五组中有3名女生1名男生,现从第一、第五组中各抽取1名学生组成一个实验组,所抽取的2名同学中恰好为一名男生和一名女生,包含的基本事件个数m==7,(10分)∴所求概率为p=.(12分)20.(1)由椭圆+y2=1可得F1(﹣1,0),F2(1,0),设P(x,y),∵=,∴=,化为:x2﹣3x+y2+1=0,即=.又(x﹣3)2+(y﹣3)2=r2(0<r<3),∵圆C上有且只有一个点P满足=.∴上述两个圆外切,∴=r+,解得r=.(4分)(2)直线A2B2方程为:,化为=.设直线B1Q:y=kx﹣1,由圆心到直线的距离≤,可得:k∈.联立,解得E.(6分)联立,化为:(1+2k2)x2﹣4kx=0,解得D.(7分)∴|DB1|==.|EB1|==,∴===|1+|,(9分)令f(k)=,f′(k)=≤0,因此函数f(k)在k∈上单调递减.(10分)∴k=时, =|1+|=取得最大值.(12分)21.(Ⅰ)当m=2时,f(x)=x3+x2+3x,∴f′(x)=﹣x2+2x+3,故k=f′(3)=0,又∵f(3)=9,∴曲线y=f(x)在点(3,f(3))处的切线方程为:y=9,(3分)(Ⅱ)若f(x)在()上存在单调递增区间,即存在某个子区间(a,b)⊂(, +∞)使得f′(x)>0,∴只需f′()>0即可,f′(x)=﹣x2+2x+m2﹣1,由f′()>0解得m<﹣或m>,由于m>0,∴m>.(6分)(Ⅲ)由题设可得,∴方程有两个相异的实根x1,x2,故x1+x2=3,且解得:(舍去)或,(8分)∵x1<x2,所以2x2>x1+x2=3,∴,若 x1≤1<x2,则,而f(x1)=0,不合题意.若1<x1<x2,对任意的x∈,有x>0,x﹣x1≥0,x﹣x2≤0,则,于是对任意的x∈,f(x)>f(1)恒成立的充要条件是,解得;(10分)综上,m的取值范围是.(12分)22.(1)∵在直角坐标系xOy中,直线l的参数方程为,∴t=x﹣3,∴y=,整理得直线l的普通方程为=0,∵,∴,∴,∴圆C的直角坐标方程为:.(5分)(2)圆C:的圆心坐标C(0,).∵点P在直线l: =0上,设P(3+t,),则|PC|==,∴t=0时,|PC|最小,此时P(3,0).(5分)23.(I)解:∵|x﹣m|+|x|≥|x﹣m﹣x|=|m|,∴要使|x﹣m|+|x|<2有解,则|m|<2,解得﹣2<m<2.∵m∈N*,∴m=1.(5分)(II)证明:α,β>0,f(α)+f(β)=2α﹣1+2β﹣1=2,∴α+β=2.∴+==≥=,当且仅当α=2β=时取等号.(10分)。
高三数学第一学期期末高三数学理科测试试题
![高三数学第一学期期末高三数学理科测试试题](https://img.taocdn.com/s3/m/3996f98a168884868662d686.png)
第一学期期末考试 高三数学理科测试试题满分150分:完卷时间为120分钟:答案请写在答题纸上一、填空题(每小题4分:共44分)1、已知集合P ={x |x 2–9<0}:Q ={y |y=2x :x ∈Z }:则P ∩Q = 。
2、若复数i iaz ++=1为实数:则实数=a 。
3、函数f (x )=1+log 2 x (x ≥2)的反函数f –1(x ) = 。
4、函数xx y 4+=:x ∈[4,6]的最小值 。
5、若方程16422=++-ky k x 表示椭圆:则k 的取值范围是 。
6、方程sin x+cos x = –1在[0,π]内的解为 。
7、向量→a 与→b 的夹角为150:3||=→a :4||=→b :则=+→→|2|b a 。
8、直线3x +y –23=0截圆x 2+y 2=4得的劣弧所对的圆心角的大小为 。
9、在实数等比数列{a n }中a 1+a 2+a 3=2:a 4+a 5+a 6=16:则a 7+a 8+a 9= 。
10、定义在R 上的偶函数f (x ):满足f (2+x ) = f (2–x ):且当x ∈[0,2]时:f (x )=24x -:则f (20)= 。
11、正数数列{a n }中:对于任意n ∈N *:a n 是方程(n 2+n )x 2+(n 2+n –1)x –1=0的根:S n 是正数数列{a n }的前n 项和:则=∞→n n S lim 。
二、选择题(每小题4分:共16分) 12、在复平面内:复数z =i-21对应的点位于 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 13、命题:“对任意的R x ∈:0322≤--x x ”的否定是 ( )(A )不存在R x ∈:0322≤--x x : (B )存在R x ∈:0322≤--x x : (C )存在R x ∈:0322>--x x : (D )对任意的R x ∈:0322>--x x .14、已知A (1,0)、B (7,8):若点A 和点B 到直线l 的距离都为5:且满足上述条件的直线l 共有n 条:则n 的值是 ( ) (A ) 1 (B ) 2 (C ) 3 (D ) 415、 已知直线l :(m+1)x –my +2m –2=0与圆C :x 2+y 2=2相切:且满足上述条件的直线l 共有n 条:则n 的值为 ( ) (A ) 0 (B ) 1 (C ) 2 (D ) 以上答案都不对 三、解答题(本大题满分90分) 16、(本大题12分)设函数f (x )=)2sin()42cos(21ππ+-+x x :(1)化简f (x )的表达式:求f (x )的定义域:并求出f (x )的最大值和最小值:(2)若锐角α满足cos α=54:求f (α)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期末考试高三数学理科试题温馨提示:1、全卷满分150分,考试时间120分钟.编辑人:丁济亮2、考生务必将自己的姓名、考号、班级、学校等填写在答题卡指定位置;交卷时只交答题卡.一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将选项代号填涂在答题卡上相应位置. 1.设:f x →2x 是集合M 到集合N 的映射,若N ={1,2},则M 不可能是A 、{-1}B 、{-2,2}C 、{1,2,2}D 、{-2,-1,1,2}2.已知函数()y f x =的图象是连续不断的曲线,且有如下的对应值表A 、2个B 、3个C 、4个D 、5个3.复数ii-+22表示复平面内点位于 A 、第一象限B 、第二象限C 、第三象限D 、第四象限4.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是 A 、5 B 、6 C 、7 D 、85.由直线1,2,02x x y ===,及曲线1y x=所围图形的面积为 A 、154B 、174C 、1ln 22D 、2ln26.命题“x x R e x ∃∈<,”的否定是A 、x x R e x ∃∈,>B 、x x R e x ∀∈,≥C 、x x R e x ∃∈,≥D 、x x R e x ∀∈,>7.若x ,y 满足1122x y x y x y +⎧⎪--⎨⎪-⎩≥≥≤且z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是A 、(-1,2)B 、(-2,4)C 、(-4,0]D 、(-4,2)8.已知函数7(13)10(6)()(6)x a x a x f x a x --+⎧=⎨>⎩≤若数列{a n }满足a n =()f n (n ∈N +)且{a n }是递减数列,则实数a 的取值范围是 A 、(31,1) B 、(31,21) C 、(31,85) D 、(85,1)9.函数[]sin ,π,πy x x x =+∈-的大致图象是A 、B 、C 、D 、10.,在该几何体的正视图中,这条棱的投影是长为6的线段。
在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为 A 、22B 、23C 、4D 、25二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分)11. 已知11OA OB = ,≤,且14OAB S ∆=,则OA 与OB 夹角的取值范围是 ▲ . 12.若在1)n x的展开式中,第4项是常数项,则n = ▲ 13.曲线21xy x =-在点(1,1)处的切线方程为 ▲ . 14.下列命题中正确的是 ▲ .①如果幂函数222(33)mm y m m x --=-+的图象不过原点,则m =1或m =2;②定义域为R 的函数一定可以表示成一个奇函数与一个偶函数的和; ③已知直线a 、b 、c 两两异面,则与a 、b 、c 同时相交的直线有无数条; ④方程32y x --=13y x -+表示经过点A (2,3)、B (-3,1)的直线; ⑤方程m x +22-12+m y =1表示的曲线不可能是椭圆;15.定义在R 上的函数()f x ,对任意x 均有f (x )=f (x +2)+f (x -2)且f (2013)=2013,则f (2025)= ▲ .三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知函数2()(2cos sin )2xf x a x b =++ (1)若a =-1,求()f x 的单调增区间;(2)若[]0,πx ∈时,()f x 的值域是[5,8],求a ,b 的值.17.(本题满分12分)已知命题p :函数()(25)x f x a =-是R 上的减函数;命题q :在(1,2)x ∈时,不等式220x ax -+<恒成立,若p ∪q 是真命题,求实数a 的取值范围.18.(本题满分12分)已知数列{}n a 的首项15a =,且121n n a a +=+ (1)求数列{}n a 的通项公式;(2)设212()f x a x a x =+…()n n a x n N ++∈,求12323a a a ++…n na +.19.(本题满分12分)在五棱锥P -ABCDE 中,P A =AB =AE =2a ,PB =PE =22a ,BC =DE =a ,∠EAB =∠ABC =∠DEA =90° (1)求证:P A ⊥平面ABCDE ; (2)求二面角A -PD -E 的正弦值.第19题图20.(本题满分13分)如图,已知直线OP 1,OP 2为双曲线E :2222=1x y a b-的渐近线,△P 1OP 2的面积为427,在双曲线E 上存在点P 为线段P 1P 2的一个三等分点,且双曲线E 的离心率为213. (1)若P 1、P 2点的横坐标分别为x 1、x 2,则x 1、x 2之间满足怎样的关系?并证明你的结论; (2)求双曲线E 的方程;(3)设双曲线E 上的动点M ,两焦点F 1、F 2,若∠F 1MF 2为钝角,求M 点横坐标0x 的取值范围.21.(本题满分14分)已知函数()f x 满足对于x R ∀∈,均有1()2()2()ln (1)x x f x f x a x a a a+-=++>成立. (1)求()f x 的解析式; (2)求()f x 的最小值;(3)证明:12()()n n n n ++…()()1n n en N n e ++<∈-.高三期末考试数学(理)参考答案及评分标准一、选择题(每小题5分,共50分。
)CBABD BDCAC二、填空题(每小题5分,共25分。
) 11、π5π[,]6612、18 13、x +y -2=0 14、①②③ 15、2013 三、解答题16、()f x =a (1+cos x +sin x )+b =2a sin(x +π4)+a +b ……2分 (1)当a =-1时,由2k π+π2≤x +π4≤2k π+23π得2k π+π4≤x ≤2k π+45π∴()f x 的单调增区间为[2k π+π4,2k π+45π](k ∈z ) ……6分(2)∵0≤x ≤π ∴π4≤x +π4≤45π∴-22≤sin(x +π4)≤1,依题意知a ≠01°当a >0时⎩⎨⎧==++582b b a a ∴a =3(2-1),b =5……9分2°当a <0时⎩⎨⎧=++=528b a a b ∴a =-3(2-1),b =8综上所述:a =32-3,b =5或a =3-32,b =8 ……12分17、p :∵函数()(25)x f x a =-是R 上的减函数∴0<2a -5<1, ……3分 故有25<a <3 ……4分 q :由x 2-ax +x <0得ax >x 2+2,∵1<x <2,且a >xx x x 222+=+在x ∈(1,2)时恒成立, ……6分 又],[3222∈+xx ∴a ≥3 ……9分E DCB A P第19题图 p ∪q 是真命题,故p 真或q 真,所以有25<a <3或a ≥3 ……11分 所以a 的取值范围是a >25……12分 18、(1)∵+1+1=2n n a a ∴+1+1=2(+1)n n a a ……2分又1+1=6a ∴ ∴{}+1n a 是以6为首项,2为公式的等比数列∴1+1=62n n a ⋅- ∴=321n n a ⋅- ……5分 (2)∵12()=+2++n n f x a a x na x ' -1 ……7分∴12(1)=+2++n f a a na ' ……9分2=3(2+22++2)(1+2++)n n n ⋅⋅ -+1(+1)=3(1)2+62n n n n ⋅--……12分 19、(1)在△P AB 中,P A =2a ,PB =22a ,AB =2a∴PB 2=P A 2+AB 2 ∴P A ⊥AB ……3分同理可证:P A ⊥AE又AB ∩AE =A ,AB ⊂平面ABCDE ,AE ⊂平面ABCDE∴P A ⊥平面ABCDE ……6分 (2)过E 作EH ⊥AD 于H ,EF ⊥PD 于F ,连FH ,则EH ⊥平面P AD ,FH ⊥PD ∴∠EFH 为二面角A -PD -E 的平面角 ……8分又在Rt △AED 和Rt △POE 中,EH ²AD =AE ²DE ,EF ²PD =DE ²PE∴EH =52a EF =322a∴sin ∠EFH =EFEH =10310 故二面角A -PD -E 的正弦值为10310 ……12分20、(1)设双曲线方程为22a x -22by =1,由已知得a c =213∴22ab =49 ∴渐近线方程为y =±23x ………………2分则P 1(x 1,23x 1) P 2(x 2,-23x 2)设渐近线y =23x 的倾斜角为θ,则tan θ=23 ∴sin2θ=491232+⨯=1312 ∴427=21|OP 1||OP 2|sin2θ=21212149x x +222249x x +²1312∴x 1²x 2=29………………5分 (2)不妨设P 分21P P 所成的比为λ=2,P (x ,y ) 则x =3221x x + y =3221y y +=2221x x - ∴x 1+2x 2=3x x 1-2x 2=2y ………………7分∴(3x )2-(2y )2=8x 1x 2=36∴42x -92y =1 即为双曲线E 的方程……9分(3)由(2)知C =13,∴F 1(-13,0) F 2(13,0) 设M (x 0,y 0)则y 20=49x 20-9,1MF =(-13-x 0,-y 0) 2MF =(13-x 0,-y 0) ∴1MF ²2MF =x 20-13+y 20=413x 20-22 ………………11分若∠F 1MF 2为钝角,则413x 20-22<0∴|x 0|<132286 又|x 0|>2∴x 0的范围为(-132286,-2)∪(2,132286)……13分 21、(1)依题意得⎪⎪⎩⎪⎪⎨⎧-+=+-++=-+a x a a x f x f a x aa x f x f x x x xln 2)1()(2)(ln )1(2)(2)(解之得a x a x f xln )(-= ……4分 (2)a a a a a x f xxln )1(ln ln )('-=-= 当x >0时()0f x '> 当x <0时()0f x '<∴()f x )在(,0)-∞上递减在(0,)+∞上递增∴min ()f x =f (0) =1 ……8分 (3)由(2)得 ln 1x a x a -≥恒成立,令a =e , 则1x e x +≥ 在1x e x +≥中令x =-nk(k =1,2,…n -1) ∴1-n k ≤n ke - ∴(1)n k ke n--≤∴(1-n 1)n ≤e -1 (1-n 2)n ≤e -2…(1-n n 1-)n ≤e -(n -1),(nn )n =1∴(n n )n +(n n 1-)n +(n n 2-)n +…+(n 1)n ≤1+e -1+e -2+…+e -(n -1) =1-e e 1])1(1[11)1(1<--=--e e e ee n n ……14分。