布谷鸟搜索算法简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

布谷鸟搜索算法
维基百科,自由的百科全书
布谷鸟搜索(Cuckoo Search,缩写 CS),也叫杜鹃搜索,是由剑桥大学杨新社(音译自:Xin-She Yang)教授和S.戴布(S.Deb)于2009年提出的一种新兴启发算法[1]。

CS算法是通过模拟某些种属布谷鸟的寄生育雏(Brood Parasitism),来有效地求解最优化问题的算法。

同时,CS也采用相关的Levy飞行搜索机制。

研究表明,布谷鸟搜索比其他群体优化算法更有效。

布谷鸟搜索
布谷鸟搜索(CS)使用蛋巢代表解。

最简单情况是,每巢有一个蛋,布谷鸟的蛋代表了一种新的解。

其目的是使用新的和潜在的更好的解,以取代不那么好的解。

该算法基于三个理想化的规则:
∙每个杜鹃下一个蛋,堆放在一个随机选择的巢中;
∙最好的高品质蛋巢将转到下一代;
∙巢的数量是固定的,布谷鸟的蛋被发现的概率为。

实际应用
布谷鸟搜索到工程优化问题中的应用已经表现出其高优效率,经过几年的发展,为了进一步提高算法的性能,CS算法的很多变体与改进逐步涌现。

瓦尔顿(Walton)等提出了修正布谷鸟搜索(Modified Cuckoo Search,缩写 MCS);伐立安(Valian)等提出了一种可变参数的改进CS算法,提高了收敛速度,并将改进算法应用于前馈神经网络训练中;马里切尔凡姆(Marichelvam)将一种混合CS算法应用于流水车间调度问题求解中;钱德拉塞卡兰(Chandrasekaran)等将集成了模糊系统的混合CS算法应用于机组组合问题。

杨(Yang)和戴布(Deb)提出多目标布谷鸟搜索(Multiobjective Cuckoo Search,缩写 MOCS),应用到工程优化并取得很好的效果;詹(Zhang)等通过对种群分组,并根据搜索的不同阶段对搜索步长进行预先设置,提出了修正调适布谷鸟搜索(Modified Adaptive Cuckoo Search,缩写 MACS),提高了CS的性能。

相关文档
最新文档