动量守恒定律经典习题很经典

合集下载

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

(物理)物理动量守恒定律练习题20篇含解析

(物理)物理动量守恒定律练习题20篇含解析

(2)若入射氦核以 v0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。反应生成的氧 核和质子同方向运动,且速度大小之比为 1:50。求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s
【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-
考查了动量守恒定律的应用名师点睛要使两车不相撞甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同以甲车球与乙车为系统由系统动量守恒列出等式再以球与乙车为系统由系统动量守恒列出等式联立求解形滑板n滑板两端为半径的14圆弧面
(物理)物理动量守恒定律练习题 20 篇含解析
一、高考物理精讲专题动量守恒定律
【答案】 vB 4m / s hp 0.75m
【解析】
试题分析:(i)B 球总地面上方静止释放后只有重力做功,根据动能定理有
mB gh
1 2
mB vB 2
可得 B 球第一次到达地面时的速度 vB 2gh 4m / s (ii)A 球下落过程,根据自由落体运动可得 A 球的速度 vA gt 3m / s
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
由动量守恒得:2mV2=mv1(1 分)
损失的动能为:ΔE′=

动量守恒定律题集

动量守恒定律题集

动量守恒定律题集一、两个小球在光滑水平面上发生碰撞,碰撞前两球动量大小相等,方向相反。

碰撞后,两球的动量可能的情况是:A. 两球动量大小相等,方向相反B. 两球动量大小不等,方向相同C. 两球动量都为零D. 一个球动量为零,另一个球动量不为零(答案)A、B、C(解析)根据动量守恒定律,碰撞前后系统总动量保持不变。

由于碰撞前两球动量大小相等、方向相反,所以系统总动量为零。

碰撞后,两球动量之和仍应为零,因此可能出现两球动量大小相等、方向相反,或者两球动量大小不等但方向相同(只要保证动量之和为零),或者两球动量都为零的情况。

而一个球动量为零,另一个球动量不为零的情况则不可能出现,因为这会导致系统总动量不为零,违反动量守恒定律。

二、一质量为m的物体在光滑水平面上以速度v碰撞一静止的、质量为2m的物体。

碰撞后,两物体的动量可能的情况是:A. 质量为m的物体动量大小为mv/3,质量为2m的物体动量大小为2mv/3B. 质量为m的物体动量大小为2mv/3,质量为2m的物体动量大小为mv/3C. 两物体动量大小均为mvD. 两物体动量大小均为零(答案)A、D(解析)根据动量守恒定律,碰撞前后系统总动量应保持不变,即mv。

选项A中,两物体动量之和为mv/3 + 2mv/3 = mv,满足动量守恒。

选项D中,两物体动量均为零,也满足动量守恒。

而选项B中,两物体动量之和为2mv/3 + mv/3 = mv,虽然动量守恒,但考虑到碰撞前只有质量为m的物体有动量,且碰撞过程中动量应发生转移,故B选项不可能。

选项C 中,两物体动量之和为2mv,不满足动量守恒定律。

三、一质量为M的滑块在光滑水平面上以速度v滑行,与一静止的、质量为2M的滑块发生碰撞。

碰撞后,两滑块的速度可能为:A. v/3和v/3B. v/2和v/2C. -v/3和2v/3D. 2v和-v(答案)A、C(解析)根据动量守恒定律,碰撞前后系统总动量应保持不变,即Mv。

(完整版)动量守恒定律习题及答案

(完整版)动量守恒定律习题及答案

动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零2.静止的实验火箭,总质量为M,当它以对地速度为v0喷出质量为△m的高温气体后,火箭的速度为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。

最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。

则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。

在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A.由于大锤不断的敲打,小车将持续向右运动B.由于大锤与小车之间的作用力为内力,小车将静止不动C.在大锤的连续敲打下,小车将左右移动D.在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a、b两小球相撞,碰撞前后都在同一直线上运动。

若测得它们相撞前的速度为v a、v b,相撞后的速度为v a′、v b′,可知两球的质量之比等于()A.B.C.D.6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg•m/s,B球的动量是6kg•m/s,A球追上B球时发生碰撞,则碰撞后A、B 两球的动量可能为()A.p A=0,p B=l4kg•m/sB.p A=4kg•m/s,p B=10kg•m/sC.p A=6kg•m/s,p B=8kg•m/sD.p A=7kg•m/s,p B=8kg•m/s7.质量为m1=2kg和m2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m2的质量等于()A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。

动量守恒定律经典例题

动量守恒定律经典例题
(1)所选系统动量是否守恒?
甲(含船)和球、乙(含船)和球、甲乙(含船 )和球
(2)若最终甲的速度为0,乙的速度为多少?


如图所示,光滑水平面上两小车中间夹一压缩了的轻弹
簧,两手分别按住小车,使它们静止,对两车及弹簧组
成的系统,下列说法中正确的是(
)
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
(B)若A、B与平板车上表面间的动摩擦因数相 同,A、B、C组成的系统的动量守恒
(C)若A、B所受的摩擦力大小相等,A、B组成 的系统的动量守恒
(D)若A、B所受的摩擦力大小相等,A、B、C组 成的系统的动量守恒
BCD
如图所示,A、B两物体的质量比mA∶mB=3∶2, 它们原来静止在平板车C上,A、B间有一根被压 缩了的弹簧,A、B与长平板车的上表面间动摩擦 因数相同,地面光滑.当弹簧突然释放后,则有 A.A、B
A.当小球到达最低点时,木块有最大速率 B.当小球的速率最大时,木块有最大速率 C.当小球再次上升到最高点时,木块的速率为最大 D.当小球再次上升到最高点时,木块的速率为零
ABD
质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆 以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的 静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说 法是可能发生的( ) A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3, 且满足:(M+M0)V0=MV1+M1V2+M0V3; B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:
B.A、B、C系统动量守恒 C. D.小车向右运动
BC
热气球下面吊着一个篮子,向上做匀速直线 运动,剪断绳子后在篮子落地前,系统的动 量是否守恒?若篮子落地后呢?

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高中物理 第一章 动量守恒定律 课后练习、课时练习

高中物理  第一章 动量守恒定律 课后练习、课时练习

一、单选题(选择题)1. 一质量为m的物体静止在光滑水平面上,在水平力F作用下,经时间t,通过位移L后,动量变为p、动能变为E k.若上述过程F不变,物体的质量变为,以下说法正确的是()A.经过时间2t,物体动量变为2pB.经过位移2L,物体动量变为2pC.经过时间2t,物体动能变为4E kD.经过位移2L,物体动能变为4E k2. 关于动量和动能,以下说法中正确的是()A.速度大的物体动量一定大B.质量大的物体动量一定大C.两个物体的质量相等,动量大的其动能也一定大D.同一个物体动量变化时动能一定发生变化3. 如图,体积相同的两球在光滑水平面上,小球静止,小球以的速度与球发生正碰。

已知球的质量是球的2倍,碰后球的速度可能是()A.B.C.D.4. 质量为m的物块在光滑水平面上以速率v匀速向左运动,某时刻对物块施加与水平方向夹角为的恒定拉力F,如图所示。

经过时间t,物块恰好以相同速率v向右运动。

在时间t内,下列说法正确的是()A.物块所受拉力F的冲量方向水平向右B.物块所受拉力F的冲量大小为2mv C.物块所受重力的冲量大小为零D.物块所受合力的冲量大小为5. 玻璃杯从同一高度落下,掉在石头上比掉在草地上容易碎,这是由于玻璃杯与石头的撞击过程中()A.玻璃杯的动量较大B.玻璃杯受到的冲量较大C.玻璃杯的动量变化较大D.玻璃杯受到的冲力较大6. 如图所示,在光滑水平面上放一个质量为M的斜面体,质量为m的物体沿斜面(斜面光滑)由静止开始自由下滑,下列说法中正确的是()A.M和m组成的系统动量守恒,机械能也守恒B.M和m组成的系统水平方向动量守恒,竖直方向动量不守恒C.M和m组成的系统动量守恒,机械能不守恒D.M和m组成的系统动量不守恒,机械能也不守恒7. 如图所示,质量为1kg的物体在光滑水平地面上做初速度为6m/s的匀速直线运动,某时刻开始,物体受到如图所示的水平力F的作用,0~2s时间内,力F的方向与物体的初速度方向相同,2s~6s时间内,力F的方向与物体的初速度方向相反。

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

动量守恒定律的典型例题.

动量守恒定律的典型例题.

动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[]A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统动量守恒D.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【分析】本题涉及如何选择系统,并判断系统是否动量守恒.物体间存在相互作用力是构成系统的必要条件,据此,本题中所涉及的桌子、小车、枪和子弹符合构成系统的条件.不仅如此,这些物体都跟地球有相互作用力.如果仅依据有相互作用就该纳入系统,那么推延下去只有把整个宇宙包括进去才能算是一个完整的体系,显然这对于分析、解决一些具体问题是没有意义的.选择体系的目的在于应用动量守恒定律去分析和解决问题,这样在选择物体构成体系的时候,除了物体间有相互作用之外,还必须考虑“由于物体的相互作用而改变了物体的动量”的条件.桌子和小车之间虽有相互作用力,但桌子的动量并没有发生变化.不应纳入系统内,小车、枪和子弹由于相互作用而改变了各自的动量,所以这三者构成了系统.分析系统是否动量守恒,则应区分内力和外力.对于选定的系统来说,重力和桌面的弹力是外力,由于其合力为零所以系统动量守恒.子弹与枪筒之间的摩擦力是系统的内力,只能影响子弹和枪各自的动量,不能改变系统的总动量.所以D的因果论述是错误的.【解】正确的是C.【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离.【分析】子弹击中鸟的过程,水平方向动量守恒,接着两者一起作平抛运动。

【解】把子弹和鸟作为一个系统,水平方向动量守恒.设击中后的共同速度为u,取v0的方向为正方向,则由Mv0+mv=(m+M)u,得击中后,鸟带着子弹作平抛运动,运动时间为鸟落地处离击中处水平距离为S=ut=11.76×2m=23.52m.【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为[]【分析】列车原来做匀速直线运动,牵引力F等于摩擦力f,f=k(m+M)g(k为比例系数),因此,整个列车所受的合外力等于零.尾部车厢脱钩后,每一部分所受摩擦力仍正比于它们的重力.因此,如果把整个列车作为研究对象,脱钩前后所受合外力始终为零,在尾部车厢停止前的任何一个瞬间,整个列车(前部+尾部)的动量应该守恒.考虑刚脱钩和尾部车厢刚停止这两个瞬间,由(m+M)v0=0+Mv得此时前部列车的速度为【答】B.【说明】上述求解是根据列车受力的特点,恰当地选取研究对象,巧妙地运用了动量守恒定律,显得非常简单.如果把每一部分作为研究对象,就需用牛顿第二定律等规律求解.有兴趣的同学,请自行研究比较.【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【分析】取相互作用的两个小球为研究的系统。

物理动量守恒定律练习题20篇

物理动量守恒定律练习题20篇

物理动量守恒定律练习题20篇一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.5.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离.【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L 【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B A B m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=6.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.7.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

(完整版)动量定理精选习题+答案

(完整版)动量定理精选习题+答案
小球由静止摆到最低点的过程中绳子的拉力不做功只有重力做功机械能守恒即可由机械能守恒定律求出小球与q碰撞前瞬间的速度?到达最低点时与q的碰撞时间极短且无能量损失满足动量守恒的条件且能量守恒由两大守恒定律结合可求出碰撞后小球与q在平板车p上滑动的过程中系统的合外力为零总动量守恒即可由动量守恒定律求出小物块q离开平板车时速度
三、计算题(本大题共 10 小题,共 100.0 分)
M 在水平轨道上向右移动了 0.54 m
11. 如图所示,质量为 5kg 的木板 B 静止于光滑水平面上,物块 A 质量为 5kg,停在 B 的左端 .质量为 1kg
的小球用长为 0.45??的轻绳悬挂在固定点 O 上,将轻绳拉直至水平位置后, 由静止释放小球, 小球在最
m 的静
止木块发生碰撞,碰撞的时间极短 .在此碰撞过程中,下列哪个或哪些说法是可
能发生的? ( )
A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为
??1、 ??2 、 ?3?,满足 (?? + ??0 )??= ???1? +
???2? + ??0 ??3
B. 在此碰撞过程中, 小球的速度不变, 小车和木块的速度分别为 ?1?和 ?2?,满足 (?? + ??0)??= ???1?+ ???2?
4
B. 5 ??0
1
C. 5 ??0
1
D. 25 ??0
2. 如图所示,小车静止在光滑水平面上, AB 是小车内半圆弧轨道的水平直径,现 将一小球从距 A 点正上方 h 高处由静止释放,小球由 A 点沿切线方向经半圆轨 道后从 B 点冲出,在空中能上升的最大高度为 0.8? ,不计空气阻力 .下列说法正 确的是 ( )
1

动量守恒定律习题及答案

动量守恒定律习题及答案

1.一质量为0.1千克的小球从0.80米高处自由下落到一厚软垫上,若从小球接触软垫到小球陷至最低点经历了0.20秒,则这段时间内软垫对小球的冲量为多少?解:小球接触软垫的动能为E = mgh = 0.8 焦耳,可以算出此时的动量为P = sqr(2mE)= 0.4软垫对小球的冲量 = P +mg*0.2 = 0.4 + 0.2 = 0.62. 水平面上放置一辆平板小车,小车上用一个轻质弹簧连接一个木块,开始时弹簧处于原长,一颗子弹以水平速度vo=100m/s打入木块并留在其中(设作用时间极短),子弹质量为mo=0.05kg 木块质量为m1=0.95kg 小车质量为m2=4kg 各接触面摩擦均不计,求木块压缩弹簧的过程中,弹簧具有的最大弹性势能是多少?解:整个过程动量守恒,总动量P = m0*v0 ,=5根据动能E = 0.5mV^2 ,动量P = mV,导出E = P^2/2m子弹打入木块后,动能E1 = P^2/2(m0+m1) = 12.5焦耳当所有物体速度相同时,弹性势能最大此时的动能E2 = P^2/2(m0+m1+m2)= 2.5焦耳所以弹簧的最大弹性势能Ep = E1 -E2= 12.5 - 2.5 = 10焦耳3. 质量为m的子弹打入光滑水平面上的质量为M的木块中,木块动能增加6j,求子弹动能的取值范围?解:假设子弹初速率为V,打入木块后,共同速率为V'根据动量守恒,mV = (M+m)V'得到V'=mV/(M+m)大木块的动能为0.5MV'^2 = 0.5M[mV/(M+m)]^2 =6变形可以得到0.5mV^2*Mm/(M+m)^2 = 6得到子弹动能为0.5mV^2 = 6(M+m)^2/Mm ,大于等于24,当M =m时,有最小值24焦耳4.在一光滑的水平面上有两块相同木板BC,质点重物A在B右端,ABC质量等。

现A和b 以同一速度滑向静止的c,BC正碰后BC粘住,A在C上有摩擦滑行,到c右端未落。

关于动量守恒定律练习题

关于动量守恒定律练习题

关于动量守恒定律练习题一、选择题A. 系统不受外力作用B. 系统受到平衡力作用C. 系统内各物体间相互作用力为内力D. 系统内各物体间相互作用力为外力A. 动能B. 动量C. 重力势能D. 弹性势能3. 质量为m的物体以速度v与静止的质量为2m的物体发生完全非弹性碰撞,碰撞后两物体的共同速度为:A. v/3B. v/2C. 2v/3D. v二、填空题1. 动量守恒定律的内容是:在_________的情况下,系统的总动量_________。

2. 质量为m1的物体以速度v1与质量为m2的物体发生弹性碰撞,碰撞后两物体的速度分别为v1'和v2',则动量守恒定律表达式为:_________。

3. 在光滑水平面上,质量为m的物体受到一个恒力F作用,经过时间t后,物体的速度为_________。

三、计算题1. 质量为2kg的物体A以6m/s的速度向右运动,与质量为3kg的物体B发生完全非弹性碰撞,物体B初始静止。

求碰撞后两物体的共同速度。

2. 质量为1kg的物体以10m/s的速度沿光滑水平面向右运动,与质量为2kg的物体发生弹性碰撞,碰撞后第二个物体速度为8m/s。

求第一个物体碰撞后的速度。

3. 在光滑水平面上,质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向左运动。

两物体发生完全非弹性碰撞后,求碰撞后两物体的共同速度。

四、应用题1. 一颗子弹以一定速度射入固定在光滑水平面上的木块中,子弹和木块一起运动。

求子弹射入木块后,子弹和木块的共同速度。

2. 在光滑水平面上,质量为m的物体A以速度v向右运动,与质量为2m的物体B发生弹性碰撞。

碰撞后,物体B的速度为v/2,求物体A碰撞后的速度。

3. 质量为m1和m2的两个物体分别以速度v1和v2在光滑水平面上相向而行,发生完全非弹性碰撞后,求碰撞后两物体的共同速度。

五、判断题1. 若一个系统受到的外力为零,则该系统的总动量一定守恒。

()2. 在弹性碰撞中,不仅系统的总动量守恒,而且系统的总动能也守恒。

动量守恒定律经典习题(带答案)

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1.分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物 初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+=即为所求。

动量守恒定律习题_高中物理动量守恒定律经典习题

动量守恒定律习题_高中物理动量守恒定律经典习题

动量守恒定律习题一、子弹打木块类问题设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

二、反冲问题1、总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?2、质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?三、爆炸类问题抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

四、某一方向上的动量守恒如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?五、物块与平板间的相对滑动1、如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

2、两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。

六、弹簧模型如图所示,在光滑轨道上,小车A、B用轻弹簧连接,将弹簧压缩后用细绳系在A、B上然后使A、B以速度v0沿轨道向右运动.运动中细绳突然断开,当弹簧第一次恢复到自然长度时,A速度刚好为零,已知A、B的质量分别为m A、m B,且m A<m B求:被压缩的弹簧具有的弹性势能E p;七、综合运用1、如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.2、如图所示,在小车的一端高h 的支架上固定着一个半径为R 的1/4圆弧光滑导轨,一质量为m =0.2kg 的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M =2kg ,车身长L =0.22m ,车与水平地面间摩擦不计,图中h =0.20m ,重力加速度g =10m/s 2,求R .3、如图所示,光滑轨道的DP 段为水平直轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 的小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g ,求撤去外力前的瞬间,弹簧的弹性势能E 是多大?m4、如图所示,在光滑水平面上有一辆质量M=4kg的平板小车,车上的质量为m=1.96kg的木块,木块与小车平板间的动摩擦因数μ=0.2,木块距小车左端1.5m,车与木块一起以V=0.4m/s的速度向右行驶。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

动量守恒定律 典型例题及练习题

动量守恒定律 典型例题及练习题

动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。

它们的下底面光滑,但上表面粗糙。

另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。

M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。

m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。

﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。

重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。

现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。

已知A 滑到C 的右端而未掉下。

试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。

两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。

每次推出,A 车相对于地面的速度都是v ,方向向左。

则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题2 0 篇一、高考物理精讲专题动量定理1. 质量为m 的小球,从沙坑上方自由下落,经过时间t₁到达沙坑表面,又经过时间t₂停在沙坑里.求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量1.【答案】(1) (2)mgt₁【解析】试题分析:设刚开始下落的位置为A, 刚好接触沙的位置为B, 在沙中到达的最低点为C.(1)在下落的全过程对小球用动量定理:重力作用时间为ti+tz, 而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(ti+t2)-Ft₂=0,解得:(2)仍然在下落的全过程对小球用动量定理:在t₁时间内只有重力的冲量,在t₂时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt₁-I=0,∴I=mgt₁方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2. 如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以vo=12m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m₁=0.5 kg、m₂=1.5kg。

求:①A 与B 撞击结束时的速度大小v;②在整个过程中,弹簧对A 、B 系统的冲量大小1。

【答案】①3m/s; ②12N·s【解析】【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m₁Vo=(m₁+m₂)v 代入数据解得v=3m/s②以向左为正方向, A 、B 与弹簧作用过程由动量定理得l=(m₁+m₂) (-v)-(m₁+m₂)v代入数据解得l=-12N ·s负号表示冲量方向向右。

3. 汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值B 时,安全气囊爆开.某次试验中,质量m=1600 kg 的试验车以速度v₁= 36 km/h 正面撞击固定试验台,经时间t₁= 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I 的大小及F 的大小;(2)若试验车以速度v 撞击正前方另一质量m=1600 kg、速度v₂=18 km/h 同向行驶的汽车,经时间t₂=0. 16s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)1。

高三物理动量守恒练习题及答案

高三物理动量守恒练习题及答案

高三物理动量守恒练习题及答案动量守恒是物理学中的重要概念,通过练习题的形式可以更好地理解和掌握动量守恒的原理和应用。

下面是一些高三物理动量守恒练习题及答案,供同学们参考和练习。

练习题1:一个质量为2kg的小球以4m/s的速度向右运动,与一个质量为3kg 的小球发生完全弹性碰撞后,原来静止的小球反弹出去。

求碰撞后两球的速度分别是多少?解答:根据动量守恒定律,碰撞前后系统的总动量不变。

设第一个小球的速度为V1,第二个小球的速度为V2,碰撞后两球的速度分别为V1'和V2'。

碰撞前的动量:m1 * V1 + m2 * V2 = 2kg * 4m/s + 3kg * 0m/s = 8kg·m/s碰撞后的动量:m1 * V1' + m2 * V2' = 2kg * (-4m/s) + 3kg * V2'根据动量守恒定律,两者相等:2kg * (-4m/s) + 3kg * V2' = 8kg·m/s解方程可得:V2' = -5.34m/s练习题2:一辆质量为1200kg的小车以20m/s的速度向东行驶,与一辆质量为800kg的小车发生完全弹性碰撞后,第一个小车的速度变为10m/s,请问第二个小车的速度是多少?解答:设第二个小车的速度为V2'。

碰撞前的动量:m1 * V1 + m2 * V2 = 1200kg * 20m/s + 800kg * 0m/s = 24000kg·m/s 碰撞后的动量:m1 * V1' + m2 * V2' = 1200kg * 10m/s + 800kg * V2'根据动量守恒定律,两者相等:1200kg * 10m/s + 800kg * V2' = 24000kg·m/s解方程可得:V2' = 15m/s练习题3:一个质量为0.1kg的小球以12m/s的速度向右运动,与一个质量为0.2kg的小球发生完全非弹性碰撞后,两球一起向右运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律经典练习题例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少^例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg 的小车,最后以共同速度运动,滑块与车的摩擦系数为,则此过程经历的时间为多少(例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2),例4、如图所示,质量为的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为,木块与小车之间的摩擦系数为(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

[例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子,和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞¥反馈练习:1、质量分别为2kg和5kg的两静止的小车m1、m2中间压缩一根轻弹簧后放在光滑水平面上,放手后让小车弹开,今测得m2受到的冲量为10N·s,则(1)在此过程中,m1的动量的增量为A、2kg·m/sB、-2kg·m/sC、10kg·m/sD、-10kg·m/s(2)弹开后两车的总动量为A、20kg·m/sB、10kg·m/sC、0D、无法判断#2、质量为50kg的人以8m/s的速度跳上一辆迎面驶来的质量为200kg、速度为4m/s的平板车。

人跳上车后,车的速度为A、sB、sC、sD、2m/s3、如图所示,滑块质量为1kg,小车质量为4kg。

小车与地面间无摩擦,车底板距地面。

现给滑块一向右的大小为5N·s的瞬时冲量。

滑块飞离小车后的落地点与小车相距,则小车后来的速度为A、s,向左B、s,向右C、1m/s,向右D、1m/s,向左4、在光滑的水平地面上有一辆小车,甲乙两人站在车的中间,甲开始向车头走,同时乙向车尾走。

站在地面上的人发现小车向前运动了,这是由于A、甲的速度比乙的速度小B、甲的质量比乙的质量小C、甲的动量比乙的动量小D、甲的动量比乙的动量大M的人以对地速度v5、A、B两条船静止在水面上,它们的质量均为M。

质量为2从A船跳上B船,再从B船跳回A船,经过几次后人停在B船上。

不计水的阻力,则~A、A、B两船速度均为零B、v A:v B=1:1C、v A:v B=3:2D、v A:v B=2:36、质量为100kg的小船静止在水面上,船两端有质量40kg的甲和质量60kg的乙,当甲、乙同时以3m/s的速率向左、向右跳入水中后,小船的速率为A、0B、s,向左C、s,向右D、s,向左7、A、B两滑块放在光滑的水平面上,A受向右的水平力F A,B受向左的水平力F B作用而相向运动。

已知m A=2m B,F A=2F B。

经过相同的时间t撤去外力F A、F B,以后A、B相碰合为一体,这时他们将A、停止运动B、向左运动C、向右运动D、无法判断8、物体A的质量是B的2倍,中间有一压缩的弹簧,放在光滑的水平面上,由静止同时放开后一小段时间内A 、A 的速率是B 的一半 B 、A 的动量大于B 的动量 ¥C 、A 受的力大于B 受的力D 、总动量为零9、放在光滑的水平面上的一辆小车的长度为L ,质量等于M 。

在车的一端站一个人,人的质量等于m ,开始时人和车都保持静止。

当人从车的一端走到车的另一端时,小车后退的距离为A 、mL/(m+M)B 、ML/(m+M)C 、mL/(M-m)D 、ML/(M-m)10、如图所示,A 、B 两个物体之间用轻弹簧连接,放在光滑的水平面上,物体A 紧靠竖直墙,现在用力向左推B 使弹簧压缩,然后由静止释放,则A 、弹簧第一次恢复为原长时,物体A 开始加速B 、弹簧第一次伸长为最大时,两物体的速度一定相同C 、第二次恢复为原长时,两个物体的速度方向一定反向D 、弹簧再次压缩为最短时,物体A 的速度可能为零 11、\12、如图所示,小球A 以速率v 0向右运动时跟静止的小球B 发生碰撞,碰后A 球以20v 的速率弹回,而B 球以30v的速率向右运动,求A 、B 两球的质量之比。

12、质量为10g 的小球甲在光滑的水平桌面上以30cm/s 的速率向右运动,恰遇上质量为50g 的小球乙以10cm/s 的速率向左运动,碰撞后,小球乙恰好静止。

那么,碰撞后小球甲的速度多大方向如何)13、如图所示,物体A 、B 并列紧靠在光滑水平面上,m A =500g ,m B =400g ,另有一个质量为100g 的物体C 以10m/s 的水平速度摩擦着A 、B 表面经过,在摩擦力的作用下A 、B 物体也运动,最后C 物体在B 物体上一起以s 的速度运动,求C 物体离开A 物体时,A 、C 两物体的速度。

14、如图所示,光滑的水平台子离地面的高度为h ,质量为m 的小球以一定的速度在高台上运动,从边缘D 水平射出,落地点为A ,水平射程为s 。

如果在台子边缘D 处放一质量为M 的橡皮泥,再让小球以刚才的速度在水平高台上运动,在边缘D 处打中橡皮泥并同时落地,落地点为B 。

求AB 间的距离。

\/15.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =,m B =,m C = .现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108J (弹簧仍处于弹性限度内),然后同时释放A 、B ,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰以4m/s 的速度迎面与B 发生碰撞并粘连在一起.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前)A 和B 物块速度的大小. (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.]16.如图所示,质量均为M=2m 的木块A 、B 并排放在光滑水平面上,A 上固定一根轻质细杆,轻杆上端的小钉(质量不计)O 上系一长度为L 的细线,细线的另一端系一质量为m 的小球C ,现将C 球的细线拉至水平,由静止释放,求:(1)两木块刚分离时B 、C 速度.(2)两木块分离后,悬挂小球的细线与竖直方向的最大夹角.~例1、分析:以物体和车做为研究对象,系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物 初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=\即为所求。

例2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。

以滑块的运动方向为正方向,由动量守恒定律可得滑块 小车 初:v 0=4m/s 0末:v v mv 0=(M+m)vs m v m M M v /143110=⨯+=+=再以滑块为研究对象,其受力情况如图所示,由动量定理可得#ΣF=-ft=mv-mv 0s g v v t 5.1102.0)41(0=⨯--=-=μ f=μmg即为所求。

例3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。

但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。

由已知条件:m 1:m 2=3:2m 1 m 2初:v 0=10m/s v 0=10m/s|末:v 1=-100m/s v 2= (m 1+m 2)v 0=m 1v 1+m 2v 2s m m v m v m m v /1752)100(3105)(2110212=-⨯-⨯=-+=炸后两物块做平抛运动,其间距与其水平射程有关。

Δx=(v 1+v 2)tm g h v v x 2751052)175100(2)(21=⨯⨯+=+=∆ y=h=21gt 2即为所求。

例4、分析:(1)以木块和小车为研究对象,系统所受合外力为零,系统动量守恒,以木块速度方向为正方向,由动量守恒定律可得:@木块m 小车M初:v 0=2m/s v 0=0末:v v mv 0=(M+m)vs m v m M m v /4.026.14.04.00=⨯+=+=(2)再以木块为研究对象,其受力情况如图所示,由动量定理可得ΣF=-ft=mv-mv 0s g v v t 8.04102.0)24.0(0=⨯⨯--=-=μf=μmg 、(3)木块做匀减速运动,加速度21/2s m g mfa ===μ车做匀加速运动,加速度22/5.06.1104.02.0s m M mg M f a =⨯⨯===μ,由运动学公式可得:v t 2-v 02=2as在此过程中木块的位移m a v v S t 96.02224.02222021=⨯--=-=车的位移m t a S 16.08.05.021212222=⨯⨯==由此可知,木块在小车上滑行的距离为ΔS=S 1-S 2=即为所求。

另解:设小车的位移为S 2,则A 的位移为S 1+ΔS ,ΔS 为木块在小车上滑行的距离,那么小车、木块之间的位移差就是ΔS ,作出木块、小车的v-t 图线如图所示,则木块在小车上的滑行距离数值上等于图中阴影部分的三角形的“面积”。

…例5、分析:设甲推出箱子后速度为v 甲,乙抓住箱子后的速度为v 乙。

分别以甲、箱子;乙、箱子为研究对象,系统在运动过程中所受合外力为零,总动量守恒。

以甲的速度方向为正方向,由动量守恒定律可得:甲推箱子的过程:甲:M 箱子:m 初:v 0=2m/s v 0=2m/s末:v 甲 v= (M+m)v 0=Mv 甲+mv (1) 乙接箱子的过程乙:M 箱子;m 初:v 0=-2m/s v末:v 乙 v 乙 Mv 0+mv=(M+m)v 乙 (2) 甲、乙恰不相撞的条件:v 甲=v 乙 三式联立,代入数据可求得:v=s参考答案:1、D 、C2、C3、B4、C5、C6、D7、C8、AD 9、A 10、AB 11、2:9 12、20cm/s ,方向向左 13、s ,s 14、s mM M15.(1)vA=6m/s vB=12m/s (2)EP=50J 16 .(1) vB=gL10 向右,VC=4gL10向左 (2) arccos(16 )。

相关文档
最新文档