一、曲线的参数方程
第二讲:曲线的参数方程
![第二讲:曲线的参数方程](https://img.taocdn.com/s3/m/3a198d0c182e453610661ed9ad51f01dc281573d.png)
1.第二讲:曲线的参数方程参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。
01曲线的参数方程
![01曲线的参数方程](https://img.taocdn.com/s3/m/c5f455d884254b35effd3406.png)
θ P0
圆的参数方程
如果点P在圆上作匀角速度ω的运动,由匀角速 度公式θ= ωt可得:
x R cos t y R sin t
(0 t
2
)
x R cos y R sin
(0 2 )
说明:这两个方程都表示以原点为圆心,以R为半径的圆, 但一个是以旋转角为参数,另一个是以时间为参数;所 以同一曲线,由于选取的参数不同,参数方程可以有不 同的形式。
参数方程的定义
一般地,在给定的直角坐标系中,如果曲线上任意 一点P的坐标x,y都是某个变数t的函数:
x=f(t)
y=g(t)
并且对于的每一个t允许值,由方程组所确
定的点M(x,y)都在这条曲线上,那么方程组就叫
做这条曲线的参数方程,联系之间x,y关系的变数
t 叫做参变数,简称参数。
圆的参数方程
1、圆心在原点,半径为R的圆的参数方程
分析解答:设P(x,y)是 圆上任意一点,根据三角 函数的定义,它的横纵坐 标可分别用R和参数 表 P(x,y) 示。x=Rcos,y=Rsin 这里的参数是圆上的点 从P0开始按逆时针方向运 x R cos (0 2 ) 动到点P过程中的旋转角。 y R sin
说明:参数方程的本质是将曲线上任意一点P(x,y)的坐标表 示成参数的函数,而定义域是函数的要素之一,定义域对函数 的值域有重要的制约作用。
因此,(1)题说明了要重视参数方程中对参数的限制条件; (2)题说明如果消去参数后得到的普通方程形式相同,且方程 中x,y的取值范围也相同,那么这两个参数方程表示的是同一 曲线。
曲线的方程的概念 某曲线C上的点与一个二元方程 f(x,y)=0的实数解建立了如下关系:
第2讲-1-曲线的参数方程第1课时
![第2讲-1-曲线的参数方程第1课时](https://img.taocdn.com/s3/m/c038613967ec102de2bd8975.png)
菜
单
新课标 ·数学 选修4-4
课 前 自 主 导 学
x=1+2cos α, 已知直线 y=x 与曲线 y=2+2sin α,
(α 为参数)相交于
当 堂 双 基 达 标
两点 A 和 B,求弦长|AB|.
【解】
x=1+2cos α, 由 y=2+2sin α, x-1=2cos α, 得 y-2=2sin α.
数.圆的参数方程中,其中参数 θ 的几何意义是 OM0 绕点 O 逆时针旋转到 OM 的位置时,OM0 转过的角度.
课 时 作 业
菜
单
新课标 ·数学 选修4-4
参数方程的概念
课 前 自 主 导 学
x=1+2t 已知曲线 C 的参数方程是 2 y = at
(t 为参数,
当 堂 双 基 达 标
3=1+2t, 2 - 1 = t ,
课 时 作 业
这个方程组无解,因此点 Q 不在曲线 C 上.
菜
单
新课标 ·数学 选修4-4
课 前 自 主 导 学
点与曲线的位置关系 满足某种约束条件的动点的轨迹形成曲线,点与曲线的 位置关系有两种:点在曲线上、点不在曲线上. (1)对于曲线 C 的普通方程 f(x,y)=0,若点 M(x1,y1)在
因此点 A(2,0)在曲线 C 上, 对应参数 θ=0, 同理, 把 B(-
课 前 自 主 导 学
3 3,2)代入参数方程,得 - 3=2cos θ, 3 =3sin θ. 2 3 cos θ=- 2 , ∴ sin θ= 1. 2
当 堂 双 基 达 标
课 堂 互 动 探 究
菜 单
课 时 作 业
曲线的参数方程
![曲线的参数方程](https://img.taocdn.com/s3/m/4a1a216ebe1e650e52ea9943.png)
②在普通方程xy=1中,令x = tan,可以化为参数方程
x t an , (为参数) y cot .
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
y 500
o
x
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
y 500
解:物资出舱后,设在时刻t,水平位移为x,
o
x 100t , 1 2 2 ( g=9.8m/s ) y 500 gt . 2 令y 0, 得t 10.10s. x 代入x 100t, 得 x 1010m. 所以,飞行员在离救援点的水平距离约为1010m时投放物资,
6 3t , 2 a 2 t 1.
训练1:
2 x 1 t 1、曲线 与x轴的交点坐标是( B ) ( t 为参数) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
x sin (为参数) 所表示的曲线上一点的坐标是 2、方程 y cos
垂直高度为y,所以
可以使其准确落在指定位置.
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
二、由物理知识可知,物体的位置由时间t唯 一决定,从数学角度看,这就是点M的坐标 x,y由t唯一确定,这样当t在允许值范围内连 续变化时,x,y的值也随之连续地变化,于是 就可以连续地描绘出点的轨迹。 三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
曲线的参数方程
![曲线的参数方程](https://img.taocdn.com/s3/m/bb012ad56394dd88d0d233d4b14e852459fb3940.png)
临潼中学高一数学备课组
一.曲线的参数方程: 一般地,在取定的坐标系中,如果曲线上任意一
点的坐标x,y都是某个变数t的函数
x=f(t) y=g(t)
并且对于t的每一个允许值,由方程组所确定的 点M(x,y)都在这条曲线上,那么方程组就叫做这 条曲线的参数方程,联系x,y之间关系的变数t叫做 参变数,简称参数。
y=bsin θ 这就是所求的点M的轨迹的 参数方程,图形是一个椭圆。
其中θ叫做椭圆的离心角。 θ=∠xOA ≠∠xOM(椭圆上 点M与中心O连线的倾角)
A
B
M(x,y)
θ
x
o
bN a
例2:求经过点M0(x0,y0),倾斜角为α的直线L的参数方程。
解:设点M(x,y)是直线L上任意一点, y
L
过点M作y轴的平行线,过点M0作x轴的平
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
常见曲线的参数方程
![常见曲线的参数方程](https://img.taocdn.com/s3/m/8d537be058fafab069dc02de.png)
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
一、曲线的参数方程
![一、曲线的参数方程](https://img.taocdn.com/s3/m/1b303892d05abe23482fb4daa58da0116c171faa.png)
参数方程与解析几何的关系
参数方程是解析几何的基本工具 之一
在解析几何中,参数方程被广泛应用于描述几何图形, 它提供了比直角坐标方程更加灵活和方便的描述方式。
参数方程与极坐标方程的转换
在某些情况下,可以将参数方程转换为极坐标方程,以 便利用极坐标的性质来研究曲线的性质。
THANKS FOR WATCHING
参数方程导数的计算方法
通过对方程中的参数求导,并利用链式法则和乘积法则进行计算。
参数方程的积分
参数方程的积分定义
参数方程的积分是表示曲线与坐标轴围成的面积的数学工具。
参数方程积分的几何意义
参数方程的积分表示曲线与坐标轴围成的面积,即曲线在某一区间 上的长度。
参数方程积分的计算方法
通过对方程中的参数进行不定积分,并利用微积分基本定理进行求 解。
通过参数t将曲线上的点与实数轴上的点一一对应起来。
参数方程的表示形式
显式参数方程
x=x(t),y=y(t),z=z(t)的形式,其中 x、y、z是参数t的函数。
隐式参数方程
通过方程F(x,y,z)=0表示,其中F是参 数t的函数。
参数方程与直角坐标方程的转换
直角坐标方程
01
通过x、y、z来表示曲线上点的坐标。
一、曲线的参数方程
目 录
• 参数方程的基本概念 • 参数方程在曲线表示中的应用 • 参数方程的物理意义 • 参数方程的微积分性质 • 参数方程的几何意义
01 参数方程的基本概念
参数方程的定义
参数方程
由参数t表示的方程组,其中x、y是参数t的函数。
参数方程的一般形式
x=x(t),y=y(t)。
参数方程的特点
详细描述
常见曲线的参数方程
![常见曲线的参数方程](https://img.taocdn.com/s3/m/3c00a45a6fdb6f1aff00bed5b9f3f90f76c64d2b.png)
双曲线参数方程
04
双曲线标准形式及性质
标准形式
$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$ ($a, b > 0$)
性质
双曲线有两个焦点,位于x轴上,距离原点的距离为$c$,其中$c^2 = a^2 + b^2$。双曲线上的任意一点到两 焦点的距离之差为定值$2a$。
椭圆性质
椭圆有两个焦点,任意一点到两焦点 的距离之和等于长轴的长度;椭圆关 于中心对称,也关于两焦点所在的直 线对称。
椭圆参数方程推导
参数方程形式
$x = acostheta, y = bsintheta$,其中$theta$为参数,表 示与$x$轴的夹角。
推导过程
由椭圆的标准形式,设$x = acostheta$,代入椭圆方程可得 $y = pm bsqrt{1 - frac{x^2}{a^2}} = pm bsqrt{1 cos^2theta} = pm bsintheta$。由于椭圆关于$x$轴对称, 故取正号,得到椭圆的参数方程。
常见曲线的参数方程
汇报人:XX
contents
目录
• 曲线基本概念与分类 • 直线与圆参数方程 • 椭圆参数方程 • 双曲线参数方程 • 抛物线参数方程 • 空间曲线参数方程简介
曲线基本概念与分
01
类
曲线定义及性质
曲线定义
曲线是动点运动时,其位置随时 间连续变化所形成的轨迹。
曲线性质
曲线具有连续性、光滑性、可微 性等性质,这些性质决定了曲线 的形态和特性。
参数方程定义
参数方程是一种通过引入参数来表示 变量间关系的方程形式。在参数方程 中,曲线的坐标被表示为参数的函数 。
09.03.31高二文科数学《第二讲 参数方程· 一、曲线的参数方程》
![09.03.31高二文科数学《第二讲 参数方程· 一、曲线的参数方程》](https://img.taocdn.com/s3/m/b0e52c94daef5ef7ba0d3c18.png)
湖南省长沙市一中卫星远程学校
练习.
(1)(x-1)2+y2=4上的点可以表示为 ( D ) A.(-1+cos, sin) B.(1+sin, cos) C.(-1+2cos, 2sin) D.(1+ 2cos, 2sin)
湖南省长沙市一中卫星远程学校
练习.
x 4 2 cos ( 2) (为参数) y 2 sin
M
r
o
M0
x
湖南省长沙市一中卫星远程学校
讲授新课
如果在时刻t,点M转过的角度是, 坐标是M(x,y),那么=t.设|OM|=r, 那么由三角函数定义有
cos t x r , sin t y r
M
,
y
即
x r cos t ( t为参数) y r sin t
讲授新课 1. 圆的参数方程概念 圆周运动是生活中常见的.当物体绕 定轴作匀速转动时,物体中各个点都作 匀速圆周运动.那么,怎样刻画运动中点 的位置呢?
湖南省长沙市一中卫星远程学校
讲授新课 1. 圆的参数方程概念 圆周运动是生活中常见的.当物体绕 定轴作匀速转动时,物体中各个点都作 匀速圆周运动.那么,怎样刻画运动中点 的位置呢? y
(为参数) y r sin
这也是圆心在原点 O,半径为r的圆的参数 方程.其中参数的几何 意义是OM0绕点O旋转 到OM的位置时, OM0 转过的角度.
y
M
r
o
M0
x
湖南省长沙市一中卫星远程学校
练习.
(1)(x-1)2+y2=4上的点可以表示为 ( A.(-1+cos, sin) B.(1+sin, cos) C.(-1+2cos, 2sin) D.(1+ 2cos, 2sin) )
曲线与曲面的参数方程与切线法向量
![曲线与曲面的参数方程与切线法向量](https://img.taocdn.com/s3/m/a6c2f62fb94ae45c3b3567ec102de2bd9705de44.png)
曲线与曲面的参数方程与切线法向量曲面与曲线的参数方程与切线法向量在数学中,曲线和曲面是两个基本的概念。
曲线可以用参数方程来表示,而曲面也可以通过参数方程进行描述。
此外,在研究曲线和曲面的性质时,切线和法向量是非常重要的工具。
本文将探讨曲线和曲面的参数方程以及切线法向量的概念和应用。
一、曲线的参数方程曲线可以用参数方程来表示,其中曲线上的点坐标是参数的函数。
通常用参数t表示曲线上的点,并用x(t)和y(t)表示点的横纵坐标。
因此,曲线的参数方程可以表示为:x = x(t)y = y(t)比如,考虑一条单位圆的曲线,它可以由以下参数方程给出:x = cos(t)y = sin(t)其中t的取值范围是0到2π。
通过改变t的取值,我们可以获得圆上的各个点。
二、曲面的参数方程曲面可以由两个参数来表示,通常用u和v表示曲面上的点的参数。
曲面上的点坐标同样可以表示为参数的函数,用x(u, v),y(u, v),z(u, v)表示。
因此,曲面的参数方程可以表示为:x = x(u, v)y = y(u, v)z = z(u, v)例如,一个球体的曲面可以由以下参数方程给出:x = R * sin(u) * cos(v)y = R * sin(u) * sin(v)z = R * cos(u)其中R表示球的半径,u的取值范围是0到π,v的取值范围是0到2π。
通过改变u和v的取值,我们可以获得球体上的各个点。
三、曲线的切线和法向量曲线的切线向量表示曲线上某一点的切线方向。
对于参数方程x =x(t),y = y(t),曲线上某一点的切线向量可以通过求导得到:dx/dt = x'(t)dy/dt = y'(t)其中x'(t)和y'(t)分别表示x和y关于t的导数。
切线向量的方向是曲线在该点的切线方向。
曲线上某一点的法向量垂直于切线向量,表示曲线在该点的法向量。
对于参数方程x = x(t),y = y(t),曲线上某一点的法向量可以通过对切线向量的导数再求导得到:d²x/dt² = x''(t)d²y/dt² = y''(t)其中x''(t)和y''(t)分别表示x'(t)和y'(t)关于t的导数。
13.2 参数方程
![13.2 参数方程](https://img.taocdn.com/s3/m/28e32a42fe4733687f21aa0f.png)
1 (2)若把曲线 C1 上各点的横坐标压缩为原来的 倍,纵坐 2
3 标压缩为原来的 倍得到曲线 C2,设点 P 是曲线 C2 上的一 2
个动点,求它到直线 l 的距离的最小值. 思维导引:(1)先把直线和圆的参数方程化为普通方程,然 后利用直线被圆所截弦长公式求解;(2)先根据伸缩变换 写出曲线 C2 的参数方程,从而写出点 P 的坐标,然后根据点 到直线的距离公式求出目标函数,最后求最值.
考点二 参数方程及其应用
【例 2】 (2013 内蒙古包头市模拟)已知直线
1 x 1 t, x cos , 2 l: (t 为参数),曲线 C1: y sin y 3t 2
(θ 为参数). (1)设 l 与 C1 相交于 A、B 两点,求|AB|;
3 d 取得最小值,最小值为 (- 2 +2)= 4
反思归纳
一般地 ,如果题目中涉及圆、椭圆
上的动点或求最值范围问题时可考虑用参数方 程,设曲线上点的坐标,将问题转化为三角恒等 变换问题解决,使解题过程简单明了.
即时突破 2 已知点 P(x,y)是圆 x +y =2y 上的动点 .
(1)求 2x+y 的取值范围; (2)若 x+y+a ≥0 恒成立,求实数 a 的范围.
π ρ cos =t,若两曲线有公共点,则 t 的取值范 3
围是 .
解析:将曲线 C1 的参数方程化为普通方程得 (x-2)2+y2=4, 即曲线 C1 是以(2,0)为圆心,2 为半径的圆, 将曲线 C2 的极坐标方程化成直角坐标方程得 x- 3 y-2t=0.
∵两曲线有公共点, ∴圆心(2,0)到直线 x- 3 y-2t=0 的距离
曲线的参数方程知识讲解
![曲线的参数方程知识讲解](https://img.taocdn.com/s3/m/3bb0dbc948d7c1c709a14586.png)
曲线的参数方程编稿:赵雷审稿:李霞【学习目标】1. 了解参数方程,了解参数的意义。
2. 能利用参数法求简单曲线的参数方程。
3. 掌握参数方程与普通方程的互化。
4. 能选择适当的参数写出圆和圆锥曲线的参数方程【要点梳理】要点一、参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标yx,都是某个变数t的函数,即()...........()x f ty g t=⎧⎨=⎩①,并且对于t的每一个允许值,方程组①所确定的点(,)M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系yx,间的关系的变数t叫做参变数(简称参数).相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0F x y=,叫做曲线的普通方程。
要点诠释:(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.(2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定.(3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。
要点二、求曲线的参数方程求曲线参数方程的主要步骤:第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来;例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数.有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程;第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.要点诠释:普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价.(2)参数的选取不同,得到的参数方程是不同的. 要点三、参数方程与普通方程的互化 1、参数方程化为普通方程(1)把参数方程化为普通方程的基本思想是消去参数,消去参数的常用方法有: ①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程. ②利用代数或三角函数中的恒等式消去参数.例如:对于参数方程1cos 1sin x a t t y a t t θθ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么适当变形后可以利用(m+n)2-(m -n)2=4mn 消参.③其他方法:加减消参法、乘除消参法、平方和(差)消参法、混合消参法等. 要点诠释:注意:一般来说,消去曲线的参数方程中的参数,就可以得到曲线的普通方程,但要注意,这种消参的过程要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的.2、普通方程化为参数方程(1)把曲线C 的普通方程(,)0F x y =化为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系式()x f t =,再代入普通方程求得另一个关系式()y g t =。
曲线的参数方程和与普通方程的互化
![曲线的参数方程和与普通方程的互化](https://img.taocdn.com/s3/m/03f51b2084254b35effd34e9.png)
C 、 xt yt
D 、 x y tt2
分析: 在y=x2中,x∈R, y≥0,在A、B、C中,x,y的范围都
发生了变化,因而与 y=x2不等价; 而在D中,
x,y范围与y=x2中x,y的范围相同,
x t
且以
y
t
2
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意: 在参数方程与普通方程的互化中,必须
(2)普通方程化为参数方程需要引入参数。
如:①直线L 的普通方程是2x-y+2=0,可以化为参数方程
x
y
t, 2t
(t为参数)
2.
②在普通方程x2+y2=1中,令x = cos,可以化为参数方程
x cos ,
y
sin
.
(为参数)
例4 求 椭 圆 x2y21的 参 数 方 程 。 94
( 1 ) 设 x = 3 c o s , 为 参 数 ;
探求:圆的参数方程
如图,设⊙O的圆心在原点,半径是r.与x 轴正半轴的交
点为P0 ,圆上任取一点P,若OP0 按逆时针方向旋转到OP位置 所形成的角∠P0 OP =θ,求P点的坐标。
解: 设P(x,y), ∵点P在∠P0OP的终边上,
根据三角函数的定义得 sin y,cosx.
r
r
x rcos, y rsin. (1)
可得普通方程y=2x-4 (x≥0)。
注意:
在参数方程与普通方程的互化中,必须使x,y的取值范 围保持一致。否则,互化就是不等价的.
例3、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
(1)x= t1 (t为参数) y12 t
(2)参数方程
直角坐标系中曲线的参数方程
![直角坐标系中曲线的参数方程](https://img.taocdn.com/s3/m/24e9b2be7d1cfad6195f312b3169a4517723e518.png)
参数方程的参数范围和周期性
参数t有一个特定的取值范围,表示曲线上点的运动轨迹。当 参数t超出其取值范围时,曲线上的点会重复出现。
对于具有周期性的曲线,其参数方程可能具有周期性,即当 参数t增加一个特定的值时,曲线上的点会重复出现。这种周 期性可以通过观察曲线的形状和参数t的变化规律来识别。
04
参数方程的求解方法
参数方程用于描述曲线的形状和变化 规律,通过设定参数的变化范围,可 以绘制出完整的曲线图形。
参数方程简化了曲线绘制的计算过程 ,使得绘制复杂的曲线变得相对简单 。
参数方程在解决物理问题中的应用
在物理问题中,很多物理量是随时间 变化的,参数方程可以描述这种变化 过程,帮助我们理解物理现象和规律。
例如,振动和波动的问题可以用参数 方程来描述,通过求解参数方程,可 以得到物理量的变化规律。
利用三角函数求解参数方程
总结词
利用三角函数求解参数方程是一种常见的方法,适用于参数方程中含有三角函数的情况。
详细描述
当参数方程中含有三角函数时,可以利用三角函数的性质和恒等式来求解。例如,如果 参数方程中包含正弦函数和余弦函数,可以利用三角恒等式将它们转换为单一的三角函 数形式,从而简化求解过程。此外,还可以利用三角函数的周期性和对称性等性质来简
05
参数方程的应用实例
地球的运动轨迹描述
要点一
总结词
参数方程在描述地球的运动轨迹时,可以精确地表示地球 绕太阳的椭圆轨道。
要点二
详细描述
参数方程通过引入两个参数(通常是时间和角度)来表示 地球在直角坐标系中的位置,能够精确地描述地球绕太阳 的椭圆轨道,包括地球的近日点和远日点。
摆线的参数方程表示
参数方程与直角坐标方程的转换
曲线的参数方程
![曲线的参数方程](https://img.taocdn.com/s3/m/29cc0e66a98271fe910ef9d0.png)
解法一:
y
设M的坐标为(x,y), 的参数方程为 x =4cosθ y =4sinθ
圆x2+y2=16
O
P
M A x
∴可设点P坐标为(4cosθ,4sinθ) x =6+2cosθ 由中点公式得:点M的轨迹方程为 y =2sinθ
方法二、利用向量方法推导
设直线过M0 (x0 ,y0),且与平面向量 a (l , m)
平行(其中l,m为常数)
x x0 lt (t R ) y y0 mt
直线参数方程 的一般形式
方法三:把直线看作质点的匀速直线运动 思考:如图,设质点从M0 (x0 ,y0)出发,沿 着与x轴成α 角的方向作匀速直线运动,其 速率v0.求点M的轨迹方程。 y α M M0
5
r
-5
o
p0
5
-5
5
(a,b) O1
P(x,y)
v(a,b)
r
-5
P 1 ( x1 , Leabharlann 1 )5o-5
x a r cos ( 为参数) y b r sin
练习:
x 5 cos 1. 已知圆O的参数方程是 y 5 sin (0 2) 5 (1)如果圆上的点P所对应的参数 3 则点P的坐标是_________。
3. 圆心在原点和圆心在(a,b) 的标准方程。
x y r
2 2
2
2 2
x a
2
y b r
思考:如何将上述两个方程化为 参数方程?
如果点P的坐标为( x, y),圆半径为r, POP , 0
高中数学第二讲参数方程一参数的曲线方程第1课时参数方程的概念、参数方程与普通方程的互化
![高中数学第二讲参数方程一参数的曲线方程第1课时参数方程的概念、参数方程与普通方程的互化](https://img.taocdn.com/s3/m/34e33b04fab069dc5122018e.png)
所以 y=1±sin θ.
不 妨 取 y = 1 + sin θ , 则 所 求 的 参 数 方 程 为
x=cos θ, y=1+sin θ(θ
为参数).
归纳升华
1.消去参数的方法主要有三种. ①利用解方程的技巧求出参数的表示式,然后运用代
入消元法或加减消元法消去参数.
②利用三角恒等式借助 sin2θ+cos2θ=1 等消去参数.
③根据参数方程本身的结构特征,选用一些灵活的方
法
)例如借助1+2tt22+11- +tt222=1,t+1t 2-t-1t 2=4
等 )从整体上消去参数.
2.将参数方程化为普通方程时,要注意防止变量 x 和 y 的取值范围扩大或缩小,必须根据参数的取值范围, 确定函数 f(t)和 g(t)的值域,即 x 和 y 的取值范围.
消去参数 t,得 a=1. (2)由上述可得,曲线 C 的参数方程是xy==t12+. 2t, 把点 P 的坐标(1,0)代入方程组,解得 t=0, 因此 P 在曲线 C 上. 把点 Q 的坐标(3,-1)代入方程组,得到3-=11=+t22,t, 这个方程组无解,因此点 Q 不在曲线 C 上.
归纳升华 1.满足某种约束条件的动点的轨迹形成曲线,点与 曲线的位置关系有两种:点在曲线上和点不在曲线上.
一是曲线上有一点的坐标(x,y)与参数的关系比较明显, 容易列出方程;二是 x,y 的值可以由参数唯一确定;第 三步,根据已知条件、图形的几何性质、问题的物理意义 等,建立点的坐标与参数的函数关系式,并化成最简形式; 第四步,证明以化简后的参数方程的解为坐标的点都是曲 线上的点.(求解过程中第四步通常省略,但要通过检验, 并准确标注参数及其取值范围.)
所确定的点 M(x,y)都在这条曲线上,那么方程 xy==gf((tt)),就叫作这条曲线的参数方程,联系变数 x,y 的变数 t 叫作参变数,简称参数.相对于参数方程而言, 直接给出点的坐标间关系的方程叫作普通方程.
曲线的参数方程
![曲线的参数方程](https://img.taocdn.com/s3/m/f1c5d4cda1116c175f0e7cd184254b35eefd1a0e.png)
曲线的参数方程曲线的参数方程是数学中一种描述曲线形状的方法,通过给定参数的取值范围,我们可以得到曲线上的每一个点。
本文将详细介绍曲线的参数方程及其应用。
一、什么是曲线的参数方程曲线的参数方程是将曲线上的每个点的坐标表示为参数的函数形式。
以二维曲线为例,通常用参数 t 表示,曲线上的点的坐标可以表示为(x(t), y(t))。
其中,x(t) 和 y(t) 分别是参数 t 的函数。
通过给定参数 t 的取值范围,我们可以得到曲线上的所有点。
参数方程有许多种形式,常见的有直角坐标形式、极坐标形式和常数值形式等。
根据具体应用需求和曲线形状特点选择合适的参数方程形式。
二、直角坐标形式的参数方程直角坐标形式的参数方程将曲线上的点的坐标表示为直角坐标系中的 x 和 y 坐标分量的函数。
举个例子,我们考虑平面直线的参数方程。
假设直线通过点(x1, y1) 和 (x2, y2),则直线上坐标为 (x, y) 的点可以表示为:x(t) = x1 + (x2 - x1) * ty(t) = y1 + (y2 - y1) * t其中 t 的取值范围为 [0, 1],表示直线上的比例位置。
三、极坐标形式的参数方程极坐标形式的参数方程将曲线上的点的坐标表示为极坐标系中的极径和极角的函数。
以一个圆为例,其极坐标形式的参数方程为:r(t) = Rθ(t) = t * 2π其中 R 是圆的半径,t 的取值范围为 [0, 1]。
四、常见曲线的参数方程1. 直线:直线的参数方程可以使用直角坐标形式,通过给定两个端点的坐标实现参数化表达。
2. 圆:圆的参数方程可以使用极坐标形式,通过给定圆心和半径实现参数化表达。
3. 抛物线:抛物线的参数方程可以使用直角坐标形式,通过给定焦点、准线和离心率实现参数化表达。
4. 椭圆:椭圆的参数方程可以使用极坐标形式或直角坐标形式,通过给定焦点、离心率和长短轴实现参数化表达。
5. 双曲线:双曲线的参数方程可以使用极坐标形式或直角坐标形式,通过给定焦点、离心率和长短轴实现参数化表达。
空间曲线的参数方程
![空间曲线的参数方程](https://img.taocdn.com/s3/m/1ffdc64e77c66137ee06eff9aef8941ea76e4b1e.png)
空间曲线的参数方程空间曲线是指在三维坐标系中的曲线,可以用数学方程进行描述和表示。
其中,参数方程是一种常用的描述空间曲线的方式。
空间曲线的参数方程可以表示为:x = x(t)y = y(t)z = z(t)其中,x、y、z是曲线上某一点的坐标,t是参数,用来表示曲线上的某个点。
参数方程可以用来描述各种不同形状的空间曲线,比如直线、抛物线、圆等。
通过适当选择参数的取值范围,可以得到曲线上的各个点。
以直线为例,假设直线过点A(x1, y1, z1)和点B(x2, y2, z2)。
我们可以通过参数方程来描述该直线:x = x1 + (x2 - x1)ty = y1 + (y2 - y1)tz = z1 + (z2 - z1)t其中,t的取值范围可以是[0, 1],代表直线上从点A到点B的过程。
类似地,我们可以通过参数方程来描述其他形状的曲线。
比如,对于抛物线可以使用以下参数方程:x = aty = bt^2z = ct^3其中,a、b、c是常数,决定了抛物线的形状。
对于圆,可以使用以下参数方程来描述:x = rcos(t)y = rsin(t)z = h其中,r是半径,h是圆心在z轴上的高度,t是参数,取值范围通常是[0, 2π],代表圆的一周。
通过参数方程,我们可以简洁地描述空间曲线的各个点,同时可以方便地进行计算和绘制。
总结起来,空间曲线的参数方程是一种有效的描述曲线的方式,可以用来描述各种不同形状的曲线。
通过适当选择参数的取值范围,可以得到曲线上的各个点。
参数方程具有简洁、灵活和易于计算的优势,可以方便地用于数学建模和图形绘制等领域。
通过以上的介绍,希望对空间曲线的参数方程有更深入的理解。
在实际应用中,可以根据具体的情况选择不同的参数方程,来描述和表示相应的曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、参数方程和普通方程的互化
x cos 3, 由参数方程 ( 为参数)直接判断点M 的轨迹的 y sin 曲线类型并不容易,但如果将参数方程转化为熟悉的普通 方程,则比较简单。
由参数方程得: cos x 3 2 2 2 2 ,sin cos ( x 3) y 1 sin y 所以点M 的轨迹是圆心在(3,0),半径为1的圆。
2.求参数方程
x | cos sin |, 2 2 (0 2 ) 表示 ( y 1 (1 sin ) 2
)
1 (A)双曲线的一支,这支过点(1, ): 2 1
(B)抛物线的一部分,这部分过( 1, );
1 2 (C)双曲线的一支,这支过点(–1, ); 2
1. 参数方程的概念
一般地,在平面直角坐标系中,如 果曲线上任意一点的坐标x,y都是某个 变数t的函数 x f ( t ), y g( t ), 并且对于t的每一个允许值,由方程 组所确定的点M(x,y)都在这条曲线上, 那么方程就叫做这条曲线的参数方程, 联系变数x,y的变数t叫做参变数,简称 参数.相对于参数方程而言,直接给出点 的坐标间关系的方程叫做普通方程.
x t 且以 2 y t
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意:
在参数方程与普通方程的互化中,必须使x,y的取值 范围保持一致。否则,互化就是不等价的.
小
引入参数 普通方程 消去参数
结
参数方程
3. 圆的参数方程概念
圆周运动是生活中常见的.当物体绕 定轴作匀速转动时,物体中各个点都作 匀速圆周运动.那么,怎样刻画运动中点 的位置呢?
练习.
(1)(x-1)2+y2=4上的点可以表示为 ( D ) A.(-1+cos, sin) B.(1+sin, cos) C.(-1+2cos, 2sin) D.(1+ 2cos, 2sin)
练习.
x 4 2 cos ( 2) (为参数) y 2 sin
5
O1
P(x,y)
x a r cos y b r sin
v(a,b)
-5
o
P 1 ( x1 , y1 )
5
-5
例1、已知圆方程x2+y2 +2x-6y+9=0,将它 化为参数方程。
解: x2+y2+2x-6y+9=0化为标准方程,
(x+1)2+(y-3)2=1,
0<x 2 ,故应选(B) 说明 这里切不可轻易去绝对值讨论,平方法 是最好的方法。
x y 例3 求椭圆 1的参数方程。 9 4
2
2
(1)设x=3cos,为参数;
(2)设y=2t,t为参数.
解(1)把 x 3cos 带入椭圆方程,得到 由参数 的任意性,可取
9cos2 y 2 1 9 4
解: (1)因为x t 1 1 所以 t x 1 代入 y 1 2 t 所以普通方程是y 2 x ( 3 x 1) 这是以(1, 1)为端点的一条射线(包括端点)
(2)把 x sin cos 平方后减去 y 1 sin2 得到 x 2 y 因为 x sin cos 2 sin 4 所以 x 2, 2 因此,与参数方程等价的普通方程是
的圆心为_________,半径为______.
练习.
x 4 2 cos ( 2) (为参数) y 2 sin
(4,0) ,半径为______. 的圆心为_________
练习.
x 4 2 cos ( 2) (为参数) y 2 sin
将曲线的参数方程化为普通方程,有利 于识别曲线的类型。 曲线的参数方程和普通方程是曲线 方程的不同形式。一般地,可以通过消 去参数而从参数方程得到普通方程。如 果知道变数x,y中的一个与参数t的关系, 例如 t x f,把它代入普通方程,求 y g t 出另一个变数与参数的关系
x2 y
x 2, 2
这是抛物线的一部分。
练一练
1.将下列参数方程化为普通方程:
(1)
x 2 3 cos y 3 sin
x=t+1/t
(2)
x sin y cos 2
步骤:(1)消参;
(3)
y=t2+1/t2
(2)求定义域。
(1)(x-2)2+y2=9 (2)y=1- 2x2(- 1≤x≤1) (3)x2- y=2(X≥2或x≤- 2)
y 2 sin
(1) x2+y2 = (3+cosθ)2+(2+sinθ)2
=14+4 sinθ +6cosθ=14+2 sin(θ +ψ). 13
∴ x2+y2 的最大值为14+2 13 ,最小值为14- 2
13 。
(2) x+y= 3+cosθ+ 2+sinθ=5+
sin 2 (θ+
2 2 2 y 4 1 cos 4 sin y 2 sin 于是
y 2sin
x 3cos 因此椭圆的参数方程为 , ( 为参数) y 2sin
(2)把 y 2t 代入椭圆方程,得
x 2 4t 2 1 x 2 9 1 t 2 , x 3 1 t 2 9 4
v=100m/s
OA
-500
x
问题探究
如图,一架救援飞机在离灾地面 500m高处以100 m/s的速度作水平直线 飞行.为使投放的救援物资准确落于灾 区指定的底面(不计空气阻力),飞行员 应如何确定投放时机呢? y
v=100m/s
OA
-500
x
M
1. 参数方程的概念
一般地,在平面直角坐标系中,如 果曲线上任意一点的坐标x,y都是某个 变数t的函数 x f ( t ), y g( t ),
x r cos t ( t为参数) y r sin t
r
o
M0
x
讲授新课
x r cos t ( t为参数) y r sin t 这就是圆心在原点O,半径为r的圆 的参数方程.其中参数t y 有明确的物理意义(质点 M 作匀速圆周运动的时刻).
r
o
(2). 参数法求最值
例2.已知点P(x,y)是圆x2+y2- 6x- 4y+12=0 上动点,求(1) x2+y2 的最值,(2)x+y的最 值,(3)P到直线x+y- 1=0的距离d的最值。
解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1, 用参数方程表示为 x 3 cos 由于点P在圆上,所以可设P(3+cosθ,2+sinθ),
x r cos (3) y r sin
x r cos t (4) y r sin t
例1.
已知曲线C 的参数方程是 x 3t y 2t 2 1 ( t 为参数)
(1) 判断点M 1 (0,1),M 2 (5,4)与曲线C 的位置关系;
2 (4,0) ,半径为______. 的圆心为_________
参数方程的应用
(1)参数法求轨迹方程
例1. 如图,已知点P是圆x2+y2=16上的一个动点, 点A是x轴上的定点,坐标为(12,0).当点P在圆 上运动时,线段PA中点M的轨迹是什么? y 解:设M的坐标为(x,y), P 圆x2+y2=16 M x =4cosθ O A x 的参数方程为 y =4sinθ ∴可设点P坐标为(4cosθ,4sinθ) x =6+2cosθ 由中点公式得:点M的轨迹方程为 y =2sinθ ∴点M的轨迹是以(6,0)为圆心、2为半径的圆。
3. 圆的参数方程概念
圆周运动是生活中常见的.当物体绕 定轴作匀速转动时,物体中各个点都作 匀速圆周运动.那么,怎样刻画运动中点 的位置呢? y
r
M
o
M0
x
讲授新课
如果在时刻t,点M转过的角度是, 坐标是M(x,y),那么=t.设|OM|=r, 那么由三角函数定义有 x y y cos t , sin t , r r M 即
∴参数方程为
x 1 cos y 3 sin
(θ为参数)
练习.
(1)(x-1)2+y2=4上的点可以表示为 ( A.(-1+cos, sin) B.(1+sin, cos) C.(-1+2cos, 2sin) D.(1+ 2cos, 2sin) )
1 (D)抛物线的一部分,这部分过(–1,) 2
分析 一般思路是:化参数方程为普通方程 求出范围、判断。 解 ∵x2= (cos sin ) 2 =1+sin=2y,
2 2
∵
普通方程是x2=2y,为抛物线。 ,又0<<2,
x | cos 2 sin | 2 sin( ) 2 2 4
x f t 那么 y g t
就是曲线的参数方程。
例2、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
x= t 1 (1) (t为参数) y 1 2 t
x= sin cos (2) ( 为参数). y 1 sin 2