概率论与数理统计条件概率

合集下载

概率论与数理统计第3讲

概率论与数理统计第3讲
6
6
定义 1.2 设P(A)>0,则B对A的条件概率为
P( AB ) P( B | A) P( A) (1.10)
7
7
P( AB ) P( B | A) P( A)
(1.10)
但是不要以为通常的概率论问题都是根据式 (1.10)计算条件概率的,其实不然。在解 决许多问题时,条件概率是通过对试验 进行控制而更改了样本空间而得到的, 就是说,修改随机试验使得那个条件事 件A上升为必然事件或者新的样本空间, 然后再通过试验、思考或者计算得到 P(B|A)。
18
18
P( AB ) P( B | A) P( A)
(1.10)
因为如此,所以经常倒是利用式(1.10)来计算 P(AB),即有如下的乘法法则: 定理 1.7 (乘法法则) 对两个事件A,B, 设 P(A)>0,则下式成立: P(AB)=P(A)P(B|A) (1.11)
19
19
P(AB)=P(A)P(B|A) (1.11) 这样的乘法法则可以推广到三个甚至更 多个事件上去。例如对于事件A,B,C, 就有 P(ABC)=P(A)P(B|A)P(C|AB) 这是因为上式右边头两项的乘积就是 P(AB),再利用一次公式(1.11)就可得结 果。
22
22
而这道题当然也可以完全用古典概型的办法 来算,考虑上面的P(A)和P(B|A)乘到一起 5 4 就是 8 7 分母上正好是8个元素取两个的排列数, 是有次序地抽两个球的基本事件总数, 而分子上则是5个白球取两个的排列数, 这是在一个56个基本事件的试验中进行 计算,当然思考就复杂一些。
A C B
图1-3
28
28
从图中不难看出,事件A和B都是压住了内接 圆的一半,所以 1 P( A | C ) P( B | C ) 2

概率论与数理统计第五节 条件概率.ppt5(最新版)

概率论与数理统计第五节  条件概率.ppt5(最新版)
P(B)=P( A1B)+P(A2B)+P(A3B)
P(B)=P( A1B)+P(A2B)+P(A3B)
P ( B) P ( Ai ) P ( B|Ai )
i 1
3
对求和中的每一 项用乘法公式
代入数据计算便可得结果, 我们这里略去计算。
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
例题选讲 例题1 设在10个同一类型的元件中有7个一等品, 从这些元件中不放回地连续取3次,每次取一个元件, 7 ( ) 求: 1) 3次取得一等品的概率 24 119 2) 3次中至少一次取得一等品的概率 ( )
120
例题2 设P( A) 0.5, P( B) 0.4, P( A | B) 0.6 求P( AB), P( A | A B)的值
解 设Ai 第i次取出黑球,i 1, 2,...n, 则所 求的概率为P ( A1... An1 An1 1... An ) p
则 p P( A1 ) P( A2 | A1 ) P( An1 | A1 An1 1 ) *P( An1 1 | A1 An ) P( An | A1 An1 An1 1 An-1 )
B
AB A
S
2 定义
P( AB) 设A,B是两个事件且P(A)>0,称 P( B A) P( A)
为在事件A发生的条件下事件B发生的条件概率.
条件概率也符合概率的公理化定义中的三个条件:
1) 非负性 对于每一事件B,有P(B|A)>=0;
2) 规范性 对于必然事件S,有P(S|A)=1;
3) 可列可加性 :
也可以直接按条件概率的含义来求 P(B A) :

第一章 条件概率(概率论与数理统计)

第一章 条件概率(概率论与数理统计)

由于 A2 A1A2 由乘法公式
P( A2 ) P( A1)P( A2 | A1)
因为若第2个人抽到 了入场券,第1个人 肯定没抽到.
也就是要想第2个人抽到入场券,必须第1个人未
抽到,
P(A2)= (4/5)(1/4)= 1/5
同理,第3个人要抽到“入场券”,必须第1、 第2个人都没有抽到. 因此
3的证明:对任意事件A1和A2 ,互不相容,有
P(A1∪A2|B)=P(A1|B)+P(A2|B)

P(( A1

A2 )
|
B)

P( A1 U A2
P(B)
B)

P( A1 B) U( A2 B)
P(B)

P A1 B) P( A2 B
P(B)
P A1 | B) P(A2 | B
AB的样本数
对于古典概型
P(A|B)

AB的样本数 B的样本数

Ω样本数 B的样本数
P( AB )。 P( B )
2. 条件概率的性质
设B是一事件,且P(B)>0,则
B ABA
1. 对任一事件A,0≤P(A|B)≤1; 2. P(S|B)=1;
S C
3. 设A1,…,An ,…两两互不相容,则 P[(A1+…+An +…)| B] = P(A1|B)+ …+P(An|B)+…
请思考!!
二、 乘法定理(乘法公式) 由条件概率的定义:
P(A | B)
P( AB) P(B)
在已知P(B), P(A|B)时, 可反解出P(AB)。
即 若P(B)>0, 则 P(AB)=P(B)P(A|B) , (1)

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。

2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。

3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。

4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。

5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。

6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。

7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。

8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。

9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。

概率论与数理统计 1-3

概率论与数理统计 1-3

3
1. 条件概率的定义
设A、B是两个事件,且P(A)>0,则称 P(B | A) P( AB) (1) P( A)
为在事件A发生的条件下,事件B的条件概率.
1.3条件概率
B ABA
S
若事件A已发生, 则为使 B也发 生 , 试验结果必须是既在 B 中又在 A中的样本点 , 即此点必属于AB. 由于我们已经知道A已发生, 故A变 成了新的样本空间 , 于是 有(1).
3
P( Ai ) P(A1)P(A2 / A1)P(A3 / A1A2 )
i 1
※想一想: ①应如何推导此式? ② n个事件的公式如何写呢?
7
1.3条件概率
例2 一批零件共100个,其中有10个是次品。今从这批零
件中随机抽取,每次一件,1)若不放回地抽取3次,求3次都 取得合格品的概率;2)若有放回地抽取2次,求2次都取得合 格品的概率。
注 通常, P(B|A) ≠ P(B)
4
2. 条件概率P(.|A)的性质
1.3条件概率
(1)非负性 对每一个事件B, P(B|A) ≧0 概
(2)规范性 对必然事件S, P(S|A) =1


(3)可列可加性 若B1, B2 ,是两两互不相容的事件,则有


P Bi | A P(Bi | A)
解 记 Ai=“第i次取得合格品”,i=1,2,3;
1) 若不放回地抽,则
P
(
A1
)

90 100
,
P(
A2
|
A1 )

89 99
,
P(
A3
|
A1
A2
)

概率论与数理统计(条件概率与全概率公式)

概率论与数理统计(条件概率与全概率公式)
2 22
二、全概率公式与贝叶斯公式
全概率公式和贝叶斯公式主要用于计算比较复 杂事件的概率,它们实质上是加法公式、乘法公式 和条件概率的综合运用.
综合运用
加法公式
乘法公式
条件概率
P(AB)=P(A)+P(B) P(AB)= P(A)P(B|A) P(A|B)= P(AB)/P(B)
A、B互斥
P(A)>0
600 1000
1%
250 1000
4%
150 1000
2%
0.019
(2)
P(B1 A)
P(AB1 ) P(A)
P(B1 )P(A B1 )
3
P(Bi )P(ABi )
i=1
0.6 0.01 0.3158 0.019
所以甲厂应承担约31.58%的经济责任.
返回
例7 甲箱中有5个正品3个次品,乙箱中有4个正品3个
接下来我们介绍贝叶斯公式来解决这类问题
贝叶斯公式 P19
设S是试验E的样本空间, B1, B2 ,是SB的n 一个划 分, 且 P(Bi)>0(,i=则1,2对, 任n一) 事件A,有
P(B k
A )=
P(ABk ) P(A)
=
P(Bk )P(A Bk )
n
P(B)i P(A Bi )
k 1, 2,
P( A1)P( A3
|
A1 )
2 5% 3
1 30
(2)
P( A2 A3)
P( A2 )P( A3 |
A2 )
1 3% 1
3
100
返回
例5(P18) 一口袋中装有a 只白球,b 只红球,每次随 机取出一只,然后把原球放回,并加进与抽出的球同 色的球 c只。连续摸球三次,试求第一、第二次取到 白球,第三次取到红球的概率。 解 设 A表i 示事件“第 i 次取到白球’’ (i=1,2,3)

概率论与数理统计的独立性与条件概率研究

概率论与数理统计的独立性与条件概率研究

概率论与数理统计的独立性与条件概率研究概率论与数理统计是数学中的重要分支,它们的研究对象是随机事件和随机变量,通过对事件和变量的概率分布进行研究,可以揭示出事件和变量之间的规律。

在概率论与数理统计的研究中,独立性和条件概率是两个重要的概念。

首先,我们来探讨概率论与数理统计中的独立性。

独立性是指两个或多个事件之间的发生与否不相互影响。

在概率论中,如果事件A和事件B是独立的,那么它们的联合概率等于各自概率的乘积。

换句话说,P(A∩B) = P(A) * P(B)。

这个公式可以用来计算两个独立事件同时发生的概率。

独立性在实际生活中有很多应用。

例如,假设有一批产品,每个产品的质量是否合格是一个独立事件。

如果每个产品合格的概率是0.9,那么同时有两个产品合格的概率就是0.9 * 0.9 = 0.81。

这个概率可以帮助我们评估产品质量的可靠性。

然而,并不是所有的事件都是独立的。

有些事件之间存在一定的关联关系,这就引出了条件概率的概念。

条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

在概率论与数理统计中,条件概率可以用来计算事件之间的依赖关系。

条件概率的计算方法是通过已知条件来确定事件发生的概率。

假设事件A和事件B之间存在依赖关系,那么在已知事件B发生的条件下,事件A发生的概率可以表示为P(A|B)。

根据概率的定义,P(A|B) = P(A∩B) / P(B)。

这个公式可以用来计算在已知事件B发生的情况下,事件A同时发生的概率。

条件概率在实际中也有广泛的应用。

例如,在医学诊断中,医生需要根据病人的症状和检查结果来判断病人是否患有某种疾病。

这时,医生会根据已知的症状和检查结果计算疾病的概率,以帮助做出正确的诊断。

除了独立性和条件概率,概率论与数理统计还包括其他重要的概念和方法,如随机变量、概率分布、期望值等等。

这些概念和方法在现代科学和工程领域中有广泛的应用。

例如,在金融领域中,概率论与数理统计可以用来对股票价格的波动进行建模和预测,以帮助投资者做出决策。

概率论与数理统计条件概率

概率论与数理统计条件概率

C72 2 C10 1 2 C3 2 1 2 C10
《概率统计》 返回 下页 结束
例3.设某种动物由出生而活到20岁的概率为0.8,活到25岁的概率 为0.4,求现龄为20岁的这种动物活到25岁的概率? 解: 设A={活到20岁},B={活到25岁} 则所求概率为 P ( B | A) 由于 A
(2)如果 A、B 相互独立,则 A 与 B,A 与 B , A 与 B 也相互独立。
AB,所以有 证明: 因为A B=B-AB,且 B
P( AB) P(B AB) P(B) P( AB)
P( B) P( A) P( B)
P(B)[1 P( A)] P( A)P(B) ,
解: P(A∪B)=P(A)+ P(B)-P(AB) =P(A)+P(B)-P(A)P(B|A)=0.7。
《概率统计》
返回
下页
结束
例5.100个零件中有10次品,每次任取一件,取后不放回。 (1)连取两次,求两次都取得正品的概率; (2)连取三次,求第三次才取得正品的概率。
解:设Ai={第i次取得正品},i=1,2,3。
结束
二、多个事件的独立性
(1) 3个事件相互独立的定义
三个事件A、B、C,如果满足下面四个等式
P( AB) P( A) P( B) P( AC) P( A) P(C ) PBC P( B) P(C ) P( ABC) P( A) P( B) P(C )
解:设A={取出1个玻璃球},B={取出1个红球}. (1)P(A)=10/20=1/2
(2)P(B|A)=6/10
问题:条件概率P(B|A)与普通概率有何关系?
P ( B | A)

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。

以下是对概率论与数理统计主要知识点的详细总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

我们通常用大写字母A、B、C 等来表示。

随机事件的关系包括包含、相等、互斥(互不相容)和对立等。

2、概率的定义概率是用来度量随机事件发生可能性大小的数值。

概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。

概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。

3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。

二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。

其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。

2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。

三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。

2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。

概率论与数理统计 第三节 条件概率与独立性

概率论与数理统计 第三节 条件概率与独立性

一、条件概率
4. 条件概率的计算
P ( AB ) 1) 用定义计算 P ( A | B ) P( B)
2)用缩减的样本空间计算
例:A={掷出2点}, B={掷出偶数点} 掷骰子
1 P(A|B) = 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
一、条件概率
例1 掷两颗均匀骰子,已知第一颗掷出6点,问“掷 出点数之和不小于10”的概率是多少?
一、条件概率
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称 P ( AB ) (1) P( A | B) P( B)
为在事件B发生的条件下,事件A的条件概率.
若事件B已发生, 则为使 A 也发生 , 试验结果必须是既在 B 中又在A中的样本点 , 即此 点必属于AB. 由于我们已经知 道B已发生, 故B变成了新的样 本空间 , 于是有(1).
A={取到一等品}, B={取到正品} P(A ) =3/10,
3 10 P ( AB ) 3 P(A|B) 7 10 P( B) 7
一、条件概率
A={取到一等品}, B={取到正品}
P(A)=3/10, P(A|B)=3/7 本例中,计算P(A)时,依据的前提条件是10件 产品中一等品的比例. 计算P(A|B)时,这个前提条件未变,只是加上 “事件B已发生”这个新的条件. 这好象给了我们一个“情报”,使我们得以在 某个缩小了的范围内来考虑问题.
故抓阄与次序无关.
二、乘法公式
练习3 设某光学仪器厂制造的透镜, 第一次落下时 打破的概率为1/2,若第一次落下未打破, 第二次落下 打破的概率为7/10 , 若前两次落下未打破, 第三次落 下打破的概率为9/10.试求透镜落下三次而未打破的 概率.

概率论与数理统计 第一章第三节条件概率及相关公式

概率论与数理统计 第一章第三节条件概率及相关公式

率的公理化定义中的三个条件:
1.非负性:对任一事件A,有0 PA B 1
2.规范性:P B 1
3.可列可加性:对可列无限多个互不相容
的事件A1, A2 ,
An ,

P
k 1
Ak
B
P
k 1
Ak B
注:由于条件概率满足概率定义的三个条
件,所以,概率的所有性质均适用于条
件概率.
例如: 对于任意事件A1, A2有
PC 0.005 P C 0.995
由贝叶斯公式 :
PC
A
PCPA C
PCPA C PCPA
C
0.087
结果表明:虽然PA C , P A C 比较大,但试
验呈阳性的人确患癌症的可能性还是不大.
练习:
数字通讯过程中,信源发射0、1两种状态信号,其中发 0的概率为0.55,发1的概率为0.45。由于信道中存在干扰,在 发0的时候,接收端分别以概率0.9、0.05和0.05接收为0、1和 “不清”。在发1的时候,接收端分别以概率0.85、0.05和0.1接收 为1、0和“不清”。现接收端接收到一个“1”的信号。问发端发 的是0的概率是多少?
概率,是P Ak 的修正值,称为后验概率.
3) 贝叶斯公式适用于试验之后,求解导致某
事件发生的各种原因的概率.
例.某射击小组共有20名射手,其中一级射手 4人,二级射手8人,三级射手7人,四级射手1人.
一,二,三,四级射手能通过选拔进入比赛的
概率分别是0.9,0.7,0.5,0.2.现从该射击小组 任选一人,若此人已通过选拔进入比赛, 问:此人是一级射手的概率等于多少?
A1 B
P A1B PB
P A1 PB

概率论与数理统计第五节条件概率5(最新版)

概率论与数理统计第五节条件概率5(最新版)

05 条件概率在回归分析中作 用
回归模型建立过程中条件概率思想体现
确定自变量和因变量
在回归分析中,首先需要确定自变量和因变量,这一过程 需要考虑条件概率的思想,即因变量在自变量的条件下发 生变化。
建立回归方程
根据自变量和因变量的关系,可以建立回归方程,该方程 描述了自变量对因变量的影响,即因变量在自变量的条件 下的期望值。
02 条件概率在实际问题中应 用
抽奖问题中条件概率计算
01
02
03
设定事件与条件
明确参与抽奖的人数、奖 项设置以及每个奖项的中 奖概率,将中奖作为条件 事件。
计算条件概率
根据条件概率公式,计算 在已知有人中奖的条件下, 某个人中奖的概率。
比较不同方案
通过比较不同抽奖方案下 的条件概率,选择最公平、 合理的方案。
首先根据题意列出联合概率密度函数 ;然后计算边缘概率密度函数;接着 根据条件概率密度函数的公式求解; 最后根据条件概率密度函数进行相关 的概率计算。
应用场景
连续型随机变量条件密度函数在实际 问题中也有着广泛的应用,如天气预 报、金融风险评估等。
多维随机变量边缘分布和条件分布关系
边缘分布
条件分布
关系
P(AB)=P(A)P(B)。
02 03
全概率公式
如果事件B1、B2、B3…Bn 是一个完备事件组,即它们两两互不相容, 其和为全集;并且P(Bi)大于0,则对任一事件A有P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
贝叶斯公式
在全概率公式的基础上,当已知事件A发生时,求某个Bi发生的概率, 即P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/∑[P(A|Bj)P(Bj)],其中j=1,2,...,n。

概率论与数理统计-第1章-第4讲-条件概率与乘法公式

概率论与数理统计-第1章-第4讲-条件概率与乘法公式

P( AB) P( A)
100
100 99
4
01 条件概率
定义 设A、B为两事件, P ( A ) > 0 , 则称
P B A P(AB)
P( A)
为事件 A 发生的条件下事件 B 发生的条件概率.
同理
P( A | B) P( AB) P(B)
称为在事件B发生的条件下事件A的条件概率.
5
01 条件概率
解 由前例可知无论有放回抽样和无放回抽样都有 P(B) 72
100
(1)有放回抽样
P(B | A) 72 100
P(B)
独立性
(2)无放回抽样
P(B | A) 71 99
P(B)
如何定义?
P( A) 72
72 71
100 P( AB) 72 71
P(B|A) Nhomakorabea71 99
100 99 72
在解决许多概率问题时,往往需要在某些附加条件下求事件的概率. 如 在事件A发生的条件下求事件B发生的概率,将此概率记作P(B|A).
P(B|A) =? P(B)
3
01 条件概率
例 在100件产品中有72件为一等品,从中取两件产品,记A表示“第 一件为一等品”,B表示“第二件为一等品”. 求P(B) ,P(B|A).
概率论与数理统计
第1章 随机事件与概率
第4讲 条件概率与乘法公式
主讲教师 |
本章内容
01 条件概率 02 乘法公式
01 条件概率
1.条件概率
世界万物都是互相联系、互相影响的,随机事件也不例外.在同一个试验 中的不同事件之间,通常会存在着一定程度的相互影响.例如,在天气状 况恶劣的情况下交通事故发生的可能性明显比天气状况优良情况下要大得 多.

概率论与数理统计(4)

概率论与数理统计(4)

为试验E的样本空间 B 的样本空间, 定理 1.2 设Ω为试验 的样本空间, 1,B2,...Bn 为Ω的一个 分割,且 分割 且 P( Bi ) > 0 (i = 1,2,...n), 则对E的任一事件 有 则对 的任一事件A有 的任一事件 … … … B2 A …
(1) P( A) = P B1)(A | B1)+(B2)(A | B2)+...+(Bn)(A | Bn) ( P P P P P
50 1 (1) P ( A ) = = 500 10 10 1 (2) P ( A | B ) = = 200 20
10 10 500 P ( AB ) P(A | B) = = = 200 200 500 P(B)
对于一般的古典概型问题,设样本点总数为 , 对于一般的古典概型问题,设样本点总数为n,事件B 包含m个样本点,事件AB包含k个样本点,则有 包含 个样本点,事件AB包含 个样本点, 个样本点 AB包含 个样本点
P ( A) = 5 P ( A1 ⋅ A2 ⋅ A3 ⋅ A4 ⋅ A5 ) =5 P ( A1 ) P ( A2 ⋅ A3 ⋅ A4 ⋅ A5 A1 ) 4! 1 1 1 3 =5 × × 1 − 1 − + − = 5! 2! 3! 4! 8
已知某工厂生产的产品的合格率为0.96,而合格品中的 例6 已知某工厂生产的产品的合格率为 , 一级品率为0.75.求该厂产品的一级品率。 求该厂产品的一级品率。 一级品率为 求该厂产品的一级品率 表示“ 表示“ 解 设A表示“产品是一级品”,B表示“产品是合格品”,依题设 表示 产品是一级品” 表示 产品是合格品”
条件概率
符合概率定义中的三个条件: 符合概率定义中的三个条件: P( A | B)

概率论与数理统计:条件概率

概率论与数理统计:条件概率

n
, i 1,2,, n.
明 例8 对以往数据分析结果表 , 当机器调整得 良好时, 产品的合格率为98% , 而当机器发生某 种故障时, 其合格率为55% . 每天早上机器开动 时 , 机器调整良好的概率为95%.试求已知某日 早上第一件产品是合格 品时 , 机器调整得良好的 概率是多少?
第四节
一、引例
条件概率
二、条件概率的定义 三、条件概率的性质 四、乘法公式 五、全概率公式 六、贝叶斯公式 七、小结
一、引例
引例: 在标有0到9号码的10个球中任取一球,在 取到球的号码小于5的条件下,求取到球号码为2 的 概率有多大? 古典概型 设 A 表示任取一球,取得号码小于5; B 表示任取一球,取得的号码为2.
P ( A B1 ) 0.02, P ( A B2 ) 0.01, P ( A B3 ) 0.01, 故 P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A B3 ) P ( B3 )
0.02 0.3 0.01 0.5 0.01 0.2 0.013.
j 1
第五节
事件的独立性与相关性
一、两个事件的独立性与相关性 二、有限个事件的独立性 三、相互独立事件的性质
四、Bernoulli概型
五、小结
一、两个事件的独立性与相关性
1.引例
盒中有5个球( 3绿 2红 ), 每次取出一个, 有放回 地取两次.记 A 第一次抽取, 取到绿球, B 第二次抽取, 取到绿球,
则 A3 、 A4 为事件第三、四次取到白球 .
因此所求概率为
P ( A1 A2 A3 A4 )
P ( A4 A1 A2 A3 ) P ( A3 A1 A2 ) P ( A2 A1 ) P ( A1 )

概率论与数理统计 第4节 条件概率

概率论与数理统计 第4节 条件概率

于是A的样本点为A (男,女), (女,男), (女,女), B (女,女),
因此P(B A) 1 ; 即另一个也是女孩的概率为1 .
3
3
但是P(B) 1 P(B A); 4
目录 上页 下页 返回 结束
一、条件概率的定义
在例1中,有P(B) P(B A), 原因是: P(B A)是在A发生的条件下B的概率,此时样本空间的 样本点发生了改变,即P(B A)是在新样本空间A A中的 的古典概率。
为 1 ;若第一次落下未打破,第二次落下打破的概率为 7 ;
2
10
若前两次落下未打破,第三次落下打破的概率为 9 ,求透镜
10
落下三次而未打破的概率.
目录 上页 下页 返回 结束
练习答案
1. 解 设A 活到50岁, B 活到51岁,则B A,
于是P(AB) P(B),现求P(B A). 因为P(A) 0.90718 , P(B) 0.901356 ,所以 P(B A) P( AB) 0.90135 0.99357 . P(B) 0.90718
目录 上页 下页 返回 结束
练习答案
2. 解 设Ai表示“第 i次落下透镜打破”, i 1,2,3, 于是所求概率为:
P( A1A2 A3) P( A1)P(A2 A1)P( A3 A1A2 )
(1 1) (1 7 ) (1 9 ) 3 .
2
10
10 200
目录 上页 下页 返回 结束
解(2)由于第二次取球发生在
第一次取球后 ,
因此


B
样本点数不好确定 ,于是用定义 2计算. 因为
P(
AB)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2) (3) 若 Ai F i 1, 2… 且 Ai Ak i k , 则
P
i 1
Ai | B
PA
i 1

i
| B
5
性质1.4.1 条件概率P(A|B)是( , F )上的概率
证:(1) A B B, 0 P A | B (2) P | B P B 1 P B
P( A1 A2 … An ).
10
例1.4.3 设100件产品中有5件是 不 合格品,用下列两种方式抽取2件
(1) 不放回; (2) 放回, 求2件都是合格品的概率. 解: 令 A={第一次抽得的是合格品}; B={第二次抽得的是合格品}. 则所求为: P( A B) (1)
95 94 不放回抽取时:P( A) 100 , P( B | A) 99
2
定义1.4.1 条件概率
A F, B F 且 设 , F , P为一概率空间, P B 0,在 “已知事件B已经发生”的条件下, “事件A发生”条件概率 P(A|B) 定义为:
P A B P(A|B)= P B
3
P(A)与P(A|B)的关系
P A B P( A | B) P B
§1.4 条件概率
一、条件概率的定义及性质 二、乘法公式 三、全概率公式 四、贝尔斯公式
1
引例: 确诊率问题
某病被医生诊断出的概率为0.95, 无该病 误诊有该病的概率为0.002, 如果某地区患该 病的比例为0.001, 现随机选该地区一人, 医生 诊断患有该病, 求该人确实患有该病的概率.
P(B|A)=0.32225 <1/3.
特别地: (1)
P A | P A
(2) 若 A B 或 B A ,则 P A | B P A (3) 若 A B ,则 0 P( A | B) P( A)
4
性质1.4.1 条件概率的性质
B F 且P(B)>0, 设 为一概率空间, 则对任意 A F 有 P(A|B) 对应,且 P(A|B) 是 , F 上的概率,即 P(A|B) 满足:
i i q0 1 P(
i 1 i 1
i 1
13
Ai )
例1.4.4 配对问题
由于事件 Ai 是相容的,需要用性质1.3.5(多除 少补原理)和性质1.4.3(乘法公式).
P A B
i 1 i
P B
P Ai | B
i 1

6
性质1.4.1
1. P | B 0
结论
概率空间 , F , P B
2. 1 P | B P A P A | B P | B
' B
1 B
P( A) P( A B) A F1 , P ( A) P( B) P( B)
8
二、乘法公式
P ( A B) P ( A | B) P ( B)
P( A B) P ( B | A) P ( A)
证:由条件概率定义:
P( A B) P( B) 0, P( A | B) P( B) P( A B) P( A) 0, P( B | A) P( A)
95 95 0.9025 100 100
两事件之间有某种“独立性”.
12
例1.4.4 配对问题
某人写了n封信,将其放入信封中,并在其中 每一个信封上分别任意地写上n个收信人中 的一个地址(不重复).求: (1)没有一个信封上所写的地址正确的概率 q 0 (2)恰有r个信封上所写的地址正确的概率 pr (r n) 解:设 A表示“在第 i个信封上所写的地址正确” i n n (1)所求事件为: n
9
性质1.4.3 乘法公式推广到有穷多个事件
设Ai F (i 1, 2,…, n, n 2) 满足P( A1 A2… An1 ) 0 则: P( A1 A2… An ) P( A1) P( A2 | A1) P( A3 | A1 A2 )
… P( An | A1 A2… An1 )

注:§1.3中概率的许多其他性质也都适用于 条件概率。
7
理解条件概率的两种不同的观点
1. (, F , P) (, F , PB )
A F , PB A
P A B P( B)
2. (, F , P) (1, F1, PB )
'
F1 A B : A F
证: A1 A1 A2 A1 A2 A3 A1 … An
P( A1 ) P( A1 A2 ) P( A1 A2 … An ) 0 P( A1 A2 ) P( A1 A2 A3 ) P( A1 A2 … An ) 右端= P( A1 ) P( A ) P( A A ) … P( A A … A ) 1 1 2 1 2 n 1
Ai B i 1
i 1
P A B P B
1
(3 )
Ai B

Ai B Ak B Ai Ak
P Ai B i 1 P Ai |B P B i 1
P( A B) P( B | A) P( A)

95 94 0.9019 100 99
11
例1.4.3 设100件产品中有5件事不合格品
(2) 放回抽样:
95 95 P( A) , P( B) P( B | A) 100 100
P( A B) P( A) P( B | A)
相关文档
最新文档