生物活性玻璃的结构性能特点及在生物医用领域的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物活性玻璃的结构性能特点及在生物医用领域的应用摘要

生物玻璃是重要的无机生物医用材料之一。本文论述了生物玻璃材料的发展历史、研究现状及发展方向,特别是详尽地讨论了生物玻璃的制备方法,以及因其具有良好的生物活性、生物相容性而广泛地应用于骨科、牙科的替代及骨组织工程中的领域,最后展望了生物玻璃材料的应用前景。

关键词:生物活性玻璃、制备方法、性质、应用

Abstract

Bioactive glass is one of the important inorganic biomaterials. This article discusses the history of the development of biological glass material, research status and direction of development, in particular a detailed discussion of the preparation of biological glass, and because of its good biological activity, biocompatibility and widely used in orthopedics, dentistry replacement and bone tissue engineering field, and finally the application prospect of bio-glass material.

Key words: bioactive glass、preparation method、property、application

1、绪论

生物玻璃(bioactiveglass,BAG)作为无机生物医用材料中的一个重要分支[1],具有良好的生物相容性,没有毒副作用。此外,由于它们的化学组成与生物体的自然骨骼相似,容易与周围的骨骼形成紧密牢固的化学键合,或纤生物降解形成新的骨骼成分。生物玻璃材料的研究与临床应用已成为材料学、医学以及生物化学等学科的热点,愈来愈受到人们的重视。特别是一些高强度、可切削生物微晶玻璃的开发和内辐射医用玻璃微球、玻璃基骨水泥和药物载体以及具有铁磁发热等功能性的生物玻璃材料的开发成功。更是给人类医疗健康带来了又一突

破性的进展,广泛开展玻璃基生物材料的研究具有重要的理论和应用意义。

生物活性玻璃是一类能对机体组织进行修复、替代与再生、具有能使组织和材料之间形成键合作用的材料。BAG在1969年由Hench发现,由SiO2,Na2O,CaO和P2O5等基本成分组成的硅酸盐玻璃。生物活性玻璃的降解产物能够促进生长因子的生成、促进细胞的繁衍、增强成骨细胞的基因表达和骨组织的生长。是迄今为止唯一既能够与骨组织成键结合,同时又能与软组织相连接的人工生物材料。

1970年初,美国佛罗里达大学的Hench教授[2-3]发现了生物活性玻璃,并首次将其应用于生物医学领域, 从而开创了一个崭新的生物材料研究领域—生物活性玻璃和生物活性玻璃陶瓷。这类材料作为生物医学材料具有金属、高分子及生物惰性材料不可比拟的优势,能与人体骨形成直接的化学结合。因此,人们对这类新型材料产生了浓厚的兴趣,并研制出了大量生物活性陶瓷材料, 例如:45S5Biog lassOR 生物玻璃(Na2O-CaO-SiO2-P2O5系)、Ceravital 微晶玻璃(Na2O-K2O- MgO-CaO-P2O5-SiO2系)、A-W生物玻璃陶瓷(MgO-CaO-SiO2-P2O5系)、羟基磷灰石生物活性陶瓷( HA,组成为: Ca10 ( PO4 ) 6 ( O H) 2等。

相比于生物惰性材料,生物活性玻璃优势体现在其可降解性和生物活性。生物活性玻璃作为一类典型的硅酸盐材料,在体液环境中会被溶解,同时伴随着玻璃网络结构中的离子释放,导致玻璃网络骨架的破坏,从而生物活性玻璃发生降解,因此生物活性玻璃是一种生物可降解材料。同时,生物玻璃的降解过程与其体外诱导磷灰石形成过程密切相关。在体液环境下,材料中首先有大量的玻璃网络中的钙、钠等离子释放,与溶液中氢离子快速进行交换,表面形成大量的硅羟基基团,玻璃结构的Si-O-Si键断裂,可溶性硅溶出,材料与溶液界面形成更多的硅羟基,在这种弱碱环境下,硅羟基聚合形成带负电的富硅凝胶层,从而吸附钙离子和磷酸根离子沉积在硅凝胶层表面,形成无定形结构的磷酸钙层;磷酸钙晶化成后变为羟基磷灰石(HA),晶化过程中有碳酸根等进入晶格则形成碳酸羟基磷灰石(HCA)。在整个过程中,材料的离子释放与磷灰石的沉积是同时进行的,随着生物活性玻璃的降解,磷灰石也相继形成。磷灰石层形成后可吸附周围环境中蛋白分子,利于细胞粘附、增殖及分化后最终形成骨基质,参与到生命过程中。长久以来,生物活性玻璃在体液或者模拟体液中诱导HA 沉积的能力是评判生物活性玻璃材料生物活性高低的重要依据。影响磷灰石层形成能力的因素

有很多,其中包括材料组成、材料形态、孔结构、颗粒尺寸及比表面积等。2、生物活性玻璃的制备方法

Asgharnia S[4]等人通过静电纺丝技术制备出基于SiO2–CaO–P2O5–MgO基体的生物活性玻璃和玻璃-陶瓷纳米纤维。他们认为通过制备纳米纤维来提高材料的比表面积,从而提高其生物活性性能。通过对纳米纤维的XRD测试表明,生物活性玻璃始终保持非晶态,直至温度升至800℃,而且当羟基磷灰石晶体出现时,玻璃-陶瓷纳米纤维形成。实验结果表明,经过600℃的烧结,纳米纤维的直径从246nm降低到156nm,这归因于聚合物的消除。

Owens G[5]等人通过溶胶-凝胶法制备纳米结构的生物活性玻璃材料。溶胶-凝胶生物活性玻璃具有多孔的结构,且密度小,比表面积高,生物活性相对较高。在保持其生物活性的前提下,其化学组成可在较大范围内进行调整,其形貌,尺寸大小都可通过工艺来控制。并且可以在低温合成,降低了能耗,减少了材料制备过程中的热膨胀,避免热应力集中导致的裂纹开裂现象。

Ji L[6]等通过熔融法制备生物活性玻璃。熔融法主要是应用于早期块状生物活性玻璃的制备,其方法与普通玻璃的制备方法一样,首先将原料按照事先设计好的计量比均匀混合,置于高温条件下熔融,然后冷却后制得生物活性玻璃,该方法的缺点是对设备要求高,能耗大的;同时,该方法制备的生物活性玻璃结构致密,密度大,由于基本上不具备孔道结构,其比表面积小,材料的生物活性主要依赖于其化学组成。

相比较静电纺丝法和熔融法制备的生物活性玻璃而言,溶胶-凝胶生物活性玻璃具有以下优点:

(1)溶胶-凝胶工艺制备生物活性玻璃的整个过程所需的条件均比较温和,溶胶-凝胶过程基本上是在室温下进行,后续的热处理温度在600~700℃,这要比熔融法(1350℃)制备生物玻璃低得多,实验操作更加简便;最关键的是,该方法使制得的生物玻璃由致密材料变成了多孔材料。

(2)材料的纯度和组分均一性得到提高。化学成分的均勾性可达分子级别,比熔融法使用的微米级粉末原料的混合均匀度提高了104-105倍。Sol-Gel生物活性玻璃制备采用高纯度化学试剂为原料,同时可采用进一步纯化原料的工艺,从

相关文档
最新文档