高一数学解三角形单元测试及答案
苏教版必修5高一数学第1章解斜三角形单元测试卷及答案
章节能力测试题(一)(测试范围:解三角形)一.填空题(本大题共14小题,每小题5分,共70分)1.三角形ABC 中,如果A=60º,C=45º,且a=则c= 。
1.3。
提示:由正弦定理得sin 45sin sin 603a C c A ===。
2. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.12。
提示:B A sin sin =1sin cos sin 22A A A =,故B A sin sin 的最大值是12。
3.在△ABC 中,若=++=A c bc b a 则,222_________。
3. 1200.提示:2221cos 22b c a A bc +-==-,A=1200.4.在△ABC 中,若====a C B b 则,135,30,200_________。
4.26-。
提示:A=1800-300-1350=150.sin150=sin(450-300.由正弦定理得 0sin 2sin15sin sin 30b A a B ===5. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为 .提示:∵三角形两边夹角为方程57602x x --=的根,不妨假设该角为θ,则易解得得53c o s -=θ或cos θ=2(舍去),∴据余弦定理可得13252cos 3523522==⨯⨯⨯-+=θ三角形的另一边长。
6.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= 。
6.B=105º或B=15º。
提示:由正弦定理可得sinC=sin2c A a == ,∴C=45º或者C=135º,∴B=105º或者B=15º。
7.科学家发现,两颗恒星A与B分别与地球相距5亿光年与2亿光年,且从地球上观测,它们的张角为60º,则这两颗恒星之间的距离为 亿光年。
高一解三角形试题及答案
高一解三角形试题及答案一、选择题1. 在三角形ABC中,若a=7,b=5,A=60°,则B的度数为:A. 30°B. 45°C. 60°D. 90°答案:B2. 在三角形ABC中,若a=3,b=4,c=5,则三角形ABC的面积为:A. 3B. 4C. 6D. 8答案:C3. 在三角形ABC中,若a=5,b=7,c=8,且三角形ABC为锐角三角形,则角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:C4. 在三角形ABC中,若a=6,b=8,A=45°,则B的度数为:A. 30°B. 45°C. 60°D. 75°答案:D5. 在三角形ABC中,若a=7,b=8,c=9,且三角形ABC为直角三角形,则角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:D二、填空题6. 在三角形ABC中,若a=5,b=6,A=45°,则B的度数为________。
答案:60°7. 在三角形ABC中,若a=3,b=4,c=5,则三角形ABC的面积为________。
答案:68. 在三角形ABC中,若a=5,b=7,c=8,且三角形ABC为锐角三角形,则角C的度数为________。
答案:60°9. 在三角形ABC中,若a=6,b=8,A=45°,则B的度数为________。
答案:75°10. 在三角形ABC中,若a=7,b=8,c=9,且三角形ABC为直角三角形,则角C的度数为________。
答案:90°三、解答题11. 在三角形ABC中,已知a=4,b=6,A=30°,求B和C的度数。
解答:根据正弦定理,有\frac{a}{\sin A} = \frac{b}{\sin B},代入已知数据得 \frac{4}{\sin 30°} = \frac{6}{\sin B},解得 \sin B = \frac{3}{4}。
高一数学 解三角形测试及答案
解三角形测试一、选择题(本大题共2小题,共10分)1.△ABC的内角A、B、C的对边分别为a、b、c.已知a=√5,c=2,cosA=2,则b=()3A. √2B. √3C. 2D. 32.在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B⋅sin C=sin2A,则△ABC的形状是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形二、填空题(本大题共2小题,共10分)3.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2√2,且C=π,4则△ABC的面积为______.4.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2−b2=√3bc,sinC=2√3sinB,则A=______.三、解答题(本大题共2小题,每题15分,共30分)5.△ABC的内角A,B,C所对的边分别为a,b,c,向量m⃗⃗⃗ =(a,√3b)与n⃗=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=√7,b=2,求△ABC的面积.6.在ΔABC中,a2+c2=b2+√2ac.(Ⅰ)求∠B的大小;(Ⅱ)求√2cosA+cosC的最大值.答案和解析1.【答案】D【解析】【分析】本题主要考查了余弦定理,属于基础题.由余弦定理可得cosA=b2+c2−a22bc,利用已知整理可得3b2−8b−3=0,从而解得b的值.【解答】解:∵a=√5,c=2,cosA=23,∴由余弦定理可得:cosA=b2+c2−a22bc =b2+4−52×b×2=23,整理可得:3b2−8b−3=0,解得:b=3或−13(舍去).故选D.2.【答案】C【解析】【分析】本题考查了正弦定理、余弦定理、等边三角形的判定方法,属于中档题.b2+c2=a2+bc,利用余弦定理可得cosA=12,可得A=π3.由sin B⋅sinC=sin2A,利用正弦定理可得:bc=a2,代入b2+c2=a2+bc,可得b=c.【解答】解:在△ABC中,∵b2+c2=a2+bc,∴cosA=b2+c2−a22bc =bc2bc=12,∵A∈(0,π),∴A=π3.∵sin B⋅sinC=sin2A,∴bc=a2,代入b2+c2=a2+bc,∴(b−c)2=0,解得b=c.∴△ABC的形状是等边三角形.故选C.3.【答案】√3+1【解析】【分析】本题考查了正弦定理,特殊角的三角函数值,三角形内角和定理,三角形面积公式在解三角形中的综合应用,属于中档题.由已知利用正弦定理可求sin B,结合B的范围,利用特殊角的三角函数值可求B,利用三角形内角和定理可求A,利用两角和的正弦公式可求出sinA=sin(B+C),进而利用三角形面积公式即可计算得解.【解答】解:由正弦定理得bsinB =csinC⇒sinB=bsinCc =12,又c>b,且B∈(0,π),所以B=π6,所以A=7π12,∵sinA=sin(B+C)=sinBcosC+cosBsinC=12×√22+√32×√22=√6+√24,所以S=12bcsinA=12×2×2√2×√6+√24=√3+1.故答案为√3+1.4.【答案】30°【解析】【分析】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.已知sinC=2√3sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cos A的值,即可确定出A的度数.【解答】解:将sinC=2√3sinB利用正弦定理化简得:c=2√3b,代入得a2−b2=√3bc=6b2,即a2=7b2,∴由余弦定理得:cosA=b2+c2−a22bc =2224√3b2=√32,∵A为三角形的内角,∴A=30°.故答案为30°5.【答案】解:(Ⅰ)因为向量m⃗⃗⃗ =(a,√3b)与n⃗=(cosA,sinB)平行,所以asinB−√3bcosA=0,由正弦定理可知:sinAsinB−√3sinBcosA=0,因为B为△ABC的内角,所以sinB≠0,所以tanA=√3,因为A为△ABC的内角,所以A=π3;(Ⅱ)a=√7,b=2,由余弦定理可得,a2=b2+c2−2bccosA,可得7=4+c2−2c,解得c=3,或c=−1(负值舍去),所以△ABC的面积为12bcsinA=3√32.【解析】本题考查正弦定理,余弦定理,三角形面积公式,向量共线,考查计算能力,属于中档题.(Ⅰ)利用两向量平行,可得asinB −√3bcosA =0,通过正弦定理,即可求出结果; (Ⅱ)利用余弦定理求出c ,然后求解△ABC 的面积.6.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac .∴a 2+c 2−b 2=√2ac .∴由余弦定理得cosB =a 2+c 2−b 22ac =√2ac 2ac =√22, 又因为B ∈(0,π),∴B =π4;(Ⅱ)由(Ⅰ)得:C =3π4−A ,∴√2cosA +cosC =√2cosA +cos(3π4−A) =√2cosA −√22cosA +√22sinA =√22cosA +√22sinA =sin(A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π), 故当A +π4=π2时,sin(A +π4)取最大值1,即√2cosA +cosC 的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象性质,属于中档题.(Ⅰ)由已知根据余弦定理,可得cosB =√22,进而得到答案; (Ⅱ)由(Ⅰ)得:C =3π4−A ,结合正弦型函数的图象和性质,可得√2cosA +cosC 的最大值.。
高一解三角形试题及答案
高一解三角形试题及答案一、选择题1. 在三角形ABC中,已知a=3,b=4,A=60°,则三角形ABC 的面积为()A. 3√3B. 4√3C. 6D. 2√3答案:B解析:根据三角形面积公式S=1/2*ab*sinA,代入已知数据可得S=1/2*3*4*sin60°=3√3,故选B。
2. 在三角形ABC中,已知a=7,b=14,A=30°,则三角形ABC 的解的个数为()A. 1B. 2C. 3D. 0答案:D解析:根据正弦定理,有a/sinA=b/sinB,代入已知数据可得sinB=14/7*1/2=1,由于B∈(0,π),所以B=90°,此时三角形ABC 无解,故选D。
3. 在三角形ABC中,已知a=5,b=7,A=45°,则三角形ABC 的外接圆半径为()A. 5√2B. 7√2C. 5D. 7答案:A解析:根据正弦定理,有a/sinA=2R,代入已知数据可得2R=5/sin45°=5√2,故选A。
4. 在三角形ABC中,已知a=3,b=4,A=60°,则三角形ABC 的内切圆半径为()A. 1B. 2C. 3D. 4答案:A解析:根据三角形面积公式S=1/2*(a+b+c)*r,其中r为内切圆半径,代入已知数据可得S=1/2*3*4*sin60°=3√3,又a+b+c=3+4+5=12,所以r=2S/(a+b+c)=2*3√3/12=√3/2,故选A。
5. 在三角形ABC中,已知a=4,b=5,A=45°,则三角形ABC 的外接圆半径为()A. 5B. 10/√2C. 5√2D. 10答案:B解析:根据正弦定理,有a/sinA=2R,代入已知数据可得2R=4/sin45°=4√2,故选B。
二、填空题6. 在三角形ABC中,已知a=5,b=7,A=60°,则三角形ABC 的面积为35√3 。
2024年高一数学真题分类汇编(天津专用)解三角形(解析版)
专题03解三角形考点一、利用正弦定理、余弦定理解三角形考点二、判断三角形的形状考点三、解三角形的实际应用1、根据正弦定理、余弦定理求边或角2、求三角形的周长或面积3、解三角形中求取值范围或最值问题4、解三角形的综合应用利用正弦定理和余弦定理解三角形1.(22-23高一下·天津·期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若1a =,2b =,c =C =()A .120︒B .90︒C .60︒D .45︒2.(22-23高一下·天津·期中)在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4a =,b =π6A =,则角B 的大小为()A .π3B .π3或2π3C .2π3D .π63.(22-23高一下·天津·期中)已知ABC ,内角、、A B C 的对边分别是,,,60a b c a b B ===︒,则A 等于()A .45︒B .30︒C .45︒或135︒D .30︒或150︒4.(22-23高一下·天津·期中)在ABC 中,75,45AB A B === ,则AC =()A B .2CD .3【答案】B【分析】根据三角形内角和先求出角C ,再根据正弦定理即得.【详解】因为180A B C ++= ,所以60C = ,5.(22-23高一下·天津·期中)若ABC 2BC =,60C =︒,则边AB 的长度等于()A B C .2D .36.(22-23高一下·天津南开·期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若()42cos 1,sin 5a c B C =+=,则sin B =()A .1825B .2425-C .1825-D .24257.(22-23高一下·天津·期中)ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π68.(22-23高一下·天津·期中)在ABC 中,a 3b =,6A π=,则此三角形()A .无解B .一解C .两解D .解的个数不确定判断三角形的形状9.(19-20高一下·天津东丽·期末)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中正确的是()A .若4,30a b A === ,则B 只有一解B .若2220a b c +->,则△ABC 一定是锐角三角形C .若b cos C +c cos B =b ,则△ABC 一定是等腰三角形D .若a cos A =b cos B ,则△ABC 一定是等腰三角形10.(22-23高一下·天津·期中)在ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且cos a c B =,则ABC 的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】B,再由诱导公式及两角和的正弦公式判断即11.(22-23高一下·天津·期中)在ABC 中,已知()sin 2sin cos A A C C =+,那么ABC 一定是()A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形12.(22-23高一下·天津·期中)在ABC 中,内角,,A B C 满足2sin cos sin B C A =,则ABC 的形状为()A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形【答案】B【分析】根据()sin sin A B C =+得到()sin 0B C -=,求出B C =,得到三角形形状.【详解】()2sin cos sin sin sin cos cos sin B C A B C B C B C ==+=+,故sin cos cos sin 0B C B C -=,即()sin 0B C -=,因为(),0,πB C ∈,所以B C =,故ABC 为等腰三角形.故选:B13.(22-23高一下·天津·期中)在 ABC 中,如果满足cos cos b A a B =,则 ABC 一定是()A .直角三角形B .等边三角形C .等腰三角形D .等腰或直角三角形14.(22-23高一下·天津·期中)设在ABC ∆中,角,A B C ,所对的边分别为,a b c ,,若cos cos sin b C c B a A +=,则ABC ∆的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定15.(22-23高一下·天津·期中)在ABC 中,已知||||AB AC AB AC +=-,且sin 2sin cos A B C =,则ABC 是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形16.(2021·甘肃天水·模拟预测)在ABC 中,若21sin cos C b C B c B -=-,则ABC 的形状是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形B解三角形的实际应用17.(22-23高一下·天津·期中)一艘轮船按照北偏东40︒方向,以18海里/时的速度直线航行,一座灯塔原来在轮船的南偏东20︒方向上,经过20分钟的航行,轮船与灯塔的距离为与轮船原来的距离为A.6海里B.12海里C.6海里或12海里D.由题意得:18AC=则2 cos ACCAB∠=即灯塔与轮船原来的距离为本题正确选项:A【点睛】本题考查解三角形的实际应用问题,关键是能够利用余弦定理构造方程,解方程求得结果18.(22-23高一下·天津·期中)一艘轮船沿北偏东28o方向,以18海里/时的速度沿直线航行,一座灯塔原来在轮船的南偏东32o方向上,经过10灯塔与轮船原来的距离为海里.19.(20-21高一下·天津宁河·阶段练习)一艘轮船按照北偏东40°方向,以18海里/时的速度直线航行,一座灯塔原来在轮船的南偏东20°方向上,经过20分钟的航行,轮船与灯塔的距离为则灯塔与轮船原来的距离为海里.【答案】6【分析】由题意画出图形,求出相关量,然后利用余弦定理求解即可.【详解】记轮船的初始位置为A,灯塔位置为B,20分钟后轮船的位置为C,如图所示:由题意得:11863AC =⨯=,1804020120CAB ∠=--= 63BC =,在ABC 中,由余弦定理得:22cos 2AC AB BC CAB AC AB +-∠=⋅()2226631262AB AB+-==-⨯⋅,所以解得6AB =或12AB =-20.(22-23高一下·天津南开·期中)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:米),三角高程测量法是珠穆朗玛峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45,60A C B A B C ''''''∠=∠= ,由点C 测得点B 的仰角为15 ,BB '与CC '的差为100,由点B 测得点A 的仰角为45 ,则A ,C 两点到水平面ABC '''的高度差AA CC ''-为米.已知BB '与CC '的差为100,则又15BCD ∠=,则tan15CD =则3131010100(2B C CD ''=-==+根据正弦定理和余弦定理求边或角21.(22-23高一下·天津·期中)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知3a =c =2π3A =.(1)求C 的值;(2)求b 的值.22.(22-23高一下·天津河西·期中)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos c b b A -=.(1)若a =3b =,求边c 的长;(2)若π2C =,求角B 的大小.23.(22-23高一下·天津·期中)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.24.(22-23高一下·天津·期中)在非等腰ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,且3a =,4c =,2C A =.(1)求cos A 的值;(2)求ABC 的周长;(3)求πcos 26A ⎛⎫+ ⎪⎝⎭的值.25.(22-23高一下·天津·期中)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.26.(22-23高一下·天津和平·期中)ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =u r与()cos ,sin n A B =r平行.(1)求A ;(2)若a =2b =,求sin C 的值.27.(22-23高一下·天津滨海新·期中)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知45,6,cos 5a b B ===-.(1)求A 的值;(2)求()sin 2B A +的值.28.(22-23高一下·天津·期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A C =,150B =︒,ABC(1)求a 的值;(2)求sin A 的值;(3)求sin 26A π⎛⎫+ ⎪的值.29.(22-23高一下·天津·期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且222sin sin sin cos cos A A B B C +=-.(1)求角C 的大小;(2)若sin 2sin A B =,c =ABC 的面积.30.(22-23高一下·天津·期中)在ABC 中,角A ,B ,C 所对的分别为a ,b ,c .向量),m b =,()sin ,cos n A B = ,且m n ∥.(1)求B 的值;(2)若2a =,b ,求ABC 的面积31.(2021·广西·二模)已知ABC 的内角A 、B 、C 的对边分别为、b 、,且c b c a=--.(1)求角A 的大小;(2)若a =,且ABC S = ABC 的周长.32.(22-23高一下·天津河北·期中)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =u r,()cos ,sin n A B =r ,且//m n .(1)求角A ;(2)若a =2b =,求边c及ABC 的面积;(3)在(2)的条件下,求()sin 2B A -的值.33.(22-23高一下·天津和平·期中)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,4c =,a =(1)求A ,b ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.34.(22-23高一下·天津滨海新·期中)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2cos cos b c a A B=+.(1)求角B 的大小;(2)若4,b a c =+=ABC 的面积.35.(22-23高一下·天津滨海新·期中)已知ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos cos c A a B b A =+.(1)求角A ;(2)若ABC 的外接圆半径R =4b =,求ABC 的面积;(3)若a =3BA AC ⋅=- ,A ∠的平分线交边BC 于点T ,求AT 的长.求取值范围或最值问题36.(22-23高一下·天津·期中)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos2cos2cos212sin sin A B C A B +-=-.(1)求角C 的大小;(2)若ABC 为锐角三角形,求sin sin sin A B C ++的取值范围.37.(21-22高一下·湖北·期中)已知ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()2cos cos a b C c B-=(1)求角C(2)若2a =,3b =,CD 为角C 的平分线,求CD 的长;(3)若cos cos 4a B b A +=,求锐角ABC 面积的取值范围.=38.(2020·全国·模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()223sin sin 222C B bc b c b c a +=++.(1)求角A 的大小;(2)若c a >,求a b m c +=的取值范围.39.(21-22高一下·江苏无锡·期中)从①222sin sin sin sin sin 0B A C B C -+-=②sin cos b A B =,这两个条件中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分).在ABC 中,,,a b c 分别是角,,A B C 的对边,若__________.(1)求角A 的大小:(2)若D 是BC 的中点,AD =ABC 面积的最大值.(3)若O 为ABC 的外接圆圆心,且cos cos 2sin sin B C AB AC mAO C B+= ,求实数m 的值.【详解】(1)解:选条件①时,222sin sin sin sin sin 0B A C B C -+-=,根据正弦定理:222b a c bc -+=,40.(20-21高一下·山东济南·期中)如图所示,某市有一块空地OAB ,其中2km OA =,60OAM ∠=︒,90AOB ∠=︒.当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ,其中M ,N ,都在边AB 上,且30MON ∠=︒,挖出的泥土堆放在OAM △地带上形成假山,剩下的OBN △地带开设儿童游乐场.为安全起见,需在OAN 的周围安装防护网.设=AOM θ∠.(1)当1km AM =时,求此时防护网的总长度;(2)若15θ=︒,问此时人工湖用地OMN 的面积是堆假山用地OAM △的面积的多少倍?(3)为节省投入资金,人工湖OMN 的面积要尽可能小,问如何设计施工方案,可使OMN 的面积最小?最小面积是多少?(2)15θ=︒时,在三角形sin 60sin15OM AM =︒︒在三角形OMN 中,由正弦定理得,sin 30sin 75MN OM =︒︒所以sin 60sin 75MN AM =sin 60sin 301sin 302︒⋅︒=︒以O 为顶点时,所以OMN OAM S MN S AM=△△即人工湖用地OMN (3)在三角形OAN 18060ONA ∠=︒-由正弦定理得,(2sin 60sin 90ON =︒︒在三角形OAM 中,由正弦定理得sin OM。
解三角形练习题及答案
第一章 解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90°B .120°C .135°D .150°2.在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin B C .a ∶b =sin B ∶sin AD .a sin A =b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2 C .1∶4∶9D .1∶2∶34.在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ). A .25B .5C .25或5D .10或55.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形B .直角三角形C .钝角三角形D .形状不能确定7.在△ABC 中,若b =3,c =3,∠B =30°,则a =( ). A .3B .23C .3或23D .28.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为23,那么b =( ). A .231+ B .1+3C .232+ D .2+39.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好3km ,那么x 的值是( ).A .3B .23C .3或23D .310.有一电视塔,在其东南方A 处看塔顶时仰角为45°,在其西南方B 处看塔顶时仰角为60°,若AB =120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = . 12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = . 13.在△ABC 中,∠A =60°,a =3,则CB A cb a sin sin sin ++++= .14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = . 16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= . 三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状. (1)a cos A =b cos B ; (2)A a cos =B b cos =Cccos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题 1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为 α, 由cos α=k k k k k 85249-64+25222⨯⨯=21,得 α=60°,∴最大角和最小角之和为180°-60°=120°. 2.B 3.B 4.C 5.C 6.C 7.C 8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac bc a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B . 9.C 10.A 二、填空题 11.56. 12.2. 13.23. 解析:设A asin =B b sin =Cc sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23.14.32π. 15.43. 16.-41. 三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小. 解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°. 故b =Aasin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°. 解法2:由余弦定理得b 2+(6)2-26b cos 45°=4, ∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°, 所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°. 18.解析:已知两边及其中一边的对角,可利用正弦定理求解.解:∵B b sin =Ccsin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21.∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°. 由勾股定理a =22+c b =2, 即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状. (1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(ac c b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0,∴(a 2-b 2)(c 2-a 2-b 2)=0, ∴a 2-b 2=0或c 2-a 2-b 2=0, ∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形. 解法2:由正弦定理得 sin A cos A =sin B cos B ⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =π-2∠B ,∠A ,∠B ∈(0,π) ⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=B BR cos sin 2=C C R cos sin 2, ∴A A cos sin =B Bcos sin =CC cos sin , 即tan A =tan B =tan C . ∵∠A ,∠B ,∠C ∈(0,π), ∴∠A =∠B =∠C , ∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c .解:由正弦定理A asin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=C csin ,∴cos C =ca2.由余弦定理cos C =abc b a 2222-+,∵b =4,a +c =8, ∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5,∴c a2=ac a 43-5, 整理得(2a -3c )(a -c )=0, ∵a ≠c ,∴2a =3c . 又∵a +c =8, ∴a =524,c =516.。
苏教版必修5高一数学第1章解三角形章节测试题有答案
解三角形一、填空题:(每小题5分,共70分)1.一个三角形的两个内角分别为30º和45º,如果45º角所对的边长为8,那么30º角所对的边长是2.若三条线段的长分别为7,8,9;则用这三条线段组成 三角形3.在△ABC 中,∠A.∠B.∠C 的对边分别是a .b .c ,若1a =,b ∠A =30º;则△ABC 的面积是4.在三角形ABC中,若sin :sin :sin 2A B C =,则该三角形的最大内角等于5.锐角三角形中,边a,b是方程220x -+=的两根,且c =则角C =6. 钝角三角形ABC 的三边长为a ,a +1,a +2(a N ∈),则a=7.∆ABC 中,(sin sin )(sin sin )(sin sin )a B C b C A c A B -+-+-=8. 在△ABC 中,若cos cos cos 222ab c ABC==,那么∆ABC 是 三角形9.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,cc b A 22cos 2+=,则△ABC 的形状为______ 10.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是__________11. 在∆ABC 中,若tan 2,tan A c b B b-=,则A= 12.海上有A 、B 两个小岛,相距10海里,从A 岛望C 岛和B 岛成60º的视角,从B 岛望C 岛和A 岛成75º的视角;则B 、C 间的距离是 海里.13.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测得该渔轮在方位角45º、距离为10海里的C 处,并测得渔轮正沿方位角105º的方向、以每小时9海里的速度向附近的小岛靠拢。
我海军舰艇立即以每小时21海里的速度前去营救;则舰艇靠近渔轮所需的时间是 小时.14.已知ABC ∆中,,2,45a x b B ===,若该三角形有两解,则x 的取值范围是二、解答题:(共80分)15.在△ABC 中,∠A.∠B.∠C 的对边分别是a .b .c ;求证:22sin 2sin 22sin a B b A ab C +=.16.如图在ABC ∆中,32,1,cos 4AC BC C ===;(1)求AB 的值(2)求sin(2)A C +A B C17.2003年伊拉克战争初期,美英联军为了准确分析战场形势,有分别位于科威特和沙特的两个距离为2的军事基地C 和D 测得伊拉克两支精锐部队分别在A 处和B 处,且30ADB ∠= 30BDC ∠= 60DCA ∠= 45ACB ∠= ,如图所示,求伊军这两支精锐部队的距离.18. 在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且222b c a bc +=+(1)求∠A 的大小;(2)若a =,3b c +=,求b 和c 的值.A D C B19. 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,;2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.20. ABC ∆的三边a 、b 、c 和面积满足22()S c a b =--,且a + b=2,求面积S 的最大值一、填空题:1.锐角 3.424.1205.606.27.08.等边 9直角三角形 10. 等腰三角形11.60 12.23 14.2x << 二、解答题:15.证明:由正弦定理:2sin sin sin a b c R A B C===; 左边=22222(2sin sin 22sin sin 2)2[(1cos2)sin 2(1cos2)sin 2]R A B B A R A B B A +=-+-=222[sin 2sin 2(sin 2cos2cos2sin 2)]2[sin 2sin 2sin(22)]R B A B A B A R B A A B +-+=+-+=28sin sin sin R A B C =右边=28sin sin sin R A B C = 原题得证。
高一必修5解三角形练习题及答案
第一章 解三角形一、选择题1.在ABC ∆中,a =03,30;c C ==(4)则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .14=a ,16=b , 45=A D . 7=a ,5=b , 80=A 3.在ABC ∆中,若, 45=C , 30=B ,则( )A ; BC D4.在△ABC ,则cos C 的值为( )A. D. 5.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A B .120≤<k C .12≥k D .120≤<k 或二、填空题6.在ABC ∆中,5=a ,60A =, 15=C ,则此三角形的最大边的长为 . 7.在ABC ∆中,已知3=b ,, 30=B ,则=a _ _. 8.若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .9.在△ABC 中,AB=3,AC=4,则边AC 上的高为10. 在ABC △中,(1)若A A B C 2sin )sin(sin =-+,则ABC △的形状是 .(2)若ABC △的形状是 .三、解答题11. 已知在ABC ∆中,cos 3A =,,,a b c 分别是角,,A B C 所对的边.(Ⅰ)求tan 2A ; (Ⅱ)若sin()23B π+=,c =求ABC ∆的面积. 解:12. 在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,58222bcb c a -=-,a =3, △ABC 的面积为6, D 为△ABC 内任一点,点D 到三边距离之和为d 。
⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:13.在ABC ∆中,,,A B C 的对边分别为,,,a b c 且cos ,cos ,cos a C b B c A 成等差数列. (I )求B 的值; (II )求22sin cos()A A C +-的范围。
高中数学解三角形精选题目(附答案)
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
高一数学必修五第一章试题——解三角形(带答案)
高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。
(完整版)必修5-解三角形单元测试题---(含答案)(20210206030015)
32 专题:正弦定理、余弦定理的应用正弦定理、余弦定理应用的常见题型: ⑴ 已知两角与一边,解三角形,有一解。
⑵ 已知两边及其中一边的对角,解三角形, 可能有两解、一解或无解(如右图)。
⑶ 已知三边,解三角形,有一解。
⑷ 已知两边及夹角,解三角形,有一解。
|1.在厶 ABC 中,已知 A=30°, B=45°, a=1,贝U b=() A. .22..3B.3C.D.222.在厶ABC 中,已知 C= - , b=4, ABC 的面积为2・._3,则 3 c=() A. ,7 B.2 、.2C.2、、3D.273.已知在△ ABC 中,sinA : sinB : sinC=3 : 5 :7,那么这个三角形的最大角是()A.90 °B.120°C.135°D.150o4.已知在△ABC中, a 、b 、c 分别是角A 、B 、 C 的对边,如果(a+b+c)(b+c-a)=3bc, 那么 A=( A.30 °B.60°C.120°D.150o)5.在厶ABC 中,角 A , B 的对边分别为B.6.在厶 ABC 中, 3 5a=、2 , b= . 3 , C.4 aa 、b 且A=2B sinB= ,则旦的值是(5 b85D. nA.— 6B. C. 7. △ ABC 的内角 A 、 A.1B.2C.8.在厶ABC 中,内角 2 A. 2B. 9.在厶ABC 中,角 1 A. 一B.3nB=—, 3 则A 等于(D.C 的对边分别是 a 、 b 、c ,右 B=2A, a=1, b= 3,则 c=( D.1B C 所对应的边分别为a 、b 、c ,若 bsinA- 3 acosB=0,且 b =ac ,贝UC.2D. 4A 、B 、C 所对应的边分别为 a 、b 、 nc , sinC+sin(A-B)=3sin2B.若 C=—, 则-=() bC.D.3310. 在厶ABC中,如果a+c=2b, B=30°,^ ABC的面积为?,那么b等于( )21+ 3 2+ 3A. B. 1+ 3 C. D. 2+ 32 211. 已知△ ABC的内角A、B C所对的边分别是a、b、c,且a= 5,b=3,c=2 . 2,则角A= .112. 在厶ABC中,内角A、B C所对的边分别是a、b、c已知b-c= —a,2sinB=3sinC,贝U cosA的值为____________413. 在厶ABC中,a、b、c 分别是角A B C 的对边,若a2-c 2=2b,且sinB=6cosA?sinC,贝U b= .2 2 214. 已知△ ABC的内角A、B C所对的边分别为a、b、c,若c <a +b +2abcos2C,贝U C的取值范围为15. 设_圧「的内角:-所对的边分别为.,且“一- • .■' o9(1)求的值;⑵求:i' I:的值;16. 在_把匚中,角1.「厂所对的边分别为..'「,且,「」’I: : ■ I -(1)求广.的值;(2)若』—[:,〉;-[,求二角形ABC的面积.B17. —•工二的内角的对边分别为“二…,已知二1一1三一」-二二.(I)求I:::)J Ji ;(n)若n = f,二一上二的面积为】,求二.18. △三二中,角丄]打一所对的边分别为,: 'TI ■ (1)求r-;sin jd + sin.fi cos J4-HCOS⑵若△一匸1:-的面积-- ■:I ,求二匚参考答案1. 答案为:A;2. 答案为:C;3. 答案为:B;4. 答案为:B;5. 答案为:A;6. 答案为:B;7. 答案为:B;8. 答案为:C;9. 答案为:C;10. 答案为:B;11. 答案为:45 ° ;12. 答案为:-0.25 ;13. 答案为:3;n14. 答案为:(0,—);315. 解:⑴由込T希玄定理得,,+亠4諾口又十=6,解得—=3字与正弦走理得"上容十g所以sin (上一百)二sin ^cos B -cos 日sin 疗二耳*16. 解:(1)由已知及正弦罡理可得min厘亡凶C* +血Ccos^4 = 2 sin B亡心営丄由两角和的正菠公式得地〔丿十2沏Bees A由三角形的內角和可得血启二2血占匚oM因为sin 0,所^COSJ4=-2(2)由余弦定理得:弓6 =护斗J — 2尿x占=0 + u)" —3bc= 64—3b^ t\ be =£J由⑴知I+所以"《争字半17. 解:(1> 因为sin(^ + C) = sin(7T-^) = sin-5,siii3— = -~~ 』所sin.fi = 4(1- cos B).又因为或f?爲4"/F =1,所^16(1-002 5)2 + 00£25=1,展幵,得17COS3F-32COS5+15-04解得cosi = l 皓去》或co S5 = ^|<2> 由cos 5 = —j 得sin £ = J1- 匚;『E 故=—flesinS = —acY117 2 17又%= 则处=耳.由余弓玄定理51空+广=6」17 32得方2 二疋十百2 一2accos£= (a +c)2 - 2血(1 十ex 召)二36- 2x —x—二 4 ,所以占=2.18. 解:<、!—.. 严sin jl + sin 5 nri sin C sin + sin B(1)因为tanC =----------- ,即------ - ------------ ,cos J4+COS^匚os(7 cos」十cos 卫所以sinCcosj4 + sin Ceos B■= cosCsin^4+ cos C7sin 5』即sin Ceos J-cosCsin J!=COS C sin sin Ceos 5 j 得sin(C- ZJ = sin(3 - C). 所V.C-A = ^-C S或U-人=咒一(8-6(不成立).即2C = A^3t ^C = -7所以,占 +山=2" 3又因环H1 迢一QkwU 二,JDJ£-Z = y2 6 ⑵= —<se sin =亲七 -3+ 远?2 LI 冶去用上討5JTV2。
高中数学 第九章 解三角形测评 新人教B版必修第四册-新人教B版高一第四册数学试题
第九章解三角形测评(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,角A,B,C的对边分别是a,b,c,若a∶b∶c=4∶3∶2,则2sin A-sin Asin2A=()A.37B.57C.97D.107解析由题意2sin A-sin Asin2A =2sin A-sin A2sin A cos A=2A-A2A cos A,因为a∶b∶c=4∶3∶2,设a=4k,b=3k,c=2k,由余弦定理可得cos C=(16+9-4)A22×4×3A2=78,则2sin A-sin Asin2A=(8-3)A4×78A=107.故选D.2.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=100米,点C位于BD上,则山高AB等于()A.100米B.50√3米C.50(√3+1)米D.50√2米AB=h,△ABC中,∠ACB=45°,BC=h,在△ADB中,tan∠ADB=AA+100=√33,解得h=50(√3+1)米.故选C.3.若sin AA =cos AA=cos AA,则△ABC是()A.等边三角形B.有一内角是30°的直角三角形C.等腰直角三角形D .有一内角是30°的等腰三角形 解析因为sin AA=cos AA,所以a cos B=b sin A ,所以由正弦定理得2R sin A cos B=2R sin B sin A ,2R sin A ≠0.所以cos B=sin B ,所以B=45°.同理C=45°,故A=90°.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=2BC=2CD ,则cos ∠DAC=() A.2√55B.√55C.3√1010D.√1010,不妨设BC=CD=1,则AB=2,过点D 作DE ⊥AB ,垂足为点D.易知四边形BCDE 是正方形,则BE=CD=1, 所以AE=AB-BE=1.在Rt △ADE 中,AD=√AA 2+AA 2=√2,同理可得AC=√AA 2+AA 2=√5, 在△ACD 中,由余弦定理得 cos ∠DAC=AC 2+AA 2-AA 22AA ·AA=22×√5×√2=3√1010.故选C .5.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为()海里/小时. A.2√6B.4√6C.8√6D.16√6PM=64,∠MPN=120°,在△PMN中,由正弦定理得AAsin∠AAA =AAsin∠AAA,即64sin45°=AAsin120°,得MN=32√6,所以船的航行速度为AA14-10=8√6(海里/小时).故选C.6.在△ABC中,角A,B,C的对边分别是a,b,c,若b sin 2A+√2a sin B=0,b=√2c,则AA的值为()A.1B.√33C.√55D.√77b sin2A+√2a sin B=0,所以由正弦定理可得sin B sin2A+√2sin A sin B=0, 即2sin B sin A cos A+√2sin A sin B=0.由于sin B sin A≠0,所以cos A=-√22,因为0<A<π,所以A=3π4,又b=√2c,由余弦定理可得a2=b2+c2-2b cos A=2c2+c2+2c2=5c2,所以AA =√55.故选C.7.一游客在A处望见在正北方向有一塔B,在北偏西45°方向的C处有一寺庙,此游客骑车向西行1 km后到达D处,这时塔和寺庙分别在北偏东30°和北偏西15°,则塔B与寺庙C的距离为()A.2 kmB.√3 kmC.√2 kmD.1 km,先求出AC,AB的长,然后在△ABC中利用余弦定理可求解.在△ABD中,AD=1,可得AB=√3.在△ACD中,AD=1,∠ADC=105°,∠DCA=30°,所以由正弦定理得AA sin∠AAA =AAsin∠AAA , 所以AC=AA ·sin∠AAA sin∠AAA=√6+√22. 在△ABC 中,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos45°=8+4√34+3-2×√6+√22·√3·√22=2,所以BC=√2.故选C .8.如图,某建筑物的高度BC=300 m,一架无人机Q 上的仪器观测到建筑物顶部C 的仰角为15°,地面某处A 的俯角为45°,且∠BAC=60°,则此无人机距离地面的高度PQ 为()A.100 mB.200 mC.300 mD.100 m,可得Rt △ABC 中,∠BAC=60°,BC=300,所以AC=AAsin60°=√32=200√3;在△ACQ 中,∠AQC=45°+15°=60°,∠QAC=180°-45°-60°=75°,所以∠QCA=180°-∠AQC-∠QAC=45°.由正弦定理,得AAsin45°=AAsin60°,解得AQ=200√3×√22√32=200√2,在Rt △APQ 中,PQ=AQ sin45°=200√2×√22=200m .故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在△ABC 中,a ,b 分别是角A ,B 的对边,a=1,b=√2,A=30°,则角B 为() A .45°B.90°C .135°D .60°或135°,可得sin B=A sin AA =√2sin30°=√22,又由a<b,且B∈(0°,180°),所以B=45°或135°.故选AC.10.在△ABC中,根据下列条件解三角形,其中有两解的是()A.b=10,A=45°,C=70°B.b=45,c=48,B=60°C.a=14,b=16,A=45°D.a=7,b=5,A=80°B满足c sin60°<b<c,选项C满足b sin45°<a<b,所以B,C有两解;对于选项A,可求B=180°-A-C=65°,三角形有一解;对于选项D,由sin B=A·sin AA,且b<a,可得B为锐角,只有一解,所以三角形只有一解.故选BC.11.在△ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin CABC中,角A,B,C所对的边分别为a,b,c,知:在A中,由余弦定理得:a2=b2+c2-2bc cos A,故A正确;在B中,由正弦定理得:Asin A =Asin A,∴a sin B=b sin A,故B正确;在C中,∵a=b cos C+c cos B,∴由余弦定理得:a=b×A2+A2-A22AA +c×A2+A2-A22AA,整理,得2a2=2a2,故C正确;在D中,由余弦定理得a cos B+b cos A=a×A2+A2-A22AA +b×A2+A2-A22AA=c≠sin C,故D错误.故选ABC.12.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A ∶sin B ∶sin C=4∶5∶6 B .△ABC 是钝角三角形C .△ABC 的最大内角是最小内角的2倍D .若c=6,则△ABC 外接圆半径为8√77a+b )∶(a+c )∶(b+c )=9∶10∶11,可设a+b=9t ,a+c=10t ,b+c=11t ,解得a=4t ,b=5t ,c=6t ,t>0,可得sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,故A 正确;由c 为最大边,可得cos C=A 2+A 2-A 22AA=16A 2+25A 2-36A 22·4A ·5A=18>0,即C 为锐角,故B 错误;由cos A=A 2+A 2-A 22AA=25A 2+36A 2-16A 22·5A ·6A=34,cos2A=2cos 2A-1=2×916-1=18=cos C ,由2A ,C ∈(0,π),可得2A=C ,故C 正确;若c=6,可得2R=Asin A =√1-64=√7,△ABC外接圆半径为8√77,故D 正确.故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,A ,B ,C 的对边的长分别为a ,b ,c ,已知a=1,sin A=√210,sin C=35,则c=.解析由正弦定理Asin A=Asin A ,得c=A sin A sin A=1×35√210=35×√2=3√2.√214.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值是.cos A=A 2+A 2-A 22AA,所以bc cos A=12(b 2+c 2-a 2).同理,ac cos B=12(a 2+c 2-b 2),ab cos C=12(a 2+b 2-c 2).所以bc cos A+ac cos B+ab cos C=12(a 2+b 2+c 2)=612.15.为了研究问题方便,有时将余弦定理写成:a 2-2ab cos C+b 2=c 2,利用这个结构解决如下问题:若三个正实数x ,y ,z ,满足x 2+xy+y 2=9,y 2+yz+z 2=16,z 2+zx+x 2=25,则xy+yz+zx=.ABC 的角A ,B ,C 的对边分别为a ,b ,c ,在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,利用余弦定理得出△ABC 的三边长,由此计算出△ABC 的面积,再利用S △ABC =S △AOB +S △BOC +S △AOC 可得出xy+yz+zx 的值.设△ABC 的角A ,B ,C 的对边分别为a ,b ,c , 在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,由余弦定理得c 2=x 2-2xy ·cos ∠AOB+y 2=x 2+xy+y 2=9,∴c=3. 同理可得a=4,b=5,∴a 2+c 2=b 2,则∠ABC=90°, △ABC 的面积为S △ABC =12ac=6, 另一方面S △ABC =S △AOB +S △AOC +S △BOC=12xy sin2A 3+12yz sin2A 3+12zx sin2A 3=√34(xy+yz+zx )=6,解得xy+yz+zx=8√3.√316.如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距3√2海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处,此时乙船与灯塔A 之间的距离为海里,两艘轮船之间的距离为海里.ABC 为等边三角形,所以AC=5.∠DAC=180°-75°-60°=45°,在△ADC 中,根据余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos ∠DAC =18+25-2×3√2×5×(√22)=13,解得CD=√13.√13四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B+1=b sin A+2cos C. (1)求角C 的大小;(2)若a=2,a 2+b 2=2c 2,求△ABC 的面积.因为由正弦定理得Asin A =Asin A ,所以a sin B=b sin A ,∴2cos C=1,cos C=12.又0<C<π,∴C=π3.(2)由余弦定理得c 2=a 2+b 2-ab ,∴4+b 2=2(4+b 2-2b ),解得b=2. ∴S △ABC =12ab sin C=12×2×2×sin π3=√3.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B+sin 2C=sin 2A+sin B sin C. (1)求角A 的大小;(2)若cos B=13,a=3,求c 的值.由正弦定理可得b 2+c 2=a 2+bc ,则cos A=A 2+A 2-A 22AA=12,因为A ∈(0,π),所以A=π3.(2)由(1)可知,sin A=√32,因为cos B=13,B为三角形的内角,所以sin B=2√23,故sin C=sin(A+B)=sin A cos B+cos A sin B=√32×13+12×2√23=√3+2√26,由正弦定理Asin A =Asin A,得c=A sin Asin A=√32×√3+2√26=1+2√63.19.(12分)要测量对岸两点A,B之间的距离,选取相距200 m的C,D两点,并测得∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,求A,B两点之间的距离.ACD中,因为∠ACD=30°,∠ADC=105°,所以∠DAC=180°-30°-105°=45°.由正弦定理得AAsin45°=AAsin30°,且CD=200,所以AD=100√2.同理,在△BCD中,可得∠CBD=45°,由正弦定理得AAsin120°=AAsin45°,所以BD=100√6.在△ABD中,∠BDA=105°-15°=90°,由勾股定理得AB=√AA2+AA2=200√2,即A,B两点间的距离为200√2.20.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin (2A +π4)的值.由正弦定理A sin A =Asin A ,则3cb=4ac ,所以b=43a.而b+c=2a ,则c=23a. 故由余弦定理得cos B=A 2+A 2-A 22AA=A 2+49A 2-169A 22A ·23A =-14.(2)因为cos B=-14, 所以sin B=√154. 所以sin2B=2sin B cos B=-√158, cos2B=2cos 2B-1=-78. 所以sin (2A +π4)=√22(sin2B+cos2B ) =√22×(-√158-78)=-7√2+√3016.21.(12分)如图,A ,B 是海面上位于东西方向相距4(3+√3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距16√3海里的C 点的救援船立即前往营救,其航行速度为24海里/小时. (1)求BD 的长;(2)该救援船到达D 点所需的时间.由题意可知:在△ADB 中,∠DAB=45°,∠DBA=30°,则∠ADB=105°.由正弦定理AAsin∠AAA =AA sin∠AAA ,得4(3+√3)sin105°=AA sin45°.由sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=√6+√24,代入上式得DB=8√3.(2)在△BCD 中,BC=16√3,DB=8√3,∠CBD=60°, 由余弦定理得CD 2=BC 2+BD 2-2BC ·BD ·cos60° =(16√3)2+(8√3)2-2×16√3×8√3×12=242,∴CD=24,∴t=A A =2424=1.即该救援船到达D 点所需的时间为1小时.22.(12分)如图,在△ABC 中,C=π4,角B 的平分线BD 交AC 于点D ,设∠CBD=θ,其中tanθ=12.(1)求sin A ;(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =28,求AB 的长.由∠CBD=θ,且tan θ=12,∵θ∈(0,π2),∴sin θ=12cos θ,sin 2θ+cos 2θ=14cos 2θ+cos 2θ =54cos 2θ=1,∴cos θ=√5,sin θ=√5.则sin ∠ABC=sin2θ=2sin θcos θ=2×√5×√5=45,∴cos ∠ABC=2cos 2θ-1=2×45-1=35, sin A=sin [π-(π4+2A )]=sin (π4+2A ) =√22sin2θ+√22cos2θ=√22×(35+45)=7√210. (2)由正弦定理,得AA sin A =AA sin∠AAA ,即7√210=AA 45, 所以BC=7√28AC.又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√22|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28√2, 由上两式解得AC=4√2,又由AA sin A =AA sin∠AAA ,得√22=AA 45,解得AB=5.。
(完整版)解三角形单元测试题(附答案)
解三角形单元测试题6、 A ABC 中,已知ax, b 2, B60°,如果△ ABC 两组解,则 x 的取值范围()A • x 2B• x 2C • 2 x\3D • 2x \3337、已知△ ABC 的面积为3 2且b 2,c3,则/ A 等于()A • 30°B • 30° 或 150 °C • 60°D • 60° 或 120°&甲船在岛B 的正南方A 处,AB = 10千米,甲船以每小时 4千米的速度向正北航行, 同时乙船自B 出发以每小时6千米的速度向北偏东 60。
的方向驶去,当甲,乙两船相距 最近时,它们所航行的时间是()15015A-50分钟 B •二分钟 C • 21.5分钟 D • 2.15分钟779、飞机沿水平方向飞行,在A 处测得正前下方地面目标 C 得俯角为30°,向前飞行10000 米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的水平距离为 ( )A • 5000 米B • 5000、2 米C • 4000 米D • 4000 • 2 米10、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是(、填空题11、在厶 ABC 中,若/ A: / B: / C=1:2:3,1、在厶ABC 中, a = 3, b = .. 7 , c = 2,那么 B 等于() D • 120°A • 30 °B• 45°C •60°2、在厶ABC 中, a = 10, B=60 ° ,C=45° ,则 c 等于( )A . 10 、3B • 10 ,3 1 C• ,3 1 D • 10'.. 33、 在厶ABC 中, a = 2 . 3 ,b = 2 . 2 , B = :45°,贝U A 等于()A • 30°B • 60°C • 30 ° 或 120 °D •30° 或150 °4、在厶ABC 中, 已知a 2 2 2b c bc ,则角A 为( )2亠2 A •B ——CD •或——363335、在厶ABC 中, 已知 2sin AcosB sinC ,那么△ ABC.宀曰疋疋( )、选择题:B •等腰三角形 C •等腰直角三角形A •直角三角形 D •正三角形 C • 0 x -.5 D •. 13 x 5则 a : b: c _______12、在厶ABC 中,a 3、3,C _______ 2, B 150。
高中解三角形试题及答案
高中解三角形试题及答案一、选择题1. 若三角形ABC的三个内角A、B、C满足sinA = 2sinBcosC,则三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形答案:A2. 在三角形ABC中,若a = 3, b = 4, c = 5,则三角形ABC的面积S是()A. 3√3B. 4√3C. 5√3D. 6√3答案:B二、填空题3. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为______。
答案:75°4. 若三角形ABC的三边长分别为a = 2, b = 3, c = 4,则三角形ABC的外接圆半径R为______。
答案:√10/2三、解答题5. 已知三角形ABC的三边长分别为a = 5, b = 12, c = 13,求三角形ABC的面积。
答案:根据余弦定理,可得cosA = (b² + c² - a²) / (2bc) = (144 + 169 - 25) / (2 × 12 × 13) = 1/2,因此∠A = 60°。
根据正弦定理,S = 1/2 × b × c ×sinA = 1/2 × 12 × 13 × √3/2 = 39√3。
6. 已知三角形ABC中,∠A = 30°,∠B = 45°,求边长b和c的关系。
答案:根据三角形内角和定理,可得∠C = 180° - 30° - 45° = 105°。
设边长b = x,则根据正弦定理,有a/sinA = b/sinB,即a/sin30° = x/sin45°,解得a = x√2/2。
再根据正弦定理,有a/sinA = c/sinC,即x√2/2 / sin30° = c/sin105°,解得c = x√2/2 × (√6 + √2) / 2。
高一解三角形试题及答案
高一解三角形试题及答案一、选择题1. 在三角形ABC中,若sinA=3/5,cosB=4/5,则sinC的值为()。
A. 3/5B. 4/5C. 3/5 或 4/5D. 无解答案:A解析:根据正弦定理,sinA/a = sinB/b = sinC/c,已知sinA=3/5,cosB=4/5,可以求得sinB=√(1-cos²B)=3/5。
由于三角形内角和为180°,所以sinC=sin(A+B)=sinAcosB+cosAsinB=(3/5)(4/5)+(4/5)(3/5)=24/25。
因此,sinC=3/5,答案为A。
2. 在三角形ABC中,若a=7,b=14,A=30°,则B的度数为()。
A. 30°B. 60°C. 90°D. 120°答案:B解析:根据正弦定理,a/sinA = b/sinB,已知a=7,b=14,A=30°,代入公式得sinB=(14sin30°)/7=1。
由于B为三角形内角,所以B=90°,答案为C。
3. 在三角形ABC中,若a=3,b=4,c=5,则三角形ABC的面积为()。
A. 3√3B. 4√3C. 6√3D. 9√3答案:B解析:根据海伦公式,S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2=6。
代入公式得S=√[6(6-3)(6-4)(6-5)]=√[6×3×2×1]=6√3。
因此,三角形ABC的面积为6√3,答案为C。
二、填空题4. 在三角形ABC中,若A=60°,a=√3,b=1,则c的值为______。
答案:2解析:根据余弦定理,a²=b²+c²-2bc*cosA,代入已知条件得3=1+c²-2c*cos60°,即c²-c-2=0。
解得c=2或c=-1(舍去负值),所以c=2。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
高一数学 第7章 解三角形 单元检测卷
高一数学 第7章 解三角形 单元检测卷(测试时间:120分钟 评价分数:100分)一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在△ABC 中,若b=2asinB ,则这个三角形中角A 的值是( )A.30°或60°B.45°或60°C.30°或120°D.30°或150° 2.在ABC ∆中,8,60,75a B C ︒︒===,则b =( )A.323B.C.3.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC的形状一定是( )A.等边三角形B.不含60的等腰三角形C.钝角三角形D.直角三角形4.已知在ABC ∆中,角A .B .C 的对边分别为a .b .c ,3π=B ,3=c ,7=b ,则a 为( )A.2B.1C.1或2D.无解 5.在ABC ∆中,,,A B C 的对边分别是,,a b c,其中a b B ===,则角A 的取值一定属于范围( )A .42ππ(,)B .324ππ(,)C .344πππ⋃(0,)(,)D .34224ππππ⋃(,)(,)6.在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若△ABC 的面积为S ,且222()S a b c =+-,则tan C 等于( ) A.34 B.43 C. 43- D.34- 7.O 为平面上的一个定点,A 、B 、C 是该平面上不共线的三点,若+⋅-()(0)2=-,则△ABC是( )A.以AB 为底边的等腰三角形B.以BC 为底边的等腰三角形C.以AB 为斜边的直角三角形D.以BC 为斜边的直角三角形8.在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( ) A.3 B.239 C.233 D.33 9.如图,在锐角三角形ABC 中,AB 边上的高CE 与AC 边上的高BD 交于点H 。
高一数学解三角形试题答案及解析
高一数学解三角形试题答案及解析1.地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。
【答案】40米,90米.【解析】绘出几何示意图,寻找角关系,并建关系式.其中,且,建立方程(1);又因为,且由题可知,建立方程(2)试题解析:连结BO、OD、 AD、 BC,设两塔AB、CD的高分别为x,y米,则在中,则在中,由得, ( 1 ) 5分又在中,在中,.而,所以,即(2) 10分由(1)(2)式解得: x = 40(米), y = 90(米)答:两座塔的高分别为40米、90米. 14分【考点】正切函数应用.2.设甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是()A.B.C.D.【答案】A【解析】试题分析:由图可知,在中,,则;在中,,则,;即甲、乙两楼的高分别是.【考点】解直角三角形.3.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.4.已知的三个内角满足:,则的形状为A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】由,,从而有:,再注意到,又,故知是以角C为直角的直角三角形,所以选B.【考点】三角公式.5.在中,内角、、所对的边分别为、、,给出下列命题:①若,则;②若,则;③若,则有两解;④必存在、、,使成立.其中,正确命题的编号为.(写出所有正确命题的编号)【答案】②③【解析】①根据大边对大角可知,如果是钝角,则此时,显然错误.②当三角形是锐角三角形时,根据正弦函数性质可知;当三角形是钝角三角形时,有,则,因为,所以,此时有,正弦函数性质可知,即.正确.③因为,即,所以必有两解.正确.④根据正切和角公式,可得.则有根据诱导公式有代入上式,则上式若是锐角,则;此时.若是钝角,则;此时.错误.【考点】三角形中边角关系;三角函数性质;三角函数和角,诱导公式的使用.6.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=A. B. C. D.【答案】B【解析】由题意知,,,解得.【考点】解三角形.7.在中,内角所对的边分别为,给出下列结论:①若,则;②若,则为等边三角形;③必存在,使成立;④若,则必有两解.其中,结论正确的编号为(写出所有正确结论的编号).【答案】①④【解析】对于①,在中,当时,有,又由正弦定理,则,,,由有>>,所以有成立,故①正确;对于②,由正弦定理,且因为,所以且,则,且角B,C为锐角,所以,故②不正确;对于③,=,故③不正确;对于④,如图:因为,且,所以必有两解,故④正确.【考点】正弦定理,三角形边角关系,化归与转化的数学思想.8.中,若,则的面积为().A.B.C.1D.【答案】A【解析】根据三角形面积公式可得面积为.【考点】三角形面积公式的选择和计算.9.如图,从高为的气球上测量铁桥的长,如果测得桥头的俯角是,桥头的俯角是,则该桥的长可表示为A.B.C.D.【答案】A【解析】过A作垂线AD交CB于D,则在Rt△ADB中,∠ABD=α,AB=.又在中,∠C=β,∠BAC=α-β,由正弦定理,得∴BC=即桥梁BC的长度为,故选A.【考点】解三角形的实际应用.10.两地相距,且地在地的正东方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形本章测试
一. 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把正确选项填涂在答题卡上指定位置。
1. 在ABC ∆中,2,2,6
a b B π
==
=
,则A =( )
.A
4π .B 3
π
.C 34π .D 344ππ或
2.在ABC ∆中,222a b c bc =++,则角A 为( )
.A 030 .B 045 .C 0120 .D 0150
3. 已知ABC ∆中,::114A B C =::,则::a b c 等于( )
.A 1:1:3 .B 2:2:3 .C 1:1:2 .D 1:1:4
4. 在ABC ∆中,,,a b c 分别为三个内角,,A B C 的对边,若02,1,29a b B ===,则此三角形解的情况是( )
.A 无解 .B 有一解 .C 有两解 .D 有无数解 5. 在ABC ∆中,00090,045C A ∠=<<,则下列各式中,正确的是( )
.A sin sin A B > .B tan tan A B > .C cos sin A A < .D cos sin B B <
6. 一船自西向东航行,上午10时到达灯塔的南偏西075、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )
.A
62海里/时 .B 346/时 .C 172
2
海里/时 .D 2海里/时 7. 已知ABC ∆的面积为S ,三个内角,,A B C 的对边分别为,,a b c ,若
224(),4S a b c bc =--=,则=S ( )
.A 2 .B 4 .C
3 .D 238. 已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若15cos 4
C =,
cos cos 3b A a B +=,则ABC ∆外接圆的半径为( ) .A 3 .B 22 .C 4 .D 6
9. 在ABC ∆中,已知
222222
sin sin a A b B
a c
b b
c a =+-+-,则ABC ∆的形状为( )
A.直角三角形;
B.等腰三角形;
C.等腰或直角三角形;
D.等边三角形
10. ABC ∆中,060A ∠=,若33
2
ABC S ∆=
,且2sin 3sin B C =,则ABC ∆周长为( )
.A 57+ .B 12 .C 107+ .D 527+
11. 在锐角ABC ∆中, ()(sin sin )()sin a b A B c b C -+=-,若3a =,则22b c +的取
值范围是( )
.A 3,6()
.B 3,5() .C ,6](5 .D [5,6] 12. ABC ∆的内角,,的对边分别为,,,已知2
511
cos cos cos 2442
C a A c B =-+, 且2b =,则a 的最小值为( )
.A
65 .B 7
5
.C 9625 .D 11225
二. 填空题:本题共4小题,每小题5分,共20分。
13. 在锐角ABC ∆中,若222()tan a b c C ab +-=,则角C 的值________.
14. 在ABC ∆中,sin :sin :sin 2:3:4A B C =,则ABC ∆中最大边所对角的余弦值为____. 15. 在ABC ∆中,6b =,且227
cos ac B a b =-+
,O 为ABC ∆内一点,且满足0030OA OB OC BAO ++=∠=,,则||OA =________.
16. ABC ∆中,1cos 428
A A
B A
C ===,,,则A ∠的角平分线A
D 的长为________. 三.解答题:本大题共6题,第17题10分,第18~22题每题12分,共70分,解答应写出文字说明、证明过程或演算步骤.
17. 设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且22233342b c a bc +-=. (1)求sin A 的值;
(2)求2sin()sin()
441cos 2A B C A
ππ
+++-的值.
18. 在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知4
A π
=,22
2
12
a c
b -=
. (1)求sin C 的值;
(2)若ABC ∆的面积为3,求a 的值.
19. 已知函数23()sin(
)cos()sin (3)22
f x x x x ππ
π=-+++ (1)求函数()f x 的最小正周期及对称中心;
(2)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3
()2
c f C ==
,且sin 2sin A B =,求a ,b 的值.
20. 已知(2cos ,2sin )b (sin(),cos())66
a x x x x π
π
==--,,函数()=cos ,f x a b <> (1)求函数()f x 零点;
(2)若锐角ABC ∆的三内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,求b c
a
+的取值范围.
21. 某学校的平面示意图为如下图五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,,,,,,AB BC CD DE EA BE 为学校的主要道路(不考虑宽度).29
,333310
BCD CDE BAE DE BC CD km ππ∠=∠=
∠====,. (1)求道路BE 的长度;
(2)求生活区ABE ∆面积的最大值.
22. 函数()=sin()(0,||)2
f x x π
ωϕωϕ+><的部分图象如图所示,将()y f x =的图象向右
平移
4
π
个单位长度后得到函数()y g x =的图象. (1)求函数()y g x =的解析式;
(2)在ABC ∆中,角A ,B ,C 满足2
2sin
(123
A B g C π
+=++), 且其外接圆的半径2R =,求ABC ∆的面积的最大值.
参考答案
一. 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把正确选项填涂在答题卡上指定位置。
题号 1 2 3 4 5 6 7 8 9 10 11 12 选项
D
C
A
C
D
A
A
D
C
A
C
A
二. 填空题:本题共4小题,每小题5分,共20分。
13.
6
π
14. 14- 15. 3 16. 2
三.解答题:本大题共6题,第17题10分,第18~22题每题12分,共70分,解答应写出
文字说明、证明过程或演算步骤. 17. 解:(1)由余弦定理得
又
(2)原式
.
18. 解:(1)∵
∴ 由余弦定理可得:
∴ ,又,可得.
∴ ,可得
. ∴ .
∵
∴ .
(2)∵ ,解得
∴
.
19. 解(1)∵
=
∴ 最小正周期= ∴ 由,,解得:对称中心为
,
.
(2)由,得
∴ = ∵ ,可得:
,可得:
∴ ∵
=
,由正弦定理得= ①
由余弦定理=,可得:=
②
由①②解得=,=2
20. 解:(1)由条件可知:b 2cos sin()2sin cos()2sin(2)666
a x x x x x π
ππ
⋅=⋅-+⋅-=-
∴
所以函数零点满足:,由
解得
,
.
(2)由正弦定理得
由(1)()=sin(2)6
f x x π
-,而
得
∴
又,得
∵
∴ 代入上式化简得:
又在锐角中,有
∴
∴
则有
即:.
21.解:(1)连接,在中,
由余弦定理得:
∴
∵
∴
又
∴
在中,所以.(2)设,∵,
∴.
在中,由正弦定理,得
∴.
∴
.
∵
∴.
∴当,即时,取得最大值为
即生活区面积的最大值为.
22. 解:(1)由图知,解得
∵
∴ ,,即,
由于,因此
∴
∴
即函数的解析式为
(2)∵ ∴
∵
,
,即
所以
或(舍),可得:
由正弦定理得,解得
由余弦定理得
∴ 2212a b ab ++=
∴
2)1230a b ab -=-≥( ∴ 4ab ≤(当且仅当2a b ==时等号成立) ∴ ∴
的面积最大值为
.。