土壤中的微量元素-1
土壤学
NH
3
氨
吸收
挥 发
硝化
NO3-
可交换态 固定态
地下水
淋 洗
粘粒矿物
NO3-
土壤氮素转化过程与氮素循环示意图
第二节 土壤中的大量元素
一、土壤中的氮
氮素是构成一切生 命体的重要元素 在植物生产中,植物 对氮的需要量较大: 肥料三要素 氮素肥料施用过剩 会造成江湖水体富 营养化、地下水硝 态氮(NO3-N)积累 及毒害等。
铁(Fe)硼(B)锰(Mn)铜(Cu)锌(Zn)
钼(Mo)氯(Cl)镍(Ni)
Ni
二、土壤养分来源
1、土壤养分的基本来源——矿物岩石
P、K、Ca、Mg、Fe、B、Mo、Cu、Mn、S等
2、土壤养分的主要来源——森林凋落物 N 灰分元素 凋落物 灌、草、伐根等 保存 聚集
3、土壤养分的其他来源
生物固氮、大气降水、人工施肥、客土、灌溉等
Fe3(PO4)2Fe(OH)2存在。
(3)闭蓄态磷(O—P) 氧化铁或氢氧化铁胶膜包被的磷酸盐。 (4)磷酸铁铝和碱金属、碱土金属复合而成的磷酸盐 磷酸盐成分更复杂,种类也多,溶解度极小 ,数量不多。
我国主要土壤类型中,一般分布有以下规律:
风化程度较高的南方砖红壤、红壤中,以O—P占的比重 最大,最高可达90%以上,其次是Fe—P, Al—P; Ca—P 很少。 风化程度较低的北方石灰性土壤中,Ca—P所占比例大,
N2
收获
灌施 水肥 枯枝落叶 腐殖质 微生物 矿化 固持 风化 固持
NH4+
NH
3
氨
吸收
挥 发
硝化
NO3-
可交换态 固定态
地下水
土壤中几种微量元素的名称
土壤中几种微量元素的名称土壤中几种微量元素的名称在土壤中存在着丰富多样的化学元素,其中包括一些微量元素。
微量元素是指在土壤中相对含量很小,但对植物生长发育至关重要的元素。
这些元素虽然只存在于土壤中的微量,却对植物的生长起着不可或缺的作用。
本文将探讨土壤中几种常见的微量元素,以及它们对植物生长的影响。
一、铁(Fe)铁是土壤中的必需微量元素之一,对于植物叶绿素的合成和呼吸作用非常重要。
尤其是对于光合作用中的电子传递链来说,铁是一个必不可少的组成部分。
在土壤中,铁主要以两种形态存在:Fe2+和Fe3+。
然而,土壤中的铁往往以Fe3+的形式存在,这种形式对于植物来说很难吸收利用。
当土壤中铁的含量过低时,会导致植物叶片出现黄化症状,甚至影响整个植物的生长。
二、锰(Mn)锰是另一种重要的微量元素,在植物中起着许多重要的生理功能。
锰是参与植物光合作用过程中光合有关酶系的活化所必需的。
它还促进植物的呼吸作用和氮代谢,并参与了植物体内抗氧化防御系统的形成。
锰的缺乏会引起植物叶片出现锰叶病的症状,如叶片出现褪绿和褐色斑点。
土壤中的锰含量对于植物的正常生长和发育至关重要。
三、锌(Zn)锌是土壤中的另一种微量元素,对植物的生长发育也有重要影响。
锌在植物体内参与多种酶的合成和活化,对于植物的光合作用、生长调节和抗病能力有着重要作用。
当土壤中缺少锌时,植物的生长速度减缓,叶片出现黄化和缩小的现象。
锌的缺乏还会影响植物的生殖能力和种子质量。
四、铜(Cu)铜是土壤中的一种微量元素,对植物的生长和发育起着重要的调节作用。
铜参与了植物体内多种酶的合成和储存,对于植物的呼吸作用、光合作用和氮代谢等过程都至关重要。
如果土壤中缺少铜,会导致植物叶片出现咖啡斑和卷曲,幼苗的生长受到抑制。
铜的缺乏还会导致植物抗病能力下降。
通过对土壤中几种常见的微量元素的介绍可以看出,这些元素对植物的生长发育起着至关重要的作用。
在土壤中合适的微量元素含量能够保证植物健康生长,提高产量和品质。
土壤中的微量元素
土壤中的微量元素土壤中的微量元素是指存在于土壤中的含量较少但对植物生长发育至关重要的元素。
尽管它们的含量较低,但微量元素对于植物的生理代谢过程、酶活性以及植物免疫系统的正常运作起着至关重要的作用。
本文将介绍土壤中的几种重要的微量元素及其在植物生长中的作用。
一、铁(Fe)铁是植物生长发育过程中不可或缺的微量元素之一。
它是植物体内许多重要酶的组成部分,参与了光合作用和呼吸作用等重要代谢过程。
铁还是叶绿素的合成所必需的。
当土壤中缺乏铁元素时,植物的叶片会出现黄化、白化等症状,影响光合作用的进行。
二、锌(Zn)锌是植物所需的微量元素之一,它参与了植物的生长发育、酶活性以及植物的免疫系统等多个方面。
锌对于植物的光合作用、DNA合成、激素合成等过程起着重要的调节作用。
当土壤中锌元素含量不足时,植物的叶片会出现叶缘烧焦、叶片变形等症状。
三、锰(Mn)锰是植物体内一种重要的微量元素,它参与了植物的光合作用、呼吸作用以及氮代谢等重要代谢过程。
锰还是植物体内多种酶的辅助因子,对于植物的生长发育具有重要影响。
当土壤中锰元素含量不足时,植物的叶片会出现黄白斑点、叶片变形等症状。
四、铜(Cu)铜是植物所需的微量元素之一,它参与了植物的光合作用、呼吸作用以及植物生长发育的多个重要过程。
铜还是植物体内多种酶的组成部分,对于植物的酶活性以及氮代谢具有重要影响。
当土壤中铜元素含量不足时,植物的叶片会出现叶缘干枯、叶片变黄等症状。
五、硼(B)硼是植物所需的微量元素之一,它参与了植物细胞壁的形成以及植物的生长发育过程。
硼还参与了植物的糖代谢、氮代谢以及钙吸收等重要代谢过程。
当土壤中硼元素含量不足时,植物的新生叶片会出现畸形、叶缘卷曲等症状。
六、氯(Cl)氯是植物所需的微量元素之一,它参与了植物的光合作用、呼吸作用以及离子平衡等多个重要生理过程。
氯还是植物体内维持渗透平衡的关键离子。
当土壤中氯元素含量不足时,植物的叶片会出现叶黄、萎蔫等症状。
7土壤微量元素测定
MnO2
土壤微量元素常见测定方法
原子吸收分光光度法 可见光分光光度法 极谱分析法 ICP X光荧光分析 中子活化分析
微量元素测试上的特殊要求: 特点:含量低、组成复杂。要求分析方法灵敏度 高,操作上要防止污染。 要求: (1)方法灵敏度高:仪器分析、比色法 (2)防止污染:含量少,易污染 A、 环境:最好有专用实验室 B、 试剂:优级纯或分析纯 C、 水:重蒸馏水、高纯水
影响有效养分含量的因素
土壤酸碱度:影响最大 土壤氧化还原电位 土壤通气性 土壤水分状况
我国土壤微量元素含量分布
我国缺锌、缺锰土壤主要分布于北方(包括长江中下游中性 和石灰性土、水稻土) 缺硼和缺钼土壤主要分布于东半部; 大多土壤铜供应适中
土壤微量元素的形态
水溶态:存在土壤溶液中 交换态:吸附于固相表面 螯合态:与有机质结合在一起 矿物态:存在于原生和次生矿物 有机态:少部分与有机物结合在一起
主要干扰物:F, Al3+, Fe3+, Cu2+; 最宜显色温度:23℃,随温度升高,显色加深。 达到稳定时间:2h. 优点:水溶液中显色,易操作。 缺点:灵敏度较低。 要点:显色液避免与玻璃器皿长时间接触。
(二)姜黄素比色法
方法原理:姜黄素在酸性无水介质中与硼形成玫瑰红色
配合物——玫瑰花青苷,可用乙醇等有机溶剂溶解后 比色测定,最大吸收峰为550nm。
有效养分提取方法
1、中性盐(交换态): Fe、Mn --- 1 mol L-1 NH4OAc(Fe:pH 4.8;Mn:pH 7.0) Zn --- 1 mol L-1 KCl
Cu --- 交换态不易解吸(有机吸附) 2、稀HCl(0.1 mol L-1 HCl ):
第九章土壤与植物的中微量元素营养与中微量元素肥料PPT课件
7. 硫肥的施用方法与技术
1)以提供硫素营养为目的石膏施用技术
石膏可作基肥、追肥和种肥。
旱地作基肥, 一般每亩用量为15-26kg,将石膏粉碎后撒于地面,结 合耕作施入土中。花生是需钙和硫均较多的作物,可在果针入土后1530天施用石膏,通常每亩用量为15-25kg。
主要内容
第一节 土壤与植物的中量元素营养与中量元素肥料
一、土壤中的硫钙镁素营养 二、植物体内硫钙镁元素的主要功能 三、硫钙镁肥的性质及其施用
第二节 土壤与植物的微量元素营养与微量元素肥料
一、土壤中的微量元素 二、植物的微量元素营养 微量元素肥料及其施用
2024/8/2
1
第一节 土壤与植物的中量元素营养 与中量元素肥料
2024/8/2
24
第二节 土壤与植物的微量元素营养 与微量元素肥料
一、土壤中的微量元素 二、植物的微量元素营养 三、微量元素肥料及其施用
2024/8/2
25
植物必需微量元素养分确认时间:
Fe Mn B Zn Cu Mo Cl
1844 1922 1923 1926 1931 1939 1954
转化:
矿物态镁↔非交换性镁↔交换性镁↔溶液镁
2024/8/2
4
(三)土壤中S的含量、形态和转化
含量:
土壤中全硫的含量主要受成土条件、粘土矿物和有机质的含量影响。 温暖多湿地区,在强风化、强淋溶条件下,含硫矿物大部分分解淋失,可
溶性硫酸盐很少集聚,硫主要存在于有机质中。 干旱地区土壤中Ca、Mg、K、Na的硫酸盐则大量沉积在土层中,1:1型
3)硫参与作物体内的氧化还原过程 4)许多生理活性物质的成分:
土壤硒地球化学特征
土壤硒地球化学特征
土壤中的硒是一种微量元素,它具有重要的生命活动功能。
土壤
中的硒地球化学特征主要是指硒在土壤中的分布、形态、含量和来源
等方面的特征。
1.分布:土壤中的硒主要分布在土壤表层和土壤剖面中,其中表
层的含量较高,剖面中含量逐渐降低,但随着深度增加而变化逐渐变
化不大。
2.形态:土壤中的硒存在于多种形态,主要包括无机硒和有机硒。
无机硒包括硒酸盐和硒化物等,有机硒则主要包括硒酸酯、硒甲硫氨
酸等。
3.含量:土壤中的硒含量与当地的地质环境息息相关,通常分布
范围在0.01-2.0mg/kg之间,不同的土壤类型和地质背景中含量有所
不同。
4.来源:土壤中的硒主要来源于大气降水、水体和植物等,其中
大气降水是硒进入土壤的重要途径。
此外,土壤中的微生物也可以制
造和富集硒,进而丰富了土壤中硒的含量。
总之,硒是一种重要的微量元素,在土壤中的地球化学特征与当
地的地质环境和气候条件有关。
了解土壤中硒的来源、分布、形态和
含量,有助于合理利用土壤资源,维护生态环境和保障人民身体健康。
中国土壤微量元素
中国土壤微量元素中国土壤微量元素是指土壤中含量少于1g/kg的元素,它们对植物生长、繁殖和环境的健康起着至关重要的作用。
中国土壤微量元素主要包括钾、钙、铁、磷、锌、锰、铜、镁、硒等。
其中,钾、钙、铁、磷是植物生长的必需元素,而锌、锰、铜、镁、硒则是植物生长发育所必需的辅助元素。
钾是植物的主要生长元素,它可以促进植物的生长发育、提高植物的抗逆性和抗病性,有助于植物维持正常的水分平衡。
钙是维持植物细胞壁稳定性和抗病性的重要元素,它可以增强植物细胞壁的稳定性和抗病性,提高植物的抗逆性。
铁是植物生长发育的必要元素,它可以促进植物的叶绿素和类胡萝卜素的合成,促进植物的光合作用,提高植物的耐热性和抗逆性,改善植物的营养品质。
磷是植物生长发育的必要元素,它可以促进植物的生长发育,提高植物的抗病质量,促进植物的繁殖,增加植物的抗逆性,促进植物的光合作用,改善植物的营养品质。
此外,锌、锰、铜、镁、硒也是土壤中必不可少的微量元素。
锌是植物光合作用的重要元素,它可以提高植物的光合作用效率,促进植物的叶绿素合成,增强植物的抗逆性,促进植物的生长发育。
锰是植物的重要营养元素,它可以提高植物的抗病质量,促进植物的生长发育,提高植物的抗逆性,改善植物的营养品质。
铜是植物光合作用的必要元素,它可以促进植物的光合作用,增强植物的抗病质量,提高植物的抗旱性和抗逆性。
镁是植物繁殖的重要元素,它可以促进植物的繁殖,提高植物的抗旱性和抗逆性,改善植物的营养品质。
硒是植物生长发育的必要元素,它可以提高植物的抗逆性,促进植物的光合作用,改善植物的营养品质。
总之,中国土壤微量元素对植物生长发育、繁殖和环境的健康起着至关重要的作用。
因此,在作物栽培过程中,应重视土壤微量元素的含量,适当添加元素肥料,以促进植物健康生长,提高作物产量和品质。
第二次土壤普查 土壤中微量元素含量分级标准
第二次土壤普查土壤中微量元素含量分级标准第二次土壤普查土壤中微量元素含量分级标准在地球的表面上,土壤是一种非常重要的自然资源,它对于维持生物圈的平衡和发展具有极其重要的作用。
而土壤中微量元素的含量则是构成土壤营养成分的重要因素之一。
对土壤中微量元素进行分级标准的研究和制定对于合理利用土壤资源、促进农业生产和保护生态环境都具有重要的意义。
本文将从多个方面对第二次土壤普查中土壤中微量元素含量的分级标准进行深入探讨。
1. 土壤中微量元素的重要性和含量分级标准的意义我们需要了解土壤中微量元素的重要性。
微量元素是指土壤中含量较少但对植物生长和发育起着重要作用的元素,包括铁、锰、锌、铜、硼、钼和镉等。
这些微量元素在植物的生长发育、养分吸收等方面起着关键的作用,因此其含量的高低直接影响着土壤的肥力和植物的生长情况。
而土壤中微量元素的含量分级标准则是根据土壤中微量元素的含量丰度进行划分,它对于评价土壤的肥力状况和合理使用土壤资源具有重要的指导意义。
通过制定合理的分级标准,可以有利于科学施肥、提高农作物产量、改善土壤环境质量,并且可以为环境保护和生态平衡提供依据和支撑。
2. 第二次土壤普查对土壤中微量元素含量进行的研究和调查第二次土壤普查是我国对土壤资源进行的一次全面、深入的调查,其目的是为了解土壤资源总体情况,为国家的土壤利用、保护和管理提供科学依据。
在这次土壤普查中,对土壤中微量元素的含量进行了详细的调查和研究,并且制定了相应的含量分级标准。
通过对全国土壤样点进行取样分析和实地调查,研究人员得出了土壤中微量元素含量的丰度分布情况和变化趋势。
在此基础上,结合农业生产的需求和土壤肥力的实际情况,制定了一系列合理的分级标准,以便为农业生产提供科学依据和技术支持。
3. 第二次土壤普查中土壤中微量元素含量分级标准的制定和意义根据第二次土壤普查的研究成果,对土壤中微量元素含量进行了分级标准的制定,包括了不同元素的丰度水平和相应的合理范围等内容。
土壤养分分级标准
土壤养分分级标准土壤养分是土壤中供给植物生长发育所必需的各种元素和有机物质的总和,对于农作物的生长发育和产量形成起着至关重要的作用。
为了科学合理地评价土壤养分的水平,制定了土壤养分分级标准。
土壤养分分级标准是根据土壤养分含量的不同,将土壤分为不同等级,以便于农民和农业技术人员根据土壤养分水平合理施肥,提高土壤肥力,增加农作物产量。
一、氮素。
1. 优质土壤,土壤全氮含量在0.15%以上。
2. 中等土壤,土壤全氮含量在0.10%-0.15%之间。
3. 低质土壤,土壤全氮含量在0.10%以下。
二、磷素。
1. 优质土壤,土壤全磷含量在0.20%以上。
2. 中等土壤,土壤全磷含量在0.15%-0.20%之间。
3. 低质土壤,土壤全磷含量在0.15%以下。
三、钾素。
1. 优质土壤,土壤全钾含量在1.00%以上。
2. 中等土壤,土壤全钾含量在0.60%-1.00%之间。
3. 低质土壤,土壤全钾含量在0.60%以下。
四、有机质。
1. 优质土壤,土壤有机质含量在3.00%以上。
2. 中等土壤,土壤有机质含量在2.00%-3.00%之间。
3. 低质土壤,土壤有机质含量在2.00%以下。
五、微量元素。
1. 优质土壤,土壤微量元素含量均衡,无缺乏症状。
2. 中等土壤,土壤微量元素含量不平衡,出现轻微缺乏症状。
3. 低质土壤,土壤微量元素含量严重不平衡,出现明显缺乏症状。
土壤养分分级标准的制定,有利于科学施肥,提高土壤肥力,增加农作物产量。
在实际生产中,农民和农业技术人员应根据土壤养分分级标准,选择合适的施肥方案,避免盲目施肥造成养分浪费和环境污染。
同时,还应注重土壤养分的动态监测,及时调整施肥方案,保持土壤肥力平衡,实现可持续农业发展。
总之,土壤养分分级标准的制定对于提高农作物产量、保护土壤环境、实现农业可持续发展具有重要意义。
希望广大农民和农业技术人员能够充分认识土壤养分分级标准的重要性,科学施肥,共同推动农业生产的健康发展。
土壤中的微量元素
土壤中的微量元素微量元素是指在土壤中含量较少的元素,但对植物生长和发育起着重要的作用。
虽然微量元素在土壤中的含量很低,但它们对植物的生理代谢、酶活性以及植物对病害和逆境的抵抗力都有着重要的影响。
在土壤中,微量元素主要包括锌、铜、锰、铁、钼、镍和钴等元素。
本文将对这些微量元素的作用和土壤中的含量进行介绍。
1. 锌(Zn)锌是植物生长发育过程中必需的微量元素之一。
它参与植物的光合作用、呼吸作用和蛋白质合成等重要生理过程。
锌的缺乏会导致植物叶片出现黄化、嫩叶畸形、生长受阻等症状。
土壤中锌的含量受土壤pH、有机质含量和土壤类型等因素的影响。
2. 铜(Cu)铜是植物体内重要的微量元素,它参与植物的呼吸作用、光合作用和酶活性调控等生理过程。
铜的缺乏会导致植物叶片变黄,叶缘脱绿,叶片干枯。
土壤中铜的含量受土壤pH、有机质含量和氧化还原条件等因素的影响。
3. 锰(Mn)锰是植物体内的重要微量元素,它参与植物的光合作用、呼吸作用和酶活性调控等生理过程。
锰的缺乏会导致植物叶片出现黄化、斑点、叶片间隙增大等症状。
土壤中锰的含量受土壤pH、氧化还原条件和有机质含量等因素的影响。
4. 铁(Fe)铁是植物体内的重要微量元素,它参与植物的光合作用、呼吸作用和酶活性调控等生理过程。
铁的缺乏会导致植物叶片出现黄化、叶缘脱绿等症状。
土壤中铁的含量受土壤pH、氧化还原条件和有机质含量等因素的影响。
5. 钼(Mo)钼是植物体内的微量元素之一,它参与植物的氮代谢和酶活性调控等重要生理过程。
钼的缺乏会导致植物叶片出现黄化、叶缘脱绿等症状。
土壤中钼的含量受土壤pH、有机质含量和氧化还原条件等因素的影响。
6. 镍(Ni)镍是植物体内的微量元素之一,它参与植物的酶活性调控和光合作用等生理过程。
镍的缺乏会导致植物生长受阻、叶片出现黄化等症状。
土壤中镍的含量受土壤pH、有机质含量和土壤类型等因素的影响。
7. 钴(Co)钴是植物体内的微量元素之一,它参与植物的酶活性调控和氮代谢等生理过程。
土壤中微量元素补充方案
1 土壤中微量元素补充方案第一部分微量元素对土壤的重要性 (2)第二部分土壤微量元素缺乏的影响 (5)第三部分典型微量元素缺失类型与症状 (7)第四部分土壤微量元素检测方法 (9)第五部分补充微量元素的必要性 (12)第六部分各类微量元素补充策略 (14)第七部分有机肥料在补充微量元素中的应用 (16)第八部分化学肥料在补充微量元素中的应用 (19)第九部分微生物制剂在补充微量元素中的应用 (21)第十部分微量元素补充方案的效果评估 (23)第一部分微量元素对土壤的重要性微量元素对土壤的重要性摘要:本文将介绍微量元素在土壤中的重要性,包括它们如何影响植物生长、农业生产以及环境健康。
微量元素是植物正常生理功能所必需的营养元素之一,尽管其需求量相对较低,但在植物和生态系统中发挥着至关重要的作用。
1.微量元素的概念与分类微量元素是指植物需要但需求量相对较小的一类化学元素。
通常情况下,植物所需的微量元素有硼(B)、铜(Cu)、铁(Fe)、锰(Mn)、锌(Zn)、钼(Mo)等。
这些元素对于植物生长发育和新陈代谢具有不可替代的作用。
2.微量元素在植物生长中的作用2.1促进光合作用许多微量元素参与了光合作用过程。
例如,铜是叶绿素合成过程中的一种关键酶——丙酮酸脱羧酶的活性成分;铁则参与到光合色素和蛋白质的合成中。
2.2影响植物激素的生物合成与信号传递微量元素还参与了植物激素的生物合成和信号传递过程。
例如,硼能够促进细胞壁物质的合成,从而调节细胞伸长和分化;锰参与细胞分裂和生殖器官发育。
2.3参与植物防御机制微量元素可增强植物抵抗病虫害的能力。
如锌可以提高植物对真菌、细菌和其他有害生物的抵抗力;钼有助于植物抵御氧化应激。
3.微量元素对农业生产的影响3.1提高农作物品质和产量合理补充微量元素可以改善农作物品质,提高产量。
例如,施用适量的硼肥可以增加棉花、水稻和玉米的产量;铜肥则能提高油菜籽的含油率。
3.2减少化肥和农药使用量通过补充微量元素,可以降低化肥和农药的使用量,从而降低农业生产的成本,并减轻环境污染压力。
临安市不同乡镇山核桃林地土壤理化性质比较_钱孝炎
低,pH4.81;土壤有机质含量以岛石镇和太湖源镇为高,分别达 38.00、35.54 g/kg,而河桥镇最低,为 23.95 g/kg;
昌化、岛石、太湖源 3 个乡镇水解氮、速效钾含量较高,分别达 200.00、100.00 mg/kg;土壤有效磷和有效硫含量
以岛石镇为最高,分别为 10.80,24.90 mg/kg;不同乡镇山核桃林地土壤微量元素平均含量排序为锰 > 铁 > 锌 >
2 研究方法
2.1 样品采集 根据临安市森林资源分布图,按 1 km×1 km 网格布设山核桃林地土壤采样点(即公里网格中有山核桃林分
的点即为采样点),共在 8 个乡镇设采样点 321 个。于 2008 年 7 月中旬,根据室内布点情况,调查各采样点的 自然条件、土壤情况及农户施肥、产量情况。在选定的典型样地上,按“S”型布点,分别采集 5 个点的表层(0 ~ 30 cm)土样,将其混合,然后采用四分法分取样品 1 kg 左右,带回实验室。对每个典型样地土壤的理化性质 进行单独分析。 2.2 分析方法
清凉峰 1.17±0.20 55.67±7.45 10.32±1.89 45.35±4.66
湍口
1.16±0.21 54.11±6.44 8.64±1.69 45.46±4.08
太湖源 0.90±0.19 65.86±9.83 8.81±1.12 57.04±5.37
平均值 1.18
54.99
8.36
土壤容重用环刀法;土壤孔隙组成采用浸水法;机械组成用比重计法;土壤pH用酸度计法(水土比为 2.5: 1.0);水解氮采用碱解扩散法;有效磷用盐酸氟化铵浸提—分光光度法;速效钾用乙酸铵浸提—火焰光度法; 有机质用硫酸—重铬酸钾外加热法;有效硫采用硫酸钡比浊法;有效硼采用沸水浸提—甲亚胺比色法;有效铁、 锰、锌、铜采用稀酸浸提—原子吸收分光光度计法[12]。
土壤中微量元素硒含量的影响因素分析
土壤中微量元素硒含量的影响因素分析土壤在自然形成和发育过程中受到各方面因素的影响,这些因素也影响着土壤中的微量元素硒。
其中,成土母岩是土壤硒含量的决定性因素,而土壤的酸碱度和有机质是影响土壤硒含量的主要因素。
除此以外,土壤质地、土地利用类型、气候、地形等也较明显地影响着土壤中硒的含量。
關键词:微量元素硒;成土母岩;酸碱度;有机质;土壤地质引言硒是一种地壳中含量稀少但对人体起着重要作用的微量元素。
硒具有双重生物学功能,因膳食缺硒造成的人体硒缺乏会引起克山病和大骨节病等,而硒过量又会造成硒中毒,引起指甲、头发和眉毛脱落、神经系统紊乱等。
我国又是一个缺硒大国,硒资源分布很不均匀,其中有黑龙江、河南、四川等22个省份,而富硒地带如湖北恩施等少数地区又曾出现硒中毒的情况,因此硒健康、硒安全越来越受到人们关注,富硒食品特别是天然富硒农作物的开发也越来越受到人们的重视。
农作物中的硒主要来于土壤,天然富硒土壤的开发更受重视,因此了解影响土壤中硒含量的因素就显得尤为重要。
1 成土母岩土壤在成土过程中受到各种自然因素的影响,成土母岩是其决定性因素。
土壤的主要组成物质是成土母岩风化后的残留物质,因此母岩的各种元素含量决定了土壤中各元素的含量,往往成土母岩硒含量与土壤硒含量有较大的相关性。
而且,硒元素在土壤形成和发育过程中逐渐积累,表现出土壤中硒含量高于成土母岩硒含量的特征。
倪师军等通过对万源富硒地区的岩石、土壤分析得出,页岩中硒含量最高,碳酸盐岩次之,砂岩最低,含炭质成分的页岩、板岩硒含量明显偏高,它们形成的土壤硒含量也有相应的关系。
此外,地层也影响着土壤硒含量,老地层相比新地层有着更高的硒含量,而含煤岩层也有较高的硒。
2 土壤的酸碱度(pH)土壤的酸碱度主要影响硒的存在形态和有效性。
亚硒酸盐主要存在于酸性和中性土壤中(4.5<pH<6.5),为土壤中主要的赋存形态,因其与吸附质之间有较好的亲和力常被粘粒矿物等物质固定于土壤中。
土壤微量元素要点
<20
25~150
>400
铜(Cu)
<4
5~20
>20
硼(B)
<15
20~100
>200
钼(Mo)
<0.1
0.5~20
-
氯(Cl)
-
<0.3%
>0.4%
第二节 土壤中微量元素的 含量、形态和转化
一、含量
多少顺序:Fe>Mn>Zn>B>Cu>Mo 影响因素:成土母质、气候条件等
二、形态与转化
水溶态: 交换态: 氧化物结合态:包含 氧化锰、 无定型氧化铁 和晶型氧化铁结 合态 有机结合态:包括松结有机态和紧结有机态 矿物态: 包括 与原生和次生 矿物结合态
(二)直接用于植物
1. 种肥:Zn、Mo、Mn、Cu
(1) 拌种:用少量水溶解微肥,均匀喷于种子上, 边喷边拌匀,种子晾干后即可播种。
硫酸锌 2~6g/kg
钼酸铵 2g/kg
硫酸锰 4~8gkg
硫酸铜 1g/kg
(2) 浸种:把微肥配成稀溶液,浸没种子8~12小时, 捞出晾干,即可播种。
硫酸锌 0.02~0.1% 钼酸铵 0.05~0.1% 硫酸锰 0.1~0.2% 硫酸铜 0.01~0.05%
或酸性土施用过量石灰时
缺B:
有效硼低的土壤
缺Mo:
南方酸性红壤地区
缺Cu:
有机质土
我国微量元素缺乏面积和施用面积
营养元素 缺素临界值 低于临界值面积 施用面积
(毫克/公斤) 亿亩 占耕地% 亿亩(93年)
锌(Zn)
≤0.5
7.29
51.1
1.454
土壤养分
必需营养元素的分组
分组原则: 根据植物体内含量的多少分为(0.1%) 大量营养元素: 含量占干物重的0.1%以上 C、H、O、N、P、K、Ca、Mg、S 9种 微量营养元素: 微量营养元素含量一般在0.1%以下 Fe、B、Mn、Cu、Zn、Mo、Cl、Ni 8种
必需元素的分类
按植物需要的量区分如下: 大量元素 植物干重的0.X%~X0% 碳(C)氢(H)氧(O)氮(N)磷(P)钾(K) 中量元素 植物干重的0.1%~1% 钙(Ca)镁(Mg)硫(S) 微量元素 植物干重的0.000X%~ 0.0X%
无机氮(占全氮的2-5%) 土 壤 氮 有机氮(占全氮的95-98%)
NH4+-N NO3--N NO2--N
水溶性氮5% 水解性氮50-70% 非水解性氮30-50%
(三)土壤中氮的转化
(1)有机态氮的氨化: (2)NH4+-N的硝化:旱地通气条件下,铵态氮转化为硝态氮。 (3)NO3--N的反硝化:通气不良情况下,硝态氮转化为 N2、 N2O等,是土壤氮素的损失过程。 (4)无机态氮的生物固定 (5)无机态氮的晶格固定与释放、吸附与解吸 氮损失途径: 反硝化 氨挥发
磷的迁移率小,因而仍表现出明显的地带性分布规律
从总体看,我国自南而北或自东而西土壤含磷量呈递增
趋势。以华南的砖红壤含磷量最低,东北的黑土、黑钙土和
内蒙的栗钙土含磷量最高,华中的红、黄壤以及华北的褐土、
棕壤介于以上二者之间。
(耕作施肥影响)
(二)土壤中磷的形态
土壤磷素可分为两大类:有机态磷和无机态磷 1.土壤中的有机磷化合物(简称有机磷) 一般有机磷含量约占全磷量的10%~25% 在侵蚀严重的红壤中不足10%,而东北地区的黑土有机 磷的含量较高,可达70%以上。粘质土有机磷含量比砂 质土高
土壤与植物中的微量元素营养及微量元素肥料
①化学肥料纯度提高 ②有机肥料投入少 ③农药的更新换代 6、农产品商品化 归还减少
引起养分不平衡
一、土壤中的微量元素
(一)土壤中微量元素的含量与形态
植物对缺铁的反应:
双子叶植物:根产生大量酚类物质并释放到根际,酚类物质通 过螯合作用和还原作用活化铁。
禾本科植物:根大量分泌铁载体(phytosiderphore),简称PS, PS和 Fe3+形成水溶性的复合体,并被植物吸收。
利用作5物、间的根际互作提高花生铁效率,克服花生缺铁黄化症 (Zuo et al. 2000 Plant and Soil 220, 13-25)
注:括号中数字为平均含量。
形态与转化:形态分为:水溶态、交换态、氧化物结合态(包含氧 化锰、无定型氧化铁和晶型氧化铁结合态)、有机结合态(包含松 结有机态与紧结有机态)和矿物态(包含原生与次生矿物结合态) 等,在石灰性土壤中还分出碳酸盐结合态。
当植物由土壤溶液中吸收某一微量元素时,土壤溶液中这一元 素存在于交换性复合体中,于是有部分离子释放出来,使土壤溶液 中这一元素保持原有水平;同时也会有矿物和沉淀溶解,来补充土 壤溶液和重新占有交换位置。
白化。
苹果枝顶叶小并呈簇状“小叶病”,芽苞形成减少,树皮粗 糙易碎。
锌中毒:植物含锌量>400mg/kg。
缺Zn时,叶片小,脉 间失绿,茎变短,植 株显得小而矮;发育 缓慢,叶片失绿,出 现坏死斑点。
3、钼
• 植物缺钼的共同症状是植株矮小,生长缓慢, 叶片失绿,且有大小不一的黄色和橙黄色斑点, 严重缺钼时叶缘萎蔫,有时叶片扭曲呈杯状, 老叶变厚、焦枯,以致死亡。
微量营养元素的种类及其在土壤中的丰缺指标
微量营养元素的种类及其在土壤中的丰缺指标农业上所指的微量元素是作物在其生长和生命过程中所不可缺少的,并且这种元素在土壤中含量一般不超过千分之几,在植物体内的含量占植物体干重的万分之几甚至十万分之几的元素。
植物生长所必需的微量营养元素主要包括铁(Fe)、锰(Mn )、硼(B)、锌(Zn)、钼(Mo),还有铜(Cu)和氯(Cl),由于铜和氯这两种元素在北方地区土壤中相当丰富,且有效含量都比较高,所以在这里就不作为主要元素加以介绍。
一、铁元素在土壤中的丰缺指标铁(Fe )是植物必须的微量元素,植物体中铁的含量一般为百万分之50~250毫克/升,铁在植物体内移动性非常小,进入植物体内的铁常处于被固定状态。
铁在土壤中常常以矿物态、有机态、可溶态和代换态等形态存在。
植物从土壤中吸收的铁主要是还原态的铁,而大多数土壤中铁的原初形态主要是氧化态的铁,此种形态的铁不能被植物所直接吸收利用。
因此植物在吸收利用铁元素之前,首先要将难溶性的三价铁变为可溶态,然后再将三价铁还原为二价的铁才能吸收并运送到根系内。
植物对铁的吸收主要有两种方式,一种是靠植物根系所分泌的酸性物质或某些络合剂把土壤中的铁溶解吸收,另一种则是土壤中难溶的高价三价铁在根表面被还原为低价的二价铁后进人植物根部被植物吸收利用。
铁被吸收进人植物根部后便被运往地上茎、叶各部供植物生长发育所需。
我国大部分地区土壤中铁的含量都比较高,因土壤缺铁而导致植株缺铁的情况一般很少见,但由于土壤pH过高使得土壤中一些易溶性的低价铁变为难溶性的高价铁,从而间接地导致作物缺铁症状的情况比较多。
因此,土壤pH值是决定铁元素对植物有效性吸收的主要原因,尤其是我国北方地区大部为石灰性土壤,碳酸钙含量较高,土壤中的铁大多以氢氧化铁、碳酸铁和氧化铁等形式存在。
另外由于石灰性土壤pH值相对较高,大多在8左右。
但是可供植物吸收利用,并且能有助于植物生长的有效铁所需的适宜土壤pH值为5.5~6.5之间,超过6.5时土壤中的铁就会被固定下来,很难再被植物所吸收利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 微量元素:指在土壤中的含量(百万之几到十 万分之几,最高不超过千分之几,但只有铁例 外,土壤中铁的含量可达4%)及其可给性较低, 植物对其需要量(n×10-1-n×10mg/kg)很少的一 类植物必需营养元素。
• 作物对微量元素的需要量虽然很少,但是它们 同大量元素一样,也直接参与植物体内的代谢 过程。
2、转化:
各形态在土壤中的转化因植物的吸收而处于动态平衡,且 不断补充土壤溶液中的浓度供植物正常生长。
影响土壤微量元素有效性的因素
土壤中微量元素供应不足的原因有: 1、含量过低,由土壤类型和成土母质决定。
2、有效性过低,微量元素大多以植物不能吸收 利用的形态存在,受土壤中许多因子如pH值、 氧化还原电位、质地、通透性、水分状况以 及有机质和微生物活动等的影响所致。
土壤中微量元素的形态与转化
1、形态:
微量元素在土壤中的存在形态可分为:水溶态、交换态、 氧化物结合态(包括氧化锰、无定型氧化铁和晶型氧化 铁结合态)、有机结合态(包含松结有机态和紧结有机 态)和矿物态(包含原生与次生矿物结合态)等,在石 灰性土壤中还可分出碳酸盐结合态。
其中水溶态和交换态的活性最强,其占总含量的5-10%。
• 目前研究和施用较多的有B、Mo、Zn、Mn、Fe、 C中微量元素主要来自于成土母质,其含量受 成土母质种类与成土过程影响。
2、土壤微量元素含量也受土壤质地影响。质地细或 细粒部分含量高,而砂质土和砂粒部分中含量较低。
3、其含量还与土壤有机质含量有关。有机质含量较 高,微量元素含量也相对较高,但有机质含量超过 5-15%时,其含量反而减少。