七年级数学人教版下册5.2平行线及其判定专项测试题(二)

合集下载

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习 5.2 平行线及其判定
参考答案与试题解析
一.选择题(共 10 小题,每小题 3 分,满分 30 分)
1.在同一平面内,不重合的两条直线的位置关系是( )
A.平行
B.相交
C.平行或相交
D.平行、相交或垂直
选:C.
2.直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;
B.有两条
C.不存在
D.有一条或不存在
解:①若点 P 在 OA 上,则不能画出与 OA 平行的直线,
②若点 P 不在 OA 上,则过点 P 有且只有一条直线与 OA 平行,
所以,这样的直线有一条或不存在.
故选 D.
4.下面推理正确的是( )
A.∵a∥b,b∥c,∴c∥d
B.∵a∥c,b∥d,∴c∥d
16.如图,EF⊥AB 于点 F,CD⊥AB 于点 D,E 是 AC 上一点,∠1=∠2,则图中互相平行 的直线有 2 对.
解:∵EF⊥AB,CD⊥AB, ∴∠EFA=∠CDA=90°, ∴EF∥CD, ∴∠1=∠EDC, ∵∠1=∠2, ∴∠EDC=∠2, ∴DE∥BC, 即图中互相平行的直线有 2 对, 故答案为:2.
(2)如果 a∥b,b∥c,c∥d,那么 a∥d;
(3)如果 a∥b,b⊥c,那么 a⊥c;
(4)如果 a 与 b 相交,b 与 c 相交,那么 a 与 c 相交.
在上述四种说法中,正确的个数为( )
A.1 个
B.2 个
C.3 个
D.4 个
解:直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;正确.
8.两条直线相交所成的四个角都相等时,这两条直线的位置关系是( )

七年级数学下册52平行线及其判定测试题新版新人教版含答案

七年级数学下册52平行线及其判定测试题新版新人教版含答案

5.2 平行线及其判定5.2.1平行线1.下列说法中,正确的是( )A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.如图所示,能相交的是__________,平行的是__________.3.在同一平面内,直线AB与直线CD满足下列条件,则其对应的位置关系是(1)若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为__________;(2)直线AB与直线CD有且只有一个公共点,则直线AB与直线CD的位置关系为__________.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.5.若直线a∥b,b∥c,则a∥c的依据是( )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.如图,PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是______________________________.7.如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF.(2)AB与CD有怎样的位置关系?为什么?8.下列说法中,正确的是( )A.同一平面内的两条直线叫平行线B.平行线在同一平面内C.不相交的两条直线叫平行线D.过直线外一点有且只有一条直线与已知直线相交9.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个10.在同一平面内,下面关于一条直线和两条平行线的位置关系的说法中,正确的是( )A.一定与两条平行线都平行B.可能与两条平行线都相交或都平行C.一定与两条平行线都相交D.可能与两条平行线中的一条平行,一条相交11.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:__________,__________.12.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作__________的平行线即可,其理由是________________________________________.13.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必__________.14.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.15.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?16.利用直尺画图:(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)把图2网格中的三条线段通过平移使三条线段AB,CD,EF首尾顺次相接组成一个三角形;(3)在图3的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.参考答案1.D2.③⑤3.(1)平行(2)相交4.(1)图略.(2)EF∥AB,MC⊥CD.5.D6.经过直线外一点,有且只有一条直线与这条直线平行7.(1)图略.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.8.B 9.A 10.B 11.CD∥MN GH∥PN 12.AB 平行于同一条直线的两条直线平行13.相交14.(1)(2)图略;(3)l1与l2的夹角有两个:∠1,∠2.因为∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.因为AB∥EF,CD∥EF,所以CD∥AB.16.(1)CD∥AB,PQ⊥AB.(2)△EFG或△EFH都是所求作的三角形.(3)四边形ABCD是符合条件的四边形.5.2.2 平行线的判定1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.①④D.③④3.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE4.如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC(____________________________).5.如图,∠1=∠2,∠2=∠3,你能判断图中哪些直线平行,并说出理由.6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( )A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°7.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于__________.8.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).9.如图,下列条件中能判断直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠510.如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD11.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°12.如图,直线a、b被直线c所截,若满足____________________,则a、b平行.13.如图,用式子表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.14.如图所示,推理填空:(1)∵∠1=__________(已知),∴AC∥ED(同位角相等,两直线平行).(2)∵∠2=__________(已知),∴AB∥FD(内错角相等,两直线平行).(3)∵∠2+__________=180°(已知),15.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.16.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.17.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?答案1.A2.A3.D4.内错角相等,两直线平行5.DE∥BF,AB∥CD.理由如下:∵∠1=∠2,∴DE∥BF(同位角相等,两直线平行).∵∠2=∠3,∴∠1=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).6.C7.80°8.合格9.C 10.A 11.D12.答案不唯一,如:∠1=∠2或∠2=∠3或∠3+∠4=180°∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).14.(1)∠C(2)∠BED(3)∠AFD15.∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.16.PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.17.CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD.∵∠1+∠2=180°,∴AB∥EF.∴CD∥EF.。

人教版数学七年级下册5.2平行线及其判定试题试卷含答案

人教版数学七年级下册5.2平行线及其判定试题试卷含答案

5.2 平行线及其判定5.2.1 平行线的定义和画法1.在同一平面内,不重合的两条直线的位置关系是( )A.平行B.相交C.平行或相交D.平行、相交或垂直2.观察如图所示的长方体,与棱AB平行的棱有几条( )A.4B.3C.2D.13.在下面的方格纸中经过点C画与线段AB互相平行的直线l,再经过点B画一条与线段AB1l.垂直的直线24.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;的垂线.(3)过点B作AB纠错笔记________________________________________________________________________5.2 平行线及其判定5.2.1 平行线的定义和画法1.【答案】C【解析】在同一平面内,不重合的两条直线只有两种位置关系:平行或相交,在同一平面内,垂直属于相交的一种特殊情况.故选C .2.【答案】B【解析】图中与AB 平行的棱有:EF 、CD 、GH ,共3条.故选B .3.【答案】如图所示,4.【答案】如图,(1)A 所在的横线就是满足条件的直线,即AE 就是所求;(2)在直线AE 上,到A 距离是5个格长的点就是D ,则CD 就是所求与AB 平行的直线;(3)取AE 上D 右边的点F ,过B ,F作直线,就是所求.参考答案及解析5.2.2 平行线的基本事实及其推论1.过直线l外一点A作l的平行线,可以作( )条.A.1B.2C.3D.42.已知AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线( )A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法错误的是( )A.平面内过一点有且只有一条直线与已知直线垂直B.两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D.过一点有且只有一条直线与已知直线平行4.若//AB EF,则__________//__________,理由是__________.AB CD,//5.平行公理:______________________________________________________.纠错笔记________________________________________________________________________5.2.2 平行线的基本事实及其推论1.【答案】A【解析】由平行公理“过已知直线外一点有且只有一条直线与已知直线平行”,可知只有A 正确.故选A .2.【答案】D【解析】当点P 在直线OA 上时,不能画出与OA 平行的直线;当点P 不在直线OA 上时,过点P 有且只有一条直线与OA 平行,所以,这样的直线有一条或不存在.故选D .3.【答案】D【解析】由垂线的性质、线段的性质、直线的性质可知A 、B 、C 正确;由平行公理可知不正确.故选D .4.【答案】CD EF 平行于同一条直线的两条直线互相平行【解析】//AB CD ,//AB EF ,//CD EF ,理由是:如果两条直线都和第三条直线平行,那么这两条直线平行,故答案为:CD EF 平行于同一条直线的两条直线互相平行.5.【答案】经过直线外一点,有且只有一条直线与这条直线平行.【解析】由平行公理可知.参考答案及解析5.2.3 平行线的判定方法1.在下面各图中,12∠=∠,能判断//AB CD 的是( )A .B .C .D .2.如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .3A ∠=∠B .12∠=∠C .D DCE ∠=∠D .180D ACD ∠+∠=︒3.如图,点E 在射线AB 上,要//AD BC ,只需( )A .A CBE ∠=∠B .AC ∠=∠C .C CBE ∠=∠D .180A D ∠+∠=︒4.如图,已知A C ∠=∠,AD BE ⊥,BC BE ⊥,点D 在线段EC 上,求证://AB CD .5.2.3 平行线的判定方法1.【答案】D【解析】图A 中,1∠、2∠不是两条直线被第三条直线所截的内错角或同位角,不能判定//AB CD ;图B 中,1∠、2∠不是两条直线被第三条直线所截的同位角,不能判定AB CD ;图C 中,1∠、2∠不是两条直线被第三条直线所截的同位角,不能判定AB CD ;图D 中,1∠、2∠是两条直线被第三条直线所截的同位角,能判定AB CD ;故选D .2.【答案】B【解析】A ,3A ∠=∠,无法得到,AB CD ,故A 错误;B ,12∠=∠,根据内错角相等,两直线平行可得:AB CD ,故B 正确;C ,D DCE ∠=∠,根据内错角相等,两直线平行可得:BD AC ,故C 错误;D ,180D ACD ∠+∠=︒,根据同旁内角互补,两直线平行可得:BD AC ,故D 错误.故选B .3.【答案】A【解析】要使AD BC ,只需A CBE ∠=∠,故选A .4.【答案】AD BE ⊥ ,BC BE ⊥,AD BC ∴ ,ADE C ∴∠=∠,A C ∠=∠ ,ADE A ∴∠=∠,AB CD ∴ .参考答案及解析。

人教版七年级数学下册《5.2 平行线及其判定》练习题及答案

人教版七年级数学下册《5.2 平行线及其判定》练习题及答案

人教版七年级数学下册《5.2 平行线及其判定》练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在同一平面内,不重合的两条直线的位置关系可能是()A.相交或平行B.相交或垂直C.平行或垂直D.不能确定2.如图,过点A画直线L的平行线,能画()A.两条以上B.2条C.1条D.0条3.如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确4.如图,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠3+∠5=180°D.∠2=∠35.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a//b,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行6.如图,能判断AB∥EF的条件是()A.∠ADE=∠C B.∠ADE=∠DEF C.∠ADE=∠B D.∠ADE=∠EFC7.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.两直线平行,同旁内角相等B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.同位角相等,两直线平行8.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠2 B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠3=∠4二、填空题9.小戴和小魏分别到黑板上经过点A画直线m与直线n,并且使得m∥p,n∥p,则直线m与n分别必然重合,这是因为10.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转°11.如图,请写出一个能使得DE∥BC的条件:.(只写一个即可)12.如图,若∠B=65°,∠C=15°,∠E=50°,∠DFE=∠E+∠C,则AB与CD的位置关系是.13.如图,在三角形ABC中,点D,E,F分别在AB,AC,BC上,连接DE,CD,DF则下列条件;①∠1=∠3②∠2=∠4③∠ACB=∠5④∠ADE=∠B⑤∠ACB+∠CED=180° 不能判定AC//DF的有(填序号).三、解答题14.如图,直线AB,CD被EF所截,∠1=∠2,求证:AB∥CD.15.如图AB⊥BC,∠1与∠2互余,∠2=∠3试说明BE与DF的位置关系,并证明你的结论.16.如图,已知BE//DF,∠B=∠D试说明AD//BC.17.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.参考答案1.A2.C3.C4.A5.A6.B7.D8.C9.过直线外一点,有且只有一条直线与已知直线平行10.1211.∠ADE=∠B12.平行13.②④⑤14.证明:∵∠1=∠2,∠2=∠3∴∠1=∠3∴AB∥CD.15.解:BE∥DF,证明如下:∵AB⊥BC∴∠ABC=90°∴∠3+∠4=90∘∵∠1与∠2互余∴∠1+∠2=90°∵∠2=∠3∴∠1=∠4∴BE∥DF.16.解:AD与BC平行;理由如下:∵BE∥DF∴∠B+∠BCD=180°(两直线平行,同旁内角互补)∵∠B=∠D∴∠D+∠BCD=180°∴AD∥BC(同旁内角互补,两直线平行).17.证明:∵EF⊥AC,DB⊥AC∴EF∥DM∴∠2=∠CDM∵∠1=∠2∴∠1=∠CDM∴MN∥CD∴∠C=∠AMN∵∠3=∠C∴∠3=∠AMN∴AB∥MN.。

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.2.2 平行线的判定1.(2023秋·山西晋中·八年级统考期末)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.两直线平行,内错角相等C.同位角相等,两直线平行D.两直线平行,同位角相等【答案】A【分析】如图,利用三角形板的特征可确定,然后根据内错角相等,两直线平行可判断.【详解】解:如图,由题意得,根据内错角相等,两直线平行可得.故选:A.【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.2.(2022秋·河南新乡·七年级校考期末)如图,下列推理中,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【答案】B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由内错角相等,两直线平行可知如果,那么,不能得到,故此选项不符合题意;B、由内错角相等,两直线平行可知如果,那么,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.3.(2022春·辽宁沈阳·七年级校考期中)如图,现有条件:①;②;③;④.能判断的条件有()A.①②B.②③C.①③D.②④【答案】C【分析】根据平行线的判定定理即可求解.【详解】①∵∴②∵∴③∵∴④∵∴∴能得到的条件是①③.故选C.【点睛】此题主要考查了平行线的判定,解题的关键是合理利用平行线的判定,确定同位角、内错角、同旁内角,平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.(2022春·四川成都·七年级校考阶段练习)如图,点在的延长线上,在下列四个条件中,不能判断的是()A.B.C.D.【答案】C【分析】直接利用平行线的判定方法分析选择符号题意的选项即可.【详解】解:A、,,故此选项不合题意;B、,,故此选项不合题意;C、,,故此选项符合题意;D、,,故此选项不合题意.故选:C.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(2022秋·山东枣庄·八年级校考期末)如图,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据平行线的判定定理,逐项判断即可求解.【详解】解:若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,则,故本选项符合题意;D,若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.6.(2023春·江苏·七年级专题练习)如图,点,,分别在的边,,上,连接,,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行判断即可.【详解】解:A.若,则(同旁内角互补,两直线平行);B.若,则(内错角相等,两直线平行);C.若,则(同位角相等,两直线平行);D.,则(同位角相等,两直线平行);故选:C.【点睛】本题主要考查了平行线的判定,掌握:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解决问题的关键.7.(2023春·七年级课时练习)如图,下列条件中不能判定的是( )A.B.C.D.【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A. ,内错角相等两直线平行,能判定;B. ,同位角相等两直线平行,能判定;C. ,,可知,内错角相等两直线平行,能判定;D. 是同旁内角相等,但不一定互补,所以不能判定.故选:D.【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知,,求证:与平行.证明:①:;②:,;③:;④:;⑤:.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①【答案】B【分析】先证明,结合,证明,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵(已知),(邻补角的定义),∴(同角的补角相等).∵(已知),∴(等量代换),∴(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.【点睛】本题考查的是补角的性质,平行线的判定,证明是解本题的关键.9.(2021春·浙江宁波·七年级校考期中)如图把三角板的直角顶点放在直线上,若,则当______度时,.【答案】【分析】由直角三角板的性质可知,当时,,得出即可.【详解】当当时,,理由如下:∵,∴,当时,,∴故答案为:【点睛】本题主要考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解题的关键.10.(2021春·江苏南京·七年级南京钟英中学校考期中)如图,直线、被直线所截,,当______时,.【答案】115【分析】若,则,由可得的度数,从而求得的度数.【详解】解:如图,若要,则,∵,∴,∴.故答案为:115.【点睛】本题考查平行线的判定方法,熟记平行线判定方法是解题的关键.11.(2021春·浙江绍兴·七年级校考期中)如图,,,若使,则可将直线b绕点A 逆时针旋转___________度.【答案】42【分析】先根据邻补角进行计算得到,根据平行线的判定当b与a的夹角为时,,由此得到直线b绕点A逆时针旋转.【详解】解:如图:∵,∴,∵,∴当时,,∴直线b绕点A逆时针旋转.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.12.(2022春·江苏宿迁·七年级校考阶段练习)如图,条件______填写所有正确的序号一定能判定.①;②;③;④;【答案】①③④【分析】根据平行线的判定解答即可.【详解】解:∵,∴;①一定能判定,符合题意.∵,∴;③一定能判定,不合题意.∵,∴;③一定能判定,符合题意.∵,∴;④一定能判定,符合题意.故答案为:【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.13.(2022春·山东泰安·七年级统考期中)如图,点在的延长线上,下列条件:①;②;③;④.其中能判定的是________.(将所有正确的序号都填入)【答案】①②③【分析】根据平行线的判定条件逐一判断即可.【详解】解:由∠C=∠5,可以判断(同位角相等,两直线平行),故①正确;由∠C+∠BDC=180°,可以判断(同旁内角互补,两直线平行),故②正确;由,可以判断(内错角,两直线平行),故③正确;由可以判断(内错角,两直线平行),不能判定,故④不正确;故答案为:①②③.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.14.(2022春·山东枣庄·七年级统考期中)平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB,并用三角尺的一条边贴住直线AB;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD.这样,就得到.请写出其中的道理:______.【答案】同位角相等,两直线平行【分析】根据作图过程可得∠1=∠2,根据平行线的判定可得答案.【详解】解:如下图所示,∵∠1=∠2,∴(同位角相等,两直线平行),故答案为:同位角相等,两直线平行【点睛】本题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.15.(2022秋·山西临汾·七年级统考期末)阅读下面的解答过程,并填空.如图,,平分,平分,.求证:.证明:∵平分,平分,(已知)∴__________,_________.(角平分线的定义)又∵,(已知)∴∠____________=∠____________.(等量代换)又∵,(已知)∴∠____________=∠____________.(等量代换)∴.(____________)【答案】;;;;;;同位角相等,两直线平行【分析】根据角平分线的定义,等量代换,同位角相等两直线平行,联系证明过程,可推理出答案.【详解】证明:∵平分,平分,(已知)∴,.(角平分线的定义)又∵,(已知)∴.(等量代换)又∵,(已知)∴.(等量代换)∴.(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,角平分线的定义,解决本题的关键是熟悉相关的几何定理,联系证明过程进行推导.16.(2022春·福建厦门·七年级统考期末)如图,,,.与平行吗?为什么?解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(____________)∴.(____________)【答案】,,同角的余角相等,同位角相等,两直线平行;【分析】先证明,,结合同角的余角相等可得,从而可得答案.【详解】解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(同角的余角相等)∴.(同位角相等,两直线平行)【点睛】本题考查的是垂直的定义,余角的性质,平行线的判定,熟练的证明是解本题的关键.17.(2023春·全国·七年级专题练习)已知:如图,于点C,于点D,.求证:.【答案】见详解【分析】根据垂直的定义得到,等量代换可得,再根据平行线的判定定理即可得到结论.【详解】解:∵,,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.18.(2022秋·全国·八年级专题练习)如图,直线a,b直线c所截.(1)当∠1=∠3时,直线a,b平行吗?请说明理由.(2)当∠2+∠3=180°时,直线a,b平行吗?请说明理由.【答案】(1),理由见解析(2),理由见解析【分析】(1)根据等角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;(2)根据同角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;【详解】(1)解:如图,当∠1=∠3时,a b,理由如下:∵∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,∴∠2=∠4,∴a b;(2)当∠2+∠3=180°时,a b,理由如下:∵∠2+∠3=180°,∠3+∠4=180°,∴∠2=∠4,∴a b;【点睛】本题考查了平行线的判定,解决本题的关键是熟练运用平行线的判定定理.1.(2023春·七年级单元测试)如图,下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【分析】根据平行线的判定条件逐一判断即可得到答案.【详解】解:A、,不能判断,选项错误;B、,可以判断,不能判断,选项错误;C、,可以判断,不能判断,选项错误;D、,可以判断,选项正确,故选D.【点睛】本题考查了平行线的判定,解题关键是掌握平行线的判定条件:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行.2.(2023春·全国·七年级专题练习)如图,点在的延长线上,下列条件不能判定的是()A.B.C.D.【答案】C【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A.根据内错角相等,两直线平行可判定,故此选项不合题意;B.根据同位角相等,两直线平行可判定,故此选项不合题意;C.根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D.根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(2023春·七年级课时练习)如图,,下列结论正确的是( )①若,则;②若,则;③若,则;④若,则.A.①②B.②④C.②③④D.②【答案】B【分析】根据平行线的判定定理,即可一一判定.【详解】解:由,不能判定,故①不符合题意;,,,,故②符合题意;由,,不能判定,故③不符合题意;,,,,故④符合题意;故选:B.【点睛】本题考查了平行线的判定定理,熟练掌握和运用平行线的判定定理是解决本题的关键.4.(2022春·河北邯郸·七年级校考期中)将一副三角板按如图所示方式放置.结论Ⅰ:若∠1=45°,则有;结论Ⅱ:若∠1=30°,则有;下列判断正确的是()A.I和Ⅱ都对B.I和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【分析】根据三角板中角的和差关系,当结论Ⅰ时得到∠B+∠BAE=180°,根据平行线的判定即可得到结论;当结论Ⅱ时,无法得出结论,结合选项逐个判断即可.【详解】解:如图所示:结论Ⅰ:∵∠1=45°,∴∠2=90°−∠1=45°,∴∠BAE=90°+45°=135°,∴∠B+∠BAE=45°+135°=180°,∴BC AE,故结论Ⅰ正确;结论Ⅱ:∵∠1=30°,∴∠2=90°−∠1=60°,∴∠BAE=90°+60°=150°,∴∠E+∠BAE=60°+150°=210°,∴无法得到DE AB,故结论Ⅱ错误,故选:D.【点睛】本题考查平行线的判定,等腰直角三角形等知识点,能灵活运用定理进行推理是解题的关键.5.(2022春·新疆乌鲁木齐·七年级乌鲁木齐市第九中学校考期中)如图,下列判断中错误的是()A.因为∠1=∠2,所以B.因为∠5=∠BAE,所以C.因为∠3=∠4,所以D.因为∠5=∠BDC,所以【答案】B【分析】根据平行线的判定定理求解判断即可.【详解】因为∠1=∠2,所以AE∥BD,故A正确,不符合题意;因为∠5=∠BAE,所以AB∥CD,故B错误,符合题意;因为∠3=∠4,所以AB∥CD,故C正确,不符合题意;因为∠5=∠BDC,所以AE∥BD,故D正确,不符合题意;故选:B.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.6.(2022春·江苏扬州·七年级校联考期中)如图,下列条件中:①;②;③;④;能判定的条件个数有()A.1B.2C.3D.4【答案】B【分析】利用平行线的判定定理对条件依次验证即可知正确条件个数.【详解】解:当①;利用同位角互补,两直线平行可知①能判定;当②;可以判定,故②不能判定;③;可以判定,故②不能判定;④;利用内错角相等,两直线平行可知①能判定;故选:B【点睛】本题考查平行线的判定定理,解题的关键是熟练掌握平行线的判定定理.7.(2022·全国·七年级假期作业)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠3=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据平行线的判定定理“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”逐项排查即可.【详解】解:①∠1=∠5可根据同位角相等,两直线平行得到a∥b;②∠4=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠5=180°可根据同旁内角互补,两直线平行得到a∥b;④∠2、∠3是邻补角,则∠3+∠2=180°不能得到a∥b;故选:C.【点睛】此题主要考查了平行线的判定,平行线的判定定理有同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.(2023春·七年级课时练习)如图(1),在中,,边绕点按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2)),当()时,.A.42°B.138°C.42°或138°D.42°或128°【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当∠ACB'=42°时,∵,∴∠ACB'=∠A.∴CB'∥AB.如图(2),当∠ACB'=138°时,∵∠A=42°,∴∴CB'∥AB.综上可得,当或时,CB'∥AB.故选:C【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据CB'在旋转过程中的不同位置,进行分类讨论是解题的关键.9.(2023春·七年级课时练习)如图,不添加辅助线,请写出一个能判定AB CD的条件__【答案】∠1=∠4##∠B=∠5##∠B+∠BCD=180°【分析】根据平行线的判定定理即可解答.【详解】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点睛】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.(2023春·七年级课时练习)如图,a、b、c三根木棒钉在一起,,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当秒时,当时,当时,当时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当秒时,,解得:t=2;当时,,解得:t=14;当时,木棒a停止运动,当时,,解得:t=-10;(不合题意,舍去)当时,或,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.11.(2023春·七年级课时练习)在同一平面内有2022条直线,如果,,,……那么与的位置关系是_____________.【答案】垂直【分析】根据垂直的定义和平行线的性质可得依次是垂直,垂直,平行,平行,4个一循环,依此可得,的位置关系.【详解】解:∵在同平面内有2022条直线,若,,,……∴与依次是垂直,垂直,平行,平行,…,∵…1,∴与的位置关系是垂直.故答案为:垂直.【点睛】本题考查垂线、平行线的规律问题,解题的关键是找出规律.12.(2023春·七年级课时练习)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上,对于给出的五个条件:①∠1=25.5°,∠2=55°;②∠1+∠2=90°;③∠2=2∠1;④∠ACB=∠1+∠3;⑤∠ABC=∠2-∠1.能判断直线m n的有__.(填序号)【答案】①④⑤【分析】根据平行线的判定方法和题目中各个小题中的条件,逐一判断是否可以得到m∥n,从而可以解答本题.【详解】解:∵∠1=25.5°,∠2=55°,∠ABC=30°,∴∠ABC+∠1=55.5°=55°=∠2,∴m n,故①符合题意;∵∠1+∠2=90°,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故②不符合题意;∵∠2=2∠1,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故③不符合题意;过点C作CE m,∴∠3=∠4,∵∠ACB=∠1+∠3,∠ACB=∠4+∠5,∴∠1=∠5,∴EC n,∴m n,故④符合题意;∵∠ABC=∠2-∠1,∴∠2=∠ABC+∠1,∴m n,故⑤符合题意;故答案为:①④⑤.【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2021春·全国·七年级专题练习)如图,点是延长线上一点,在下列条件中:①;②;③且平分;④,能判定的有__.(填序号)【答案】③④【分析】根据平行线的判定方法分别判定得出答案.【详解】①中,,(内错角相等,两直线平行),不合题意;②中,,(同位角相等,两直线平行),不合题意;③中,且平分,,,故此选项符合题意;④中,,(同旁内角互补,两直线平行),故此选项符合题意;答案:③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.(2021春·湖南岳阳·七年级统考期末)如图,将一副三角板按如图所示放置,,,,且,则下列结论中:①;②若平分,则有;③将三角形绕点旋转,使得点落在线段上,则此时;④若,则.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB=∠DAE=90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD平分∠CAB,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C=∠B=45°,∴∠3=∠B,∴BC∥AE,故②正确;③将三角形ADE绕点A旋转,使得点D落在线段AC上,则∠4=∠ADE-∠ACB=60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°,又∠E=30°,设DE与AB交于点F,则∠AFE=90°,∵∠B=45°,∴∠4=45°,∴∠C=∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.15.(2021春·山东济南·七年级校考期中)如图,直线,相交于点,平分,平分,,垂足为,那么,请说明理由.【答案】见解析【分析】根据角平分线的定义得到,,根据垂直的定义得到,根据平行线的判定定理即可得到结论.【详解】证明:∵平分,∴,∵平分,∴,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的定义,平行线的判定,熟练掌握平行线的判定是解题的关键.16.(2023春·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.(1)求的度数;(2)试说明的理由.【答案】(1)的度数为(2)见解析【分析】(1)根据角平分线的定义推出,再根据对顶角性质求解即可;(2)结合等量代换得出,根据“内错角相等,两直线平行”即可得解.【详解】(1)解:∵,分别平分和,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴;(2)解:,,∴,∴.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义,余角的性质,熟记平行线的判定与性质是解题的关键.17.(2023春·七年级课时练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关求证:.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∴______FC平分∠BFG∴______∴∠EBF=______∴(【答案】对顶角相等;∠∴∠FC平分∠BFG∴∠∴∠EBF=∠∴(内错角相等,两直线平行)故答案为:对顶角相等;∠统考中考真题)如图,直线,且直线定直线的是(A.B...【答案】C、当时,;故、当时,;故B不符合题意;、当时,;故C、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.2.(2022·吉林·统考中考真题)如图,如果,那么,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.3.(2022·浙江台州·统考中考真题)如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A.B.C.D.【答案】C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.4.(2020·浙江金华·统考中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.5.(2020·湖南郴州·统考中考真题)如图,直线被直线所截,下列条件能判定的是()A.B.C.D.【答案】D【分析】直接利用平行线的判定方法进而分析得出答案.【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;D、当∠1=∠2时,a∥b,故此选项符合题意;故选:D【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.6.(2020·浙江衢州·统考中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.7.(2021·甘肃兰州·统考中考真题)将一副三角板如图摆放,则______∥______,理由是______.【答案】内错角相等,两直线平行【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.8.(2021·广西桂林·统考中考真题)如图,直线a,b被直线c所截,当∠1 ___∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=.【分析】由图形可知∠1 与∠2是同位角,利用直线平行判定定理可以确定∠1 =∠2,可判断a//b.【详解】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.9.(2020·湖北咸宁·中考真题)如图,请填写一个条件,使结论成立:∵__________,∴.【答案】∠1=∠4(答案不唯一)【分析】根据平行线的判定添加条件即可.【详解】解:如图,若∠1=∠4,则a∥b,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答.。

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

5.2.2平行线的判定关键问答①由平行线的定义来判定平行线,在什么地方不便操作?②平行线的判定方法有哪些?1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()图5-2-10A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.如果两条直线都和第三条直线平行,那么这两条直线平行2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()图5-2-11A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()图5-2-12A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交命题点1同位角相等,两直线平行[热度:94%]4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()图5-2-13A.15°B.30°C.45°D.60°5.③已知∠1=∠2,下列能判定AB∥CD的是()图5-2-14方法点拨③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?图5-2-15命题点2内错角相等,两直线平行[热度:94%]8.④如图5-2-16,已知∠1=∠2,那么()图5-2-16A.AB∥CD,根据内错角相等,两直线平行B.AD∥BC,根据内错角相等,两直线平行C.AB∥CD,根据同位角相等,两直线平行D.AD∥BC,根据同位角相等,两直线平行解题突破④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.图5-2-17方法点拨⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?图5-2-1811.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.图5-2-19命题点3同旁内角互补,两直线平行[热度:94%]12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()图5-2-20A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?图5-2-21方法点拨⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.命题点4平行线判定方法的选用[热度:96%]14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?图5-2-2215.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?图5-2-23方法点拨⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.典题讲评与答案详析1.A 2.A 3.C4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.当直线b与直线c平行时,∵∠2=45°,∴∠1的邻补角为45°,∴可将直线b绕点A逆时针旋转15°.故选A.5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:∵PE⊥MN,QF⊥MN(已知),∴∠MEP=∠MFQ=90°(垂直的定义).又∵∠1=∠2(已知),∴∠MEP-∠1=∠MFQ-∠2(等式的性质),即∠MEB=∠MFD,∴AB∥CD(同位角相等,两直线平行).8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.9.5710.解:BE∥CF.理由如下:因为AB⊥BC,DC⊥BC,所以∠ABC=∠BCD=90°.又因为∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,所以BE∥CF(内错角相等,两直线平行).11.解:∠4应为100°.理由如下:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).∵∠4=∠3=100°,∴EF∥CD(内错角相等,两直线平行),∴AB∥EF(平行于同一直线的两条直线平行).12.A[解析]AE平分∠BAC,CE平分∠ACD,选项A中,由∠1=∠2,可得∠BAC=∠ACD,而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.13.解:CD∥EF.理由如下:∵∠ABD=90°,∠BDC=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).又∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).14.解:BE∥DF.理由如下:∵AB⊥BC,∴∠ABC=90°,即∠3+∠EBC=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠EBC,∴BE∥DF.15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).又∵∠AED=90°,∴∠DEM=∠EDC=55°,∴CD∥EM(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两直线平行).【关键问答】①要确定同一平面内两直线不相交,比较困难,因此不便操作.②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。

人教版数学七年级下学期平行线及其判定 同步练习试题 含解析

人教版数学七年级下学期平行线及其判定 同步练习试题  含解析

5.2 平行线及其判定一.选择题(共12小题)1.直线a、b被c、d所截.若∠1=80°,∠2=100°,下列结论不正确的是()A.a∥b B.∠3+∠4=180°C.∠3=∠4 D.∠5=80°2.如图,能判定直线a∥b的条件是()A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠4 3.如图,直线a和b被直线c所截,下列条件中不能判断a∥b的是()A.∠1=∠3 B.∠2=∠5 C.∠2+∠4=180°D.∠2+∠3=180°4.如图,下列四个条件中,能判断DE∥AC的是()A.∠3=∠4 B.∠1=∠2C.∠EDC+∠EFC=180°D.∠ACD=∠AFE5.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠B=∠DCE B.∠1=∠2C.∠3=∠4 D.∠D+∠DAB=180°6.如图,已知∠2=110°,要使a∥b,则须具备另一个条件()A.∠3=70°B.∠3=110°C.∠4=70°D.∠1=70°7.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角8.如图所示,下列推理正确的是()A.因为∠1=∠2,所以AB∥CDB.因为∠2+∠4=180°,所以AB∥CDC.因为∠3=∠4,所以AB∥CDD.因为∠1+∠2=180°,所以AB∥CD9.如图,直线l1、l2被直线l3所截,下列选项中哪个不能得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°10.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.11.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠C=∠CBE D.∠C+∠ABC=180°12.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角必相等B.如果两条直线被第三条直线所截,那么同位角的角平分线必平行C.如果同旁内角互补,那么它们的角平分线必互相垂直D.如果两角的两边分别平行,那么这两个角必相等二.填空题(共6小题)13.如图,若要AB∥CD,需增加条件.(填一个即可)14.如图,要使AB∥CD,只需要添加一个条件,这个条件是(填一个你认为正确的条件即可).15.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.16.如图,如果c∥d,那么需要哪些角相等,请任写一组.17.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.18.若直线a∥b,b∥c,则,其理由是.三.解答题(共7小题)19.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?20.如图,已知∠1+∠2=180°,∠B=∠3.求证:AB∥CD.21.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.22.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.23.如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.24.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.参考答案与试题解析一.选择题(共12小题)1.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b,∴∠3=∠4,∠5=∠1=80°,而∠3+∠4=180°不成立,故选:B.2.【解答】解:A.由∠2+∠4=180°,不能判定直线a∥b;B.由∠3=∠4,不能判定直线a∥b;C.由∠1+∠4=90°,不能判定直线a∥b;D.由∠1=∠4,能判定直线a∥b;故选:D.3.【解答】解:A、∠1=∠3可以判定a,b平行,故本选项错误;B、∠2=∠5,可以判定a,b平行,故本选项错误;C、∠2+∠4=180°,不能判断直线a、b平行,故本选项正确;D、∠2+∠3=180°,可以判定a,b平行,故本选项错误.故选:C.4.【解答】解:A、∵∠3=∠4,∴DE∥AC,正确;B、∵∠1=∠2,∴EF∥BC,错误;C、∵∠EDC+∠EFC=180°,不能得出平行线的平行,错误;D、∵∠ACD=∠AFE,∴EF∥BC,错误;故选:A.5.【解答】解:若∠B=∠DCE,则AB∥CD,故A选项不合题意;若∠1=∠2,则AB∥CD,故B选项不合题意;若∠3=∠4,则AD∥BC,故C选项符合题意;若∠D+∠DAB=180°,则AB∥CD,故D选项不合题意;故选:C.6.【解答】解:当∠3=70°,∠2=110°时,∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行),故选:A.7.【解答】解:A、如果两个角相等,那么这两个角不一定是对顶角,还要看这两个角的位置关系,不正确;B、两直线平行,内错角相等,不正确;C、过直线外一点有且只有一条直线与已知直线平行,正确;D、一个角的补角可能是直角,也可能是锐角或钝角,不正确;故选:C.8.【解答】解:A、错误.推不出AB∥CD.B、错误.应该推出EF∥GH.C、错误.应该推出EF∥GH.D、正确.同旁内角互补两直线平行.故选:D.9.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项不合题意;B、∵∠2=∠3,∴l1∥l2,故本选项不合题意;C、∠3=∠5不能判定l1∥l2,故本选项符合题意;D、∵∠3+∠4=180°,∴l1∥l2,故本选项不合题意.故选:C.10.【解答】解:A、根据∠1=∠2能推出AB∥CD,故本选项符合题意;B、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;C、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;D、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;故选:A.11.【解答】解:由∠2=∠4,可得AD∥CB;由∠1=∠3或∠C=∠CBE或∠C+∠ABC=180°,可得AB∥DC;故选:B.12.【解答】解:A、两条被截直线平行时,内错角相等,故本选项错误;B、如果两条相互平行直线被第三条直线所截,那么同位角的角平分线必平行,故本选项错误;C、如果同旁内角互补,那么这个角的两条边相互平行,则它们的角平分线必互相垂直,故本选项正确;D、如果两角的两边分别平行,那么这两个角相等或互补,故本选项错误;故选:C.二.填空题(共6小题)13.【解答】解:∵∠1=∠C,∴AB∥CD(同位角相等,两直线平行),故答案为:∥∠1=∠C.14.【解答】解:由∠1=∠2或∠A=∠DCE或∠A+∠ACD=180°或∠D+∠ABD=180°,可得AB∥CD,故答案为:∠1=∠2.(答案不唯一)15.【解答】解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.16.【解答】解:∠4=∠6,则c∥d.故答案是:∠4=∠6.17.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.18.【解答】解:∵a∥b,b∥c,∴a∥c(平行于同一直线的两条直线互相平行).故答案为:a∥c;平行于同一直线的两条直线互相平行.三.解答题(共7小题)19.【解答】解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.20.【解答】证明:∵∠1+∠2=180°,∠2+∠AFE=180°,∴∠1=∠AFE,∴BC∥DE,∴∠AED=∠B.又∵∠B=∠3,∴∠AED=∠3,∴AB∥CD.21.【解答】证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.22.【解答】解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.23.【解答】证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).24.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC=∠5,∴AD∥BE.25.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.。

七年级下《5.2平行线及其判定》专项测试题(人教版3份含答案)

七年级下《5.2平行线及其判定》专项测试题(人教版3份含答案)

七年级下《5.2平行线及其判定》专项测试题(人教版3份含答案) 七年级数学人教版下册5.2平行线及其判定专项测试题(二) 一、单项选择题(本大题共有15小题,每小题3分,共45分) 1、如图,下列推理错误的是( ) A. , B. , C. , D. ,【答案】C 【解析】解:, (内错角相等,两直线平行),正确;, (同位角相等,两直线平行),正确;,,错误,与既不是同位角也不是内错角,不能推出;, (内错角相等,两直线平行).故答案为:, . 2、如图,在下列所给条件中,不能判断的是(). A. B. C. D. 【答案】C 【解析】解:,能判定,,,能判定,,,不能判定,,,能判定,故答案为:. 3、如图,下列条件不能判断的是(). A.B. C. D. 【答案】B 【解析】解:,,同位角相等,两直线平行,所以正确,,这两个角是对顶角,所以错误,,,内错角相等,两直线平行,所以正确,,,同旁内角互补,两直线平行,所以正确,故答案为:. 4、如图,已知两直线、被第三条直线所截,,下列结论正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】B 【解析】解:,若,则,,故正确答案为:若,则. 5、下列说法中,正确的是() A. 在同一平面内,两条线段不平行,就一定相交 B. 过一点有且只有一条直线与已知直线平行 C. 已知直线、、,且,,那么与相交 D. 两点之间线段最短【答案】D 【解析】解:线段有长度,不平行也可以不相交.故“在同一平面内,两条线段不平行,就一定相交.”错误;如果点在直线上,则没有过点与已知直线平行的直线.故“过一点有且只有一条直线与已知直线平行.”错误;根据平行线的传递性,,,则与平行.故“已知直线、、,且,,那么与相交”错误;两点之间线段最短.正确.故答案为:两点之间线段最短. 6、如图,下列说法错误的是( ) A. 若,,则 B. 若,则 C. 若,则 D. 若,则【答案】C 【解析】解:根据平行线的判断进行判断:若,,则,利用平行公理,正确;若,则,利用了内错角相等,两直线平行,正确;,不能判断,故错误;若,则,利用同旁内角互补,两直线平行,正确. 7、下列说法,正确的有( ) ①在同一平面内,不相交的两条直线是平行线;②若,,则与不相交;③在同一平面内,两条不相交的射线是平行线;④一条直线的平行线有且只有一条. A. 个 B. 个 C. 个 D. 个【答案】B 【解析】解:在同一平面内,不相交的两条直线是平行线是正确的,在同一平面内的两条直线不相交即平行,故①正确;若,,则可知,即与不相交,故②正确;在同一平面内,两条不相交的射线是平行线是错误的,故③错误,射线不相交但射线所在的直线可能是相交的;一条直线的平行线有无数条.故④错误;①②正确,故正确的个数为个. 8、不相交的两条直线叫做平行线.() A. B. 【答案】B 【解析】解:平行线的定义是“在同一平面内,两条不相交的直线角做平行线”.本题中缺少“在同一平面内”这个条件,故是错误的. 9、下列说法中,正确的个数有( ) (1)在同一平面内不相交的两条线段必平行 (2)在同一平面内不相交的两条直线必平行 (3)在同一平面内不平行的两条线段必相交 (4)在同一平面内不平行的两条直线必相交 A. 个B. 个 C. 个 D. 个【答案】B 【解析】解:(1)在同一平面内线段不相交,但延长后不一定不相交,故错误; (2)同一平面内,直线只有平行或相交两种位置关系,所以同一平面内不相交的两条直线必平行,正确; (3)线段是有长度的,可能不平行也可能不相交,故错误;(4)同(2),故正确.所以有个正确. 10、下列说法正确的是( )A. 两条不相交的直线一定相互平行B. 在同一平面内,两条不平行的直线一定相交C. 在同一平面内,两条不相交的线段一定平行D. 在同一平面内,两条不相交的射线相互平行【答案】B 【解析】解:根据平行线的判断,两条直线相互平行,首先应该在同一平面内.若两条直线没有指明在同一平面内,即使没有交点,也不一定平行,故两条不相交的直线一定相互平行不正确;而同一平面内的两条直线,只有相交和平行两种位置关系,故在同一平面内,两条不平行的直线一定相交不正确;在同一平面内,两条线段或射线平行,是指它们所在的直线平行,即使这两条线段或射线不相交,也不能保证它们所在直线不相交,故在平面内,两条不相交的线段一定平行不正确;在同一平面内,两条不相交的射线互相平行也不正确. 11、下列说法正确的是(). A. 同角或等角的补角相等 B. 平行于同一条直线的两条直线垂直 C. 过一点有且只有一条直线与已知直线平行 D. 相等的角是对顶角【答案】A 【解析】解:若两个角的和为,则这两个角互为补角,由等量减等量可知“同角或等角的补角相等”的说法正确;在同一平面内,平行于同一直线的两条直线互相平行,所以“平行于同一直线的两条直线互相垂直”的说法错误;经过直线外一点有且只有一条直线与已知直线平行,所以“过一点有且只有一条直线与已知直线平行”的说法错误;在一个等腰三角形内,三角形的两个底角相等,这两个角不是对顶角,所以“相等的角是对顶角”的说法错误. 故正确的说法为:同角或等角的补角相等. 12、下列命题中正确的有()①相等的角是对顶角;②若,,则;③同位角相等;④邻补角的平分线互相垂直. A. 个B. 个 C. 个 D. 个【答案】B 【解析】解:①相等的角是对顶角;根据对顶角相等,但相等的角不一定是对顶角,故此选项错误;②若,,则;根据平行于同一直线的两条直线平行,故此选项正确;③同位角相等;根据两直线平行,同位角相等,故此选项错误,④邻补角的平分线互相垂直,根据角平分线的性质得出,邻补角的平分线互相垂直.故此选项正确. 13、下列说法不正确的是() A. 过任意一点可作已知直线的一条平行线 B. 同一平面内两条不相交的直线是平行线 C. 在同一平面内,过直线外一点只能画一条直线与已知直线垂直 D. 平行于同一直线的两直线平行【答案】A 【解析】解:若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合.“过任意一点可作已知直线的一条平行线”是不正确的. 14、下列说法正确的是() A. 不相交的两条线段是平行线 B. 不相交的两条直线是平行线 C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线【答案】D 【解析】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线. 15、在同一平面内,不重合的两条直线的位置关系是() A. 平行 B. 相交 C. 平行或相交 D. 平行、相交或垂直【答案】C 【解析】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.二、填空题(本大题共有5小题,每小题5分,共25分) 16、如图,给出下列推理过程,要求写出理由:已知于点,于点 , ,那么吗?说明理由.证明:,(),(), 即,,又,()=()(),().【答案】已知,垂直的定义,,,等角的余角相等,内错角相等,两直线平行【解析】证明:,(已知),(垂直的定义), 即,,又,(等角的余角相等),(内错角相等,两直线平行),故答案为:已知,垂直的定义,,,等角的余角相等,内错角相等,两直线平行. 17、在同一平面内的两条直线、 ,分别根据下列情形,写出、的位置关系: (1) 如果它们都没有公共点,则(), (2)如果它们都平行于第三条直线,则(),(3)如果它们有且只有一个公共点,则(), (4)过平面内的同一点分别画它们的平行线,能画出两条,则(),若只能画出一条,则().【答案】;;与相交;与相交,【解析】解: (1) 如果它们都没有公共点,则, (2)如果它们都平行于第三条直线,则,(3)如果它们有且只有一个公共点,则与相交, (4)过平面内的同一点分别画它们的平行线,能画出两条,则与相交,若只能画出一条,则,故正确答案为;;与相交;与相交,. 18、已知直线、、、在同一平面内,且,直线与、都相交,直线与、都相交,则直线,的位置关系是_________.【答案】平行或相交【解析】解:直线,的位置关系是平行或相交.如图 19、如图,因为直线、相交于点,,所以不平行于( ) 【答案】经过直线外一点,有且只有一条直线与这条直线平行.【解析】解:经过直线外一点,有且只有一条直线与这条直线平行. 20、若,,则_____.【答案】【解析】解:直线和都与直线平行,根据平行公理得,直线.三、解答题(本大题共有3小题,每小题10分,共30分) 21、如图,已知,,直线与平行吗?为什么?【解析】解:,理由如下,,,, . 故答案为: . 22、如图所示,要想判断是否与平行,我们可以测量那些角?请你写出三种方案,并说明理由.【解析】解: (1)可以测量与,如果,那么根据同位角相等,两直线平行,得出与平行; (2)可以测量与,如果,那么根据内错角相等,两直线平行,得出与平行; (3)可以测量与,如果,那么根据同旁内角互补,两直线平行,得出与平行. 23、探究猜想: (1)平面内三条直线,,,都满足,,则_________. (2)平面内有四条直线,,,,,如果,,,那么吗?为什么? (3)平面内条直线,若,猜想这条直线的位置关系.【解析】解:(1)平面内三条直线,,,都满足,,则. (2)平面内有四条直线,,,,,如果,,,那么.因为,,所以.又因为,所以.因为与同一条直线都平行的两条直线相互平行. (3)平面内条直线,若,这条直线都相互平行.。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条2.如图,点E在AB的延长线上,下列条件中,能判定AB∥DC的是()A.∠A+∠ABC=180°B.∠ABD=∠CDBC.∠A=∠CBE D.∠ADB=∠CBD3.如图,已知∠A=∠BEF,那么()A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF4.如图,∠1=∠2,则下列结论正确的是()A.∠3=∠4B.AD∥BC C.AB=CD D.AB∥CD5.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°.其中能够得到AB∥CD的条件有()A.①②B.①③C.①④D.②④6.如图,在同一平面内,经过直线l外一点O有四条直线①②③④,借助直尺和三角板判断,与直线l平行的是()A.①B.②C.③D.④7.如图,工人师傅移动角尺在工件上画出直线CD∥EF,其中的道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.如图所示,已知∠1=65°,∠2=80°,∠3=35°,下列条件中,能得到AB∥CD的是()A.∠4=80°B.∠5=65°C.∠4=35°D.∠5=35°9.如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是()时能判定a∥b.A.35°B.45°C.125°D.145°10.如图,下列推理中,正确的是()A.因为∠1=∠3,所以AB∥CD B.因为∠1=∠3,所以AE∥CFC.因为∠2=∠4,所以AB∥CD D.因为∠2=∠4,所以AE∥CF二.填空题11.如图,由∠A+∠B=180°,可得:AD∥BC.理由是.12.如图,能判定DE∥BC的条件是(用图中的符号表示,填一个即可).13.将一副三角板如图摆放,则互相平行的两条线段是.14.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.15.经过直线外一点,有且只有直线与这条直线平行.16.如图,直线c与a、b相交,∠1=35°,∠2=80°,要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是.17.如图,点E在AB的延长线上,下列条件:①∠1=∠3;②∠2=∠4;③∠DAB=∠CBE;④∠D+∠BCD=180°;⑤∠DCB=∠CBE.其中能判断AD∥CB的是(填写正确的序号即可).18.在同一平面内,不重合的两条直线的位置关系是.19.如图,已知直线EF⊥MN垂足为F,且∠1=138°,则当∠2等于时,AB∥CD.20.如图,把三角尺的直角顶点放在直线b上.若∠1=40°,则当∠2=°时,a ∥b.三.解答题21.如图,已知AB⊥BC,∠1+∠2=90°,∠2=∠3.求证:BE∥DF.证明:∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°.∴∠1=∠,∴BE∥DF.理由是:.22.如图,E在四边形ABCD的边CD的延长线上,连接BE交AD于F,已知∠A=∠C,∠1+∠2=180°,求证:AB∥CD.23.如图,∠EAD=130°,∠B=50°,试说明EF∥BC.24.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.25.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.参考答案一.选择题1.解:由题意知,在长方体中,对任意一条棱,与它平行的棱共有3条,故选:C.2.解:A、当∠A+∠ABC=180°时,可得:AD∥BC,不合题意;B、当∠ABD=∠CDB时,可得:AB∥DC,符合题意;C、当∠A=∠CBE时,可得:AD∥BC,不符合题意;D、当∠ADB=∠CBD时,可得:AD∥BC,不合题意;故选:B.3.解:∵∠A=∠BEF,∴AD∥EF.故选:D.4.解:∵∠1=∠2,∴AB∥CD.故选:D.5.解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠D+∠BCD=180°,∴AD∥CB,故本小题错误.所以正确的有①②.故选:A.6.解:借助直尺和三角板,经过刻度尺平移测量,③符合题意,故选:C.7.解:∵∠CDB=∠FEB,∵CD∥EF(同位角相等,两直线平行),故选:A.8.解:∵∠3=35°,∠5=35°,∴∠3=∠5,∴AB∥CD(内错角相等,两直线平行),故选:D.9.解:如图,∵∠2=125°,∠2+∠3=180°,∴∠3=55°,∵∠1=55°,∴∠1=∠3,∴a∥b,故选:C.10.解:A.由∠1=∠3,不能得到AB∥CD,故本选项错误;B.由∠1=∠3,不能得到AE∥CF,故本选项错误;C.由∠2=∠4,不能得到AB∥CD,故本选项错误;D.由∠2=∠4,可以得到AE∥CF,故本选项正确;故选:D.二.填空题11.解:由∠A+∠B=180°,可得:AD∥BC,理由是同旁内角互补,两直线平行;故答案为:同旁内角互补,两直线平行.12.解:添加一个条件:∠1=∠C(答案不唯一),理由如下:∵∠1=∠C,∴DE∥BC(同位角相等,两直线平行),故答案为:∠1=∠C(答案不唯一).13.解:∵∠ACB=90°,∠DEF=90°,∴∠ACB=∠DEF,∴BC∥ED(内错角相等,两直线平行),故答案为:BC和ED.14.解:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:同旁内角互补,两直线平行.15.解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.16.解:如图,∵∠3=∠1=35°时,a∥b,∴要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是80°﹣35°=45°.故答案为:45°.17.解:①当∠1=∠3时,AB∥DC,不符合题意;②当∠2=∠4时,AD∥CB,符合题意;③当∠DAB=∠CBE时,AD∥BC,符合题意;④当∠D+∠BCD=180°时,AD∥BC,符合题意;⑤当∠DCB=∠CBE时,AB∥CD,不符合题意;故选:②③④.18.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.19.解:∵AB∥CD,∴∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.20.解:∵∠1=40°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2=∠3=50°,故答案为50.三.解答题21.证明:∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°,∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°,∴∠1=∠4,∴BE∥DF,理由是:同位角相等,两直线平行.故答案为:90;90;4;同位角相等,两直线平行.22.证明:∵∠1+∠2=180°,∴AD∥BC,∴∠3=∠C,∵∠A=∠C,∴∠A=∠3,∴AB∥CD.23.证明:∵∠EAD=∠F AB,∠EAD=130°,∴∠F AB=130°,∵∠B=50°,∴∠B+∠F AB=180°,∴EF∥BC(同旁内角互补,两直线平行).24.证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=180﹣(∠1+∠2)=90°=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.25.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.。

(新人教版)数学七年级下册:5.2.2《平行线的判定》例题及练习(含答案)

(新人教版)数学七年级下册:5.2.2《平行线的判定》例题及练习(含答案)

平行线的判定一、学习目标会用平行线的判定定理判定两直线平行。

1、会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。

2、能利用平行线判定的三个方法,进行较简单的综合运用和推理。

二、要点指津我们已经学习了四种证明两条直线平行的方法。

同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,如果两条直线都和第三条直线平行,那么这两条直线也平行。

这四种方法是解题中常用的,要根据题目的不同条件,灵活选择方法。

三、例题分析[例1]如图,直线a、b被直线c所截,∠1=∠2,判断a、b的位置关系,如何证明?解题思路:∠1和∠2不是同位角、不是内错角、不是同旁内角。

应借助对顶角,转化成如上两种角的关系,来证明a∥b。

解:∵∠1=∠2(已知),∠1=∠3(对顶角相等)∴∠2=∠3∴a∥b(同位角相等,两直线平行)[例2]我们不能直接利用定义来判断两直线是否平行,因此,我们寻找另外一些判断方法。

看模型,将木条a,c固定在一起,转动b木条,可以看到当b转动到不同的位置时,∠2的大小也随之变化,换句话说,当∠2从小变大时,直线b使从原来在右边与直线a相交,变到在左边与a相交,在这个过程中,存在一个与a不相交,即与a平行的位置,那么∠2多大时,a//b呢?如图所示提示:从上节画平行线的过程可以看出,画平行线的过程,实际上是过P点画∠DHG=∠BGF 的过程,而∠DHG和∠BGF正是直线AB,CD被EF截得的同位角,这就是说,如果同位角相等,那么两直线平行。

参考答案:公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简单说成:同位角相等,两直线平行。

说明:上述情境中的∠2的大小应与a与c所夹的角相等时,a//b。

即同位角相等,两直线平行。

[例3]两条直线被第三条直线所截,同时得到同位角,内错角,同旁内角。

我们已经知道,由同位角相等,可以判定两条直线平行,那么能不能利用内错角或同旁内角判定两条直线平行呢?提示:直线a,b被C所截,∠1与∠2是同位角,∠2与∠3是内错角,∠1与∠3是对顶角,如果∠3=∠2,由∠3=∠1可得到∠1=∠2,于是a//b。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》解答题专题训练(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》解答题专题训练(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》解答题专题训练(附答案)1.如图,已知∠C=∠1,∠1和∠D互余,∠2和∠D互余.求证:AB∥CD.2.根据如图,写出相应的几何语言:(1)判定方法1:∵=,∴AB∥CD.(2)判定方法2:∵=.∴AB∥CD.(3)判定方法3:∵+=180°,∴AB∥CD.3.如图,点E、F分别是AB、CD上的点,连接BD、AD、EC、BF,AD分别交CE、BF 于点G、H,若∠DHF=∠AGE,∠ABF=∠C,求证:AB∥CD.4.如图,BE平分∠ABC,D是BE上一点,∠CDE=150°,∠C=120°,求证:AB∥CD.5.如图,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1+2∠2=180°,求证:AB∥CD.6.如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.7.如图,∠1=40°,∠2=140°,∠C=∠D,求证:AC∥DF.8.如图,如果直线EF与AC交于点O,∠A=∠AOE,∠AOF=∠C,试判断AB与CD是否平行,并说明理由.9.如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.10.如图,已知∠A=∠AGE,∠D=∠DGC.求证:AB∥CD.11.如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.12.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.13.如图,AE平分∠BAC,∠CAE=∠CEA.求证:AB∥CD.14.如图所示,已知:∠A=114°,∠C=135°,∠1=66°,∠2=45°.求证:AD∥CF.15.如图,已知∠1=∠2,CD、EF分别是∠ACB、∠AED的平分线.求证:BC∥DE.16.如图,已知△ABC中,点D、E、F分别在线段BC、AB、AC上,且∠A=∠EDF,∠C=∠BDE.请说明AB∥DF的理由.17.在横线上填上适当的内容,完成下面的证明.已知,∠1与∠2互补,∠A=∠C,求证:AD∥BC.证明:∵∠1=∠DGH(),又∵∠1+∠2=180°(补角的定义),∴∠DGH+∠2=180°(等量代换),∴()(),∴∠A=∠EDG(),又∵∠A=∠C(已知),∴∠EDG=∠C(等量代换),∴AD∥BC().18.已知:如图∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.19.如图AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.求证:AB∥CE.请完成下列推理过程:证明:∵CD平分∠ECF,∴∠ECD=().∵∠ACB=∠FCD(),∴∠ECD=∠ACB()∵∠B=∠ACB,∴∠B=∠().∴AB∥CE().20.如图,在△ABC中,∠ADE=∠B,∠CDE=∠BFG.CD与GF平行吗?说说你的理由.参考答案1.证明:∵∠1和∠D互余,∠2和∠D互余,∴∠1+∠D=90°,∠2+∠D=90°,∴∠1=∠2,∵∠C=∠1,∴∠C=∠2,∴AB∥CD.2.解:(1)判定方法1:∵∠1=∠2,∴AB∥CD.故答案为:∠1;∠2;(2)判定方法2:∵∠2=∠3,∴AB∥CD.故答案为:∠2;∠3;(3)判定方法3:∵∠2+∠4=180°,∴AB∥CD.故答案为:∠2;∠4.3.证明:∵∠DHF=∠AHB,∠DHF=∠AGE,∴∠AHB=∠AGE,∴BH∥EC,∴∠ABF=∠AEG,∴∠ABF=∠C,∴∠AEG=∠C,∴AB∥CD.4.证明:∵∠CDE=150°,∠C=120°,∴∠CBD=∠CDE﹣∠C=150°﹣120°=30°.∵BE平分∠ABC,∴∠CBA=2∠CBD=2×30°=60°,∴∠CBA+∠C=60°+120°=180°,∴AB∥CD.5.证明:∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF.∠1+2∠2=180°,∠1+2∠AEG=180°,∴∠2=∠AEG,∴AB∥CD.6.证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).7.证明:∵∠1=40°,∠2=140°,∴∠1+∠2=180°,∴BD∥CE,∴∠D=∠CEF,∵∠C=∠D,∴∠CEF=∠C,∴AC∥DF.8.解:AB∥CD,理由如下:∵∠A=∠AOE,∴AB∥EF,∵∠AOF=∠C,∴CD∥EF,∴AB∥CD.9.证明:∵∠4是∠2,∠3所在三角形的外角,∴∠4=∠3+∠2=75°,又∵∠1=75°,∴∠1=∠4,∴a∥b.10.证明:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD.11.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴∠AOE=∠AOC=∠COE,∠2=∠BOE=∠DOE,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴∠AOC=∠3,∴∠2+∠3=90°,∵∠2:∠3=2:5,∴∠3=∠2,∴∠2+×∠2=90°,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.12.证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.13.证明:∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠BAE=∠CEA,∴AB∥CD.14.证明:∵∠A=114°,∠C=135°,∠1=66°,∠2=45°,∴∠A+∠1=114°+66°=180°,∠C+∠2=135°+45°=180°,∴AD∥BE,CD∥BE,∴AD∥CF.15.证明:∵∠1=∠2,∴EF∥CD,∴∠3=∠4,∵CD、EF分别是∠ACB、∠AED的平分线,∴∠ACB=2∠3,∠AED=2∠4,∴∠AED=∠ACB,∴BC∥DE.16.解:∵∠C=∠BDE,∴DE∥AC,∴∠A=∠BED,∵∠A=∠EDF,∴∠BED=∠EDF,∴AB∥DF.17.证明:∵∠1=∠DGH(对顶角相等),又∵∠1+∠2=180°(补角的定义),∴∠DGH+∠2=180°(等量代换),∴CD∥AB(同旁内角互补,两直线平行),∴∠A=∠EDG(两直线平行,同位角相等),又∵∠A=∠C(已知),∴∠EDG=∠C(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:对顶角相等,CD∥AB,同旁内角互补,两直线平行,两直线平行,同位角相等,内错角相等,两直线平行.18.证明:∵∠1=∠2=∠E,∴AD∥BE,∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC,∴∠DAC=∠3,∴∠3=∠BAE,∵∠3=∠4,∴∠4=∠BAE,∴AB∥CD.19.证明:∵CD平分∠ECF,∴∠ECD=∠DCF(角平分线定义).∵∠ACB=∠FCD(对顶角相等),∴∠ECD=∠ACB(等量代换).∵∠B=∠ACB,∴∠B=∠ECD(等量代换).∴AB∥CE(同位角相等,两直线平行).故答案为:∠DCF,角平分线定义,对顶角相等,等量代换,ECD,等量代换,同位角相等,两直线平行.20.解:CD与GF平行,理由如下:∵∠ADE=∠B,∴BC∥DE,∴∠CDE=∠BCD,∵∠CDE=∠BFG,∴∠BFG=∠BCD,∴CD∥GF.。

人教版数学七年级下册5.2.2《 平行线的判定》同步练习 (含答案)

人教版数学七年级下册5.2.2《 平行线的判定》同步练习 (含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版数学七下5.2.2《平行线的判定》同步练习一、选择题1.如图所示,已知∠1=∠2,要使∠3=∠4,则需( )A.∠1=∠3B.∠2=∠4C.∠1=∠4D.AB//CD2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是 ( )3.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c4.下列说法中正确的是()A.如果同一平面内的两条线段不相交,那么这两条线所在直线互相平行B.不相交的两条直线一定是平行线C.同一平面内两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,这两条直线一定是平行线5.下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.同角的补角相等D.相等的角是对顶角6.如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°7.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°8.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠29.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°10.如图,直线a、b被直线c所截,互为同旁内角的是()A.∠4和∠6B.∠2和∠7C.∠4和∠5D.∠4和∠611.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°12.如图,在△ABC中,D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的( )A.∠1=∠2B.∠2=∠AFDC.∠1=∠AFDD.∠1=∠DFE二、填空题13.如图,若∠1=∠2,则∥ ,依据是 .14.看图填理由:∵直线AB,CD相交于O,(已知)∴∠1与∠2是对顶角∴∠1=∠2(___________________)∵∠3+∠4=180°(已知)∠1+∠4=180°(__________________)∴∠1=∠3(__________________)∴CD//AB(__________________)15.长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,若使AB′∥BD,则折痕AF与AB的夹角∠BAF应为_______.16.如图,a∥b∥c,∠1=105°,∠2=140°,则∠α=________.17.如图,已知∠ADE=46°,DF平分∠ADE,∠1=23°.求证:DF∥BE.请你根据已知条件补充推理过程,并在相应括号内注明理由.证明:∵DF平分∠ADE(已知)∴ =∠ADE()又∵∠ADE=46°(已知),∴∠ =23°,而∠1=23°(已知).∴∥()18.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是.(填序号)能够得到AB∥CD的条件是.(填序号)三、解答题19.如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.20.如图,已知∠1=250,∠2=450, ∠3=300,∠4=100.求证:AB//CD.参考答案1.D1.B1.C1.D1.D1.答案为:D;1.C1.C1.A1.答案为:C.1.答案为:B.1.答案为:D.1. 答案为:AD,BC1. 答案为:对顶角相等;平角定义;同角的补角相等;同位角相等,两直线平行.1. 答案为:55°.1.答案为:65°;1.答案为:∠FDE;角平分线定义;∠FDE;DF;BE;内错角相等,两直线平行.1.答案为:①④,②③⑤.1.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.1.证明:如图.过点E作射线EM.使∠BEM=∠1=250,∴AB//EM(内错角相等,两直线平行).又∠2=450,∴∠FEM= ∠2-∠BE=200.过点F作射线FN,使∠EFN=200∴∠EFN=∠FEM.∴ EM//NF(内错角相等.两直线平行)∵AB//NR ∠3=300∴∠NFC=∠3-∠EFM=100.又∠4=100, ∠4=∠NFC.∴ CD//NF(内错角相等.两直线平行)∴AB//CD.一天,毕达哥拉斯应邀到朋友家做客。

七年级数学下册-平行线及其判定5.2.1平行线练习含解析新版新人教版 (2)

七年级数学下册-平行线及其判定5.2.1平行线练习含解析新版新人教版 (2)

5.2.1平行线分卷I一、选择题(共27小题,每小题分,共0分)1.已知直线a、b、c在同一平面内,则下列说法错误的是( )A.如果a∥b,b∥c,那么a∥cB.a⊥b,c⊥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交2.己知直线AB及AB外一点P,若过点P作一直线与AB平行,那么这样的直线( )A.有且只有一条B.有两条C.不存在D.无数条3.下列画图方法,一定可以画出的是( )A.过点P画线段CD,使线段CD与已知线段AB相交B.过点P画线段CD,使线段CD与已知射线AB相交C.过射线AB外一点P画直线CD,使CD∥ABD.过直线AB外一点P画射线CD,使AB与CD相交4.下列说法中,正确的是( )A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行5.下列语句:①不相交的两条直线叫平行线;②在同一平面内,两条直线的位置关系只有两种:相交和平行;③如果线段AB和线段CD不相交,那么直线AB和直线CD平行;④如果两条直线都和第三条直线平行,那么这两条直线平行;⑤过一点有且只有一条直线与已知直线平行.正确的个数是( )A. 1B. 2C. 3D. 46.过一点画已知直线的平行线( )A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条7.下为说法中正确的个数是( )①射线AB与射线BA是同一条射线;②两点确定一条直线;③对顶角相等;④不相交的两条直线叫做平行线;⑤过一点有只有一条直线与这条直线平行.A. 1B. 2C. 3D. 48.下列说法中正确的是( )A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离9.已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是( )A.相交B.平行C.垂直D.平行或相交10.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有( )A. 3个B. 2个C. 1个D. 0个11.下面推理正确的是( )A.∵a∥b,b∥c,∴c∥dB.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥cD.∵a∥b,c∥d,∴a∥c12.下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线平行.其中正确的有( )A. 1个B. 2个C. 3个D. 4个13.平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是( )A.只有①B.只有②C.①②都正确D.①②都不正确14.下列说法中,正确的有( )①一条直线的平行线只有一条:②过一点可以作一条直线与已知直线平行;③过一点作直线的平行线仅有一条或不存在;④过直线外一点有且只有一条直线与已知直线平行.A. 1个B. 2个C. 3个D. 4个15.如果l1∥l2,l2∥l3,l3∥l4,那么l1与l4的关系是( ) A.平行B.相交C.重合D.不能确定16.在同一平面内,两条不重合直线的位置关系可能是( ) A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交17.同一平面内,直线l与两条平行线a,b的位置关系是( )A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行18.在长方体ABCD-EFGH中,与面ABCD平行的棱共有( )A. 1条B. 2条C. 3条D. 4条19.下列叙述中,正确的是( )A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角20.若P,Q是直线AB外不重合的两点,则下列说法不正确的是( )A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定能与直线AB相交D.过点Q只能画出一条直线与直线AB平行21.在同一平面内有2014条直线a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此类推,那么a1与a2014的位置关系是( )A.垂直B.平行C.垂直或平行D.重合22.下列说法中,正确的个数有( )(1)在同一平面内不相交的两条线段必平行(2)在同一平面内不相交的两条直线必平行(3)在同一平面内不平行的两条线段必相交(4)在同一平面内不平行的两条直线必相交A. 1B. 2C. 3D. 423.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则这三条直线交点的个数为( )A. 0B. 1C. 2D. 324.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交25.a、b、c是同一平面内的任意三条直线,其交点有( )A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个26.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行27.下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有( )A. 1个B. 2个C. 3个D. 4个分卷II二、填空题(共10小题,每小题分,共0分)28.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)29.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF(________________________________________________________);(2)因为直线a∥b,b∥c,所以a∥c(________________________________).30.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是____________________________________.31.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.32.老师在黑板上画了一条直线AB和AB外一点P,想过点P作两条直线CD、EF,若CD∥AB,这时EF 与AB的位置关系是__________.33.如图,AB∥CD,过点E画EF∥AB,则EF与CD的位置关系是____________,理由是__________________.34.在同一平面内,两条直线有两种位置关系,它们是__________.35.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来__________________.36.在如图长方体ABCD-EFGH中与平面ADHE平行的棱是______________,与棱FB垂直的棱是______________________________.37.平面内四条直线共有三个交点,则这四条直线中最多有________ 条平行线.三、解答题(共12小题,每小题分,共0分)38.将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?39.如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?40.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2的位置关系.01141.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.42.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).43.读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直.44.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是______.(3)连接AC和BC,则三角形ABC的面积是______.45.作图题:(只保留作图痕迹),如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.46.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?47.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.48.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?49.在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.答案解析1.【答案】C【解析】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.2.【答案】A【解析】∵过直线外一点有且只有一条直线与已知直线平行,∴直线AB及AB外一点P,若过点P作一直线与AB平行,那么这样的直线有且只有一条.故选A.3.【答案】C【解析】A.过点P画线段CD,使线段CD与已知线段AB相交,线段不一定会与线段,故说法错误;B.过点P画线段CD,使线段CD与已知射线AB相交,线段不一定会与射线相交,故说法错误;C.过射线AB外一点P画直线CD,使CD∥AB,说法正确;D.过直线AB外一点P画射线CD,使AB与CD相交,这个点如果在射线的反向延长线上,就不能画平行线,故该选项错误;故选C.4.【答案】C【解析】A.平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B.过直线外一点,有且只有一条直线与已知直线平行.故错误;C.在同一平面内,平行于同一直线的两条直线平行.故正确;D.根据平行线的定义知是错误的.故选C.5.【答案】A【解析】①不相交的两条直线叫平行线,必须是在同一平面内,故错误;②在同一平面内,两条直线的位置关系只有两种:相交和平行,正确③如果线段AB和线段CD不相交,那么直线AB和直线CD平行,错误;④如果两条直线都和第三条直线平行,那么这两条直线平行,必须是在同一平面内,故错误;⑤在同一平面内,过一点有且只有一条直线与已知直线平行,故错误.故选A.6.【答案】D【解析】若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.7.【答案】B【解析】①射线AB与射线BA是同一条射线,错误;②两点确定一条直线,正确;③对顶角相等,正确;④在同一平面内,不相交的两条直线叫做平行线,故错误;⑤在同一平面内,过一点有只有一条直线与这条直线平行,故错误.故选B.8.【答案】C【解析】A.在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B.一条直线的垂线有无数条,故B错误;C.根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D.点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.9.【答案】B【解析】∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是a∥c.故选B.10.【答案】A【解析】①若a与c相交,则a与b不一定相交;故错误;②若a∥b,b∥c,那么a∥c;故正确;③在同一平面内,过一点有且只有一条直线与已知直线平行;故错误;④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误.故选A.11.【答案】C【解析】A.a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B.没有两条直线都和第三条直线平行,推不出平行,故错误;C.b、c都和a平行,可推出是b∥c,故正确;D.a、c与不同的直线平行,无法推出两者也平行.故选C.12.【答案】D【解析】(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选D.13.【答案】A【解析】①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选A.14.【答案】B【解析】①一条直线的平行线有无数条,错误;②过一点可以作一条直线与已知直线平行;错误;③过一点作直线的平行线仅有一条或不存在;正确;④符合平行线的性质;正确.故选B.15.【答案】D【解析】∵l1∥l2,l2∥l3,l3∥l4,∴l1∥l4或l1与l4重合.故选D.16.【答案】C【解析】平面内的直线有平行或相交两种位置关系.故选C.17.【答案】A【解析】A.由于同一平面内两直线的位置关系只有两种:平行和相交,当l与a平行,根据平行公理的推论可知l也与b平行;当l与a相交,则必然与b相交,此选项正确;B.根据A的分析可知l不可能与a平行,而与b相交,此选项错误;C.根据A的分析,l也可能与a、b都平行,此选项错误;D.若三条直线都平行,也就不存在同旁内角了,此选项错误.故选A.18.【答案】D【解析】∵面EFGH与面ABCD平行;∴EF、FG、GH、EH四条棱与面ABCD平行.故选D.19.【答案】C【解析】A.在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B.在同一个平面内,不相交的两条直线叫平行线,故B错误;C.两条直线的铁轨是平行的,故C正确;D.我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选C.20.【答案】C【解析】PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选C.21.【答案】A【解析】∵a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,∴a1⊥a2,a1⊥a3,a1∥a4,a1∥a5…以四次为一个循环,⊥,⊥,∥,∥规律:下标除以4余数为2或3垂直,下标除以4余数为0或1平行,2014÷4的余数为2,∴a1⊥a2014,所以直线a1与a2014的位置关系是a1⊥a2014.故选A.22.【答案】B【解析】(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选B.23.【答案】C【解析】根据题意,第三条直线与这两条平行直线各有一个交点.故选C.24.【答案】C【解析】根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选C.25.【答案】D【解析】由题意画出图形,如图所示:故选D.26.【答案】A【解析】A.根据平行线的定义,在同一平面内,不相交的两条线段必然平行,而线段即可不平行也可不相交,故本选项正确;B.根据平行线的定义,在同一平面内,不相交的两条直线必然平行,故本选项错误;C.根据平行线的定义,在同一平面内,不平行的两条线段延长后为射线或线段,必然相交,故本选项错误;D.根据平行线的定义,在同一平面内,两条直线没有公共点,那么两条直线平行,故本选项错误.故选A.27.【答案】D【解析】属于平行线的有①③④⑤.故选D.28.【答案】②、④【解析】①两点之间,直线距离最短,故①错误;②经过直线外一点,能作一条直线与这条直线平行,故②正确;③过直线外一点和已知直线垂直的直线有且只有一条,故③错误;④在平面内过一点有且只有一条直线垂直于已知直线,故④正确.故答案为②、④.29.【答案】经过直线外一点,有且只有一条直线与这条直线平行平行于同一直线的两条直线平行【解析】(1)因为直线AB、CD相交于点P,AB∥EF,所以CD不平于EF(经过直线外一点,有且只有一条直线与这条直线平行);故答案为经过直线外一点,有且只有一条直线与这条直线平行.(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).故答案为平行于同一直线的两条直线平行.30.【答案】经过直线外一点,有且只有一条直线与这条直线平行【解析】∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为经过直线外一点,有且只有一条直线与这条直线平行.31.【答案】a∥c a∥c【解析】(1)根据平行公理,平行于同一直线的两直线互相平行解答;∵a∥b,b∥c,∴a∥c;(2)根据在同一平面内,垂直于同一直线的两直线互相平行解答.∵a、b、c为平面上三条不同直线,a⊥b,b⊥c,∴a∥c.32.【答案】相交【解析】EF与AB的位置关系是相交,∵直线AB和AB外一点P,∴过点P作直线平行于AB,这样的直线有且只有一条,∵CD∥AB,∴EF与AB的位置关系是相交,故答案为:相交.33.【答案】EF∥CD平行于同一直线的两直线互相平行【解析】EF与CD的位置关系是EF∥CD,理由是平行于同一直线的两直线互相平行.故答案为EF∥CD;平行于同一直线的两直线互相平行.34.【答案】相交或平行【解析】在同一平面内,两条直线有两种位置关系,即相交或平行,故答案为:相交或平行.35.【答案】CD∥MN GH∥PN【解析】AB,竖直方向的长度为3个单位,水平方向的长度为1个单位,比值为3∶1;CD,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为2∶3;EF,竖直方向的长度为3个单位,水平方向的长度为2个单位,比值为3∶2;GH,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为2∶1;MN,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为2∶3;PN,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为2∶1;结合图形线段的倾斜方向相同,比值相同的线段是CD与MN,GH与PN,∴互相平行的线段是CD∥MN,GH∥PN.故答案为CD∥MN,GH∥PN.36.【答案】BF、BC、FG、CG AB、EF、FG、BC、CD、HG、EH、AD【解析】与平面ADHE平行的棱是BF、BC、FG、CG,与棱FB垂直的棱是AB、EF、FG、BC、CD、HG、EH、AD,故答案为:BF、BC、FG、CG;AB、EF、FG、BC、CD、HG、EH、AD.37.【答案】三【解析】若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是三.38.【答案】CD∥AB;理由:∵CD∥EF,EF∥AB,∴CD∥AB.【解析】根据平行公理的推论得出答案即可.39.【答案】∵OA∥CD,OB∥CD且OA、OB交于点O,根据过直线CD外一点O有且只有一条直线与已知直线CD平行,∴OA,OB共直线,∴A、O、B共直线.∴∠AOB是平角.【解析】根据平行公理:经过直线外一点有且只有一条直线与这条直线平行;可知AO、OB在一条直线上.所以∠AOB是平角.40.【答案】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是a1∥a4;(3)直线a1与a3的位置关系是a1⊥a3,直线a1与a4的位置关系是a1∥a4,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2 009,a1⊥a2 010,所以直线a1与a2 011的位置关系是:a1⊥a2 011.【解析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.41.【答案】(1)DC(2)DC(3)AB(4)延长线【解析】根据要求,直接进行作图就可以解决.(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.42.【答案】如下图.【解析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.43.【答案】如图所示:【解析】先画直线AB和点P,过P作AB的平行线CD,过P作直线EF⊥AB,即可得出答案.44.【答案】(1)如图(2)EF与GH的位置关系是垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S △ABC=×2×2=10.【解析】(1)过点C作5×1的矩形的对角线所在的直线,可得AB的垂线和平行线;(2)易得EF与GH的位置关系是垂直;(3)根据三角形的面积公式解答.45.【答案】(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)AE上D右边的点F,过B,F作直线,就是所求.【解析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)AE上D右边的个点F,过B,F的直线即为所求.46.【答案】(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【解析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.47.【答案】(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【解析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.48.【答案】(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【解析】根据平行公理及推论进行解答.49.【答案】不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.【解析】根据同一平面内的两条直线有相交、平行两种关系画出图形即可解答.。

人教版 七年级下 数学同步测试 5.2.2平行线的判定(含答案)

人教版 七年级下 数学同步测试 5.2.2平行线的判定(含答案)

人教版2019-2020学年七年级下学期5.2.2平行线的判定 (时间60分钟 总分100分)一、选择题(每小题5分,共30分)1.在同一平面内,两条不重合直线的位置关系可能是( )A 平行或相交 B.垂直或相交 C.垂直或平行 D.平行、垂直或相交 2.如图给出了过直线外一点作已知直线的平行线的方法,其依据是( )A 同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.两直线平行,同位角相等3.如图,点在的延长线上,下列条件中不能判定AB//CD 的是( )A.12∠=∠B.34∠=∠C.5B ∠=∠D.0180B BDC ∠+∠= 4.如图,12,340︒∠=∠∠=,则4∠等于( )A.0120B.0130C.0140D.0405.如图,,35ABCD D E ︒∠=∠=‖,则B ∠的度数是( )A.070 D.07560 B.065 C.06.如图,直线a//b直角三角形如图放置,DCB90︒∠+∠=,则2B︒∠=,若170∠的度数为()A.030 D.02540 C.020 B.0二、填空题(每小题5分,共20分)7.如图,两条直线a,b被第三条直线c所载,如果 a ||b,170︒∠=,则2=∠_____8.如图,AB CD‖,直线EF分别交AB,CD于E,F,EG平分∠BEF,若172︒∠=,则∠2=_____9.如图,AD平分∆ABC的外角∠EAC,且AD BC‖,若80∠=,则∠B=_____BAC︒10.如图,将一个宽度相等的低条按图所示的方法折叠一下,如果1=∠1400,那么∠______.2=三、解答题(共5题,共50分)11.如图所示,A、B之间是一座山,一条高速公路要通过A,B两点,在A地测得公路走向是北偏西111032",如果A,B两地同时开工,那么在B地按北偏东多少度施工,才能使公路在山腹中准确接通?为什么?12.如图,AB CD‖,EF分别交AB,CD于点G、H,BGH,DHF∠∠的平分线分别为GM,HN 求证:GM || HN13.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ||CD,交AB于点Q;(2)过点P作PR CD⊥,垂足为R:(3)若120∠=,猜想∠PQC是多少度?并说明理由DCB︒14.如图,AD BC⊥于D,EG BC⊥于G,1∠=∠,那么AD平分∠BAC吗试说明理由E15.已知如图12,34,56∠=∠∠=∠∠=∠求证:E D || F B答案1.【解析】A2.【解析】A 。

人教版七年级数学下册5.2平行线及其判定同步测试(有答案)

人教版七年级数学下册5.2平行线及其判定同步测试(有答案)

2019-2020 学年人教版七年级数学下册 5.2 平行线及其判断同步测试一.选择题(共10 小题)1.在同一平面内,不重合的两条直线的地点关系是()A .平行B .订交C.订交或垂直D.订交或平行2.以下图,点 E 在 AC 的延伸线上,以下条件中能判断AB∥ CD ()A .∠ 1=∠ 2B.∠ 3=∠ 4C.∠ D =∠ DCE D.∠ D +∠ ACD= 180°3.以下图形中,已知∠1=∠ 2,则可获得AB∥ CD 的是()A.B.C.D.4.如图,以下条件中,不可以判断直线a∥ b 的是()A .∠ 1=∠ 3B .∠ 2+∠ 4= 180°C.∠ 4=∠ 5D.∠ 2=∠ 3 5.以下说法正确的选项是()A.过直线上一点有且只有一条直线与已知直线平行B.不订交的两条直线叫做平行线C.直线外一点到该直线的全部线段中垂线最短D.过直线外一点有且只有一条直线与已知直线平行6.将一副三角板(∠A= 30°)按以下图方式摆放,使得AB∥ EF,则∠ 1 等于()A .45°B .30°C. 65°D. 75°7.如图:∠ 1= 50°,∠ 2=70°,∠ 3= 60°,以下条件能获得DE∥BC 的是()A .∠ B=60°B .∠ C=60°C.∠ B= 70°D.∠ C= 70°8.如图,以下条件:① ∠ 1=∠ 2;② ∠ 4=∠ 5;③ ∠ 2+∠ 5=180°;④ ∠ 1=∠ 3;⑤ ∠ 6=∠ 1+∠ 2;此中能判断直线l 1∥ l 2的有()A .②③④B .②③⑤C.②④⑤D.②④9.如图,已知∠1=40°,∠ B= 50°, AB⊥ AC,以下结论正确的选项是()A .AC⊥ CDB .AB∥CD C.∠ D= 50°D. AD ∥ BC10.如图,若∠3=∠ 4,则以下条件中,不可以判断AB∥ CD 的是()A .∠ 1=∠ 2B.∠ 1=∠ 3 且∠ 2=∠ 4C.∠ 1+∠ 3= 90°且∠ 2+∠ 4= 90°D.∠ 1+∠ 2= 90°二.填空题(共8 小题)11.如图,若要说明AC∥ DE,则能够增添的条件是.12.如图,假如∠B=∠ 1,则可得 DE ∥ BC,假如∠ B=∠ 2,那么可得.13.已知三条不一样的直线a、b 和 c, a∥ b, c∥ b,则 a 和 c 地点关系是.14.将一副三角板(∠ A= 30°)按以下图方式摆放,使得AB∥ EF,则∠ 1等于度.15.以下图,小迪将两个完整同样的三角板拼在一同,沿着三角板的斜边,画出线段AB,CD.则我们能够判断AB∥ CD 的依照是.16.如图,将木条a,b 与 c 钉在一同,∠1= 70°,∠ 2= 50°,要使木条 a 与 b 平行,木条 a 旋转的度数起码是.17.如图,给出以下条件:① ∠ 3=∠ 4;② ∠ 1=∠ 2;③ EF∥ CD,且∠ D=∠ 4;④ ∠ 3+∠ 5= 180°.此中,能推出AD∥ BC 的条件为.(填写序号)18.如图,若∠ 1= 70°,∠ 2=34°,∠3= 36°,则直线 a 与直线 b 的地点关系为.三.解答题(共7 小题)19.已知:如图,直线AB, CD 与直线 EF 分别订交于点M 和 N, MP 均分∠ AMF ,若 NQ 均分∠ END ,若∠ AME=∠ DNF ,请对 MP∥ NQ 说明原因.20.如图,已知∠1=∠ 2,∠ BAC=∠ DEC,试判断AD 与 FG 的地点关系,并说明原因.21.如图,已知∠A=∠ F,∠ C=∠ E,求证: BE∥CD .22.光芒在不一样介质中的流传速度是不一样的,所以当光芒从水中射向空气时,要发生折射由于折射率同样,所以在水中是平行的光芒,在空气中也是平行的,如图,∠1= 45°,∠2= 58°,求图中∠ 3 与∠ 4 的度数.23.如图,已知AB⊥ BC,若∠ 1+∠ 2= 90°,且∠ 2=∠ 3,则 BE 与 DF 平行吗?请说明理由.24.如图:已知∠1+∠ 2= 180°,∠ 3=∠ B,请问 AB 与 DE 能否平行,并说明原因.25.将一副三角板中的两块直角三角板的直角极点 C 按如图方式叠放在一同,友谊提示:∠ A= 60°,∠ D =30°,∠ E=∠ B= 45°.( 1)①若∠ DCE= 50°,则∠ ACB 的度数为.②若∠ ACB= 120°,则∠ DCE 的度数为.(2)由( 1)猜想∠ ACB 与∠ DCE 的数目关系,并说明原因;(3)当∠ ACE< 90°且点 E 在直线 AC 的上方时,当这两块角尺有一组边相互平行时,请直接写出∠ ACE 角度全部可能的值.参照答案与试题分析一.选择题(共10 小题)1.解:在同一平面内,不重合的两条直线的地点关系是订交或平行,订交包括垂直.应选: D.2.解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得BD ∥AC,故此选项错误;C、依据内错角相等,两直线平行可得BD ∥AC,故此选项错误;D 、依据同旁内角互补,两直线平行可得BD ∥ AC,故此选项错误;应选: A.3.解: A、∠ 1 和∠ 2 的是对顶角,不可以判断AB∥ CD ,此选项不正确;B、∠ 1 和∠ 2 的对顶角是内错角,又相等,所以AB∥ CD,此选项正确;C、∠ 1 和∠ 2 的是内错角,又相等,故AD∥ BC,不是 AB∥ CD,此选项错误;D 、∠ 1 和∠ 2 互为同旁内角,同旁内角相等两直线不平行,此选项错误.应选: B.4.解: A、∵∠ 1=∠ 3,∴ a∥ b,(内错角相等,两直线平行),故此选项错误;B、∵∠ 2+∠ 4= 180°,∴ a∥ b,(同旁内角互补,两直线平行),故此选项错误;C、∵∠ 4=∠ 5,∴ a∥ b,(同位角相等,两直线平行),故此选项错误;D 、∠ 2=∠ 3,没法判断直线a∥ b,故此选项正确.应选: D.5.解: A、过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;B、同一平面内,不订交的两条直线叫做平行线,故原题说法错误;C、直线外一点与该直线上全部点的连线中垂线最短,故原题说法错误;D、过直线外一点有且只有一条直线与已知直线平行,故原题说法正确;应选: D.6.解:∵△ DEF 中,∠ E= 45°,∴当∠ 1= 45°时,∠ 1=∠ E,∴EF∥ AB,应选: A.7.解:∵∠ 1=50°,∠ 2= 70°,∠ 3= 60°,∴欲使 DE ∥ BC,则∠ B=∠ 1=50°,或∠ C=∠ 3= 60°.应选: B.8.解:① ∵∠ 1=∠ 2 不可以获得l1∥ l2,故本条件不合题意;② ∵∠ 4=∠ 5,∴ l 1∥l 2,故本条件切合题意;③ ∵∠ 2+∠ 5= 180°不可以获得l1∥ l2,故本条件不合题意;④ ∵∠ 1=∠ 3,∴ l 1∥l 2,故本条件切合题意;⑤ ∵∠ 6=∠ 2+∠3=∠ 1+∠ 2,∴∠ 1=∠ 3,∴ l 1∥ l 2,故本条件切合题意.应选: C.9.解:∵ AB⊥ AC,∴∠ BAC= 90°,∴∠ ACB= 90°﹣∠ B= 40°,∵∠ 1= 40°,∴∠ 1=∠ ACB,∴AD∥ BC,应选: D.10.解: A、由∠ 1=∠ 2,∠ 3=∠ 4,能够推出∠ ABC =∠ DCB,推出 AB∥CD ,故本选项不切合题意.B、由∠ 1=∠ 3,∠ 2=∠ 4,能够推出∠ABC=∠ DCB ,推出 AB∥ CD ,故本选项不切合题意.C、由∠ 1+∠ 3= 90°,∠ 2+∠ 4=90°,能够推出∠ABC=∠ DCB,推出 AB∥ CD,故本选项不切合题意.D 、由∠ 1+∠ 2= 90°没法推出∠ ABC=∠ DCB ,故本选项切合题意.应选: D.二.填空题(共8 小题)11.解:由题可得,当∠A=∠ EDB 时, AC∥ DE,(同位角相等,两直线平行)当∠ C=∠ CDE 时, AC∥DE ,(内错角相等,两直线平行)故答案为:∠A=∠ EDB(答案不独一).12.解:∵∠ B=∠ 2,∴AB∥ EF .故答案为: AB∥ EF.13.解:∵ a∥ b, c∥ b,∴a∥ c,故答案为:平行.14.解:∵将一副三角板(∠A= 30°)按以下图方式摆放,使得AB∥ EF,∴∠ E=∠ EDB= 45°,∠ B= 60°,∴∠ 1= 45° +60°= 105°.故答案为: 105.15.解:由题意:∠BAD =∠ ADC =30°,∴AB∥CD (内错角相等两直线平行),故答案为内错角相等两直线平行.16.解:∵∠ AOC=∠ 2=50°时, OA∥ b,∴要使木条 a 与 b 平行,木条 a 旋转的度数起码是70°﹣ 50°= 20°.故答案是: 20°.17.解:① ∵∠ 3=∠ 4,∴ AD∥ BC;② ∵∠ 1=∠ 2,∴ AB ∥ CD;③ ∵ EF∥ CD,∴∠ D=∠ 3,∵∠ D=∠ 4,∴∠ 3=∠ 4,∴ AD ∥ BC ;④ ∵∠ 3+∠ 5= 180°,∠ 4+∠ 5= 180°,∴∠ 3=∠ 4,∴ AD ∥BC ,故答案为:①③④18.解:∵∠ 4=∠ 2+∠ 3,∠ 2= 34°,∠ 3=36°,∴∠ 4= 34+36 °= 70°,∵∠ 1= 70°,∴∠ 4=∠ 1,∴a∥ b.故答案为 a∥ b.三.解答题(共7 小题)19.证明:∵∠ AME =∠ DNF ,∠ AME +∠AMN =∠ DNF +∠ DNM = 180°,∴∠ AMN =∠ DNM ,又∵,,∴∠ PMN =∠ QNM ,∴MP ∥NQ.20.解: AD ∥ FG ,原因以下:∵∠ BAC=∠ DEC,∴AB∥ DE ,∴∠ 2=∠ BAD ,∵∠ 1=∠ 2,∴∠ 1=∠ BAD ,∴AD∥ FG.21.解:如图,∵∠A=∠ F ,∠ C=∠ E,又∵∠ A+∠ C+∠ AHC = 180°,∠ F+∠E+∠FGE = 180°,∴∠ AHC=∠ FGE,∴BE∥ CD .22.解:如图,∵AB∥ CD,∠ 2= 58°,∴∠ 5= 180°﹣ 58°= 122°,∵AC∥ BD,∴∠ 3=∠ 5= 122°,∵AE∥ BF ,∴∠ 1=∠ 6= 45°,∵EF∥ AB,∴∠ 4=∠ 6= 45°.23.解: BE∥ DF ,原因:∵AB⊥ BC,∴∠ ABC= 90°,即∠ 3+∠4= 90°.又∵∠ 1+∠ 2= 90°,且∠ 2=∠ 3,∴∠ 1=∠ 4(等角的余角相等),∴BE∥ DF .24.解:结论: AB∥DE .原因:∵∠ 1+∠ADC = 180°(平角的定义),又∵∠ 1+∠ 2= 180°(已知),∴∠ ADC=∠ 2(等量代换),∴ EF∥ DC (同位角相等两直线平行),∴∠ 3=∠ EDC(两直线平行,内错角相等),又∵∠ 3=∠ B(已知),∴∠ EDC=∠ B(等量代换),∴ AB∥ DE (同位角相等两直线平行).25.解:( 1)① ∵∠ DCE= 50°,∠ ACD = 90°∴∠ ACE= 40°∵∠ BCE= 90°∴∠ ACB= 90° +40°= 130°故答案为: 130°;② ∵∠ ACB = 120°,∠ ECB = 90°∴∠ ACE= 120°﹣ 90°= 30°∴∠ DCE= 90°﹣∠ ACE=90°﹣ 30°= 60°故答案为: 60°;(2)猜想:∠ ACB+∠ DCE= 180°原因以下:∵∠ ACE= 90°﹣∠ DCE又∵∠ ACB=∠ ACE+90 °∴∠ ACB= 90°﹣∠ DCE +90°= 180°﹣∠ DCE 即∠ ACB+∠ DCE =180°;(3) 30°、 45°.原因:当CB∥ AD 时,∠ ACE= 30°;当 EB∥ AC 时,∠ ACE= 45°.。

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定一、单选题1.如图,下列条件能判定的是()A.∠1=∠2B.∠2=∠4C.∠1=∠4D.∠1+∠3=180°2.如图,,要使//,则的大小是()A.B.C.D.3.如图,平分,平分,下列选项能判断∥的是()A.B.C.D.4.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=110°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是()A.∠BOE=55°B.∠DOF=35°C.∠BOE+∠AOF=90°D.∠AOF=35°5.如图1,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°6.下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个7.下列尺规作图不能得到平行线的是()A.B.C.D.8.一副直角三角尺叠放如图1所示,现将含角的三角尺ADE固定不动,将含角的三角尺ABC绕顶点顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则)其他所有可能符合条件的度数为()A.和B.和C.和D.以上都有可能二、填空题9.如图,木工师傅经常用一把直角尺画出两条平行的直线与.这样做运用的数学知识是.10.如图,要使AD//BF,则需要添加的条件是(写一个即可).11.如图,直线a与直线b、c分别相交于点A、B,当∠1=时,c∥b.12.如图,写出能判定AB∥CD的一对角的数量关系:.13.如图,添加一个你认为合适的条件使.三、综合题14.如图,射线平外,且.求证:.15.如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∥CD.16.如图1,直线与交于点,锐角,.(1)求证:;(2)若为直线上一点(不与点重合),的平分线与的平分线所在的直线交于点.①如图2,,为射线上一点,请补全图形并求的度数;②的度数为▲(用含的式子表示).17.已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图(1),求证:OB∥AC.(2)如图(2),若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,试求∠EOC 的度数.(3)在图(2)的条件下,若平行移动AC,如图(3),那么∠OCB∶∠OFB的值是否会发生变化?若变化,试说明理由;若不变,求出这个比值.18.三角板是学习数学的重要工具,将一副三角板的直角顶点C按如图所示的方式叠放在一起,当时,且点E在直线AC的上方时,解决下列问题∶(友情提示∶∠A=60°,∠D=30°,∠B=∠E=45°)(1)①若∠DCE=45°,求∠ACB;②若∠ACB=140°,求∠DCE;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出∠ACE的所有可能的值(不必说明理由);若不存在,请说明理由.答案解析部分1.【答案】A【解析】【解答】解:由∠1=∠2可得a∥b,故A符合题意;由∠2=∠4可得c∥d,故B不符合题意;∠1与∠4不是三线八角,故C不符合题意;由∠1+∠3=180°可得c∥d,故D不符合题意;故答案为:A.【分析】根据平行线的判定定理逐一判断即可.2.【答案】C【解析】【解答】当,则,故答案为:C.【分析】根据平行线的判定定理:同位角相等两直线平行,即可得出答案.3.【答案】D【解析】【解答】解:平分,.平分,,,当时,,同旁内角互补,两直线平行.故答案为:D.【分析】先根据角平分线的定义得出,,再根据平行线的判定定理得出当时,,从而得出结论。

人教版七年级数学下册 5.2.2 平行线的判定 课后练习

人教版七年级数学下册   5.2.2 平行线的判定 课后练习

人教版七年级数学下册 第五章 相交线与平行线 5.2.2 平行线的判定 课后练习一、选择题1.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒2.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°3.如图,给出下列条件:①∠1=∠2:①∠3=∠4:①AB ∥CE ,且∠ADC =∠B :①AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①①B .①①C .①①D .①①①4.如图所示①下列条件能判断a ①b 的有( ①A .①1+①2①180°B .①2①①4C .①2+①3①180°D .①1①①35.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180°6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.如图,下列说法错误的是( )A .若a∥b,b∥c,则a∥cB .若∠1=∠2,则a∥cC .若∠3=∠2,则b∥cD .若∠3+∠5=180°,则a∥c 8.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACE D .∠DAC =∠BCA9.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③10.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.如图,不添加辅助线,请写出一个能判定DE ①BC 的条件___________.12.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)13.如图,添加一个你认为合适的条件______使//AD BC .14.已知:如图AB⊥BC ,BC⊥CD 且⊥1=⊥2,试说明:BE⊥CF .解:⊥AB⊥BC ,BC⊥CD (已知)⊥ = =90°( )⊥⊥1=⊥2(已知)⊥ = (等式性质)⊥BE⊥CF ( )15.如图,下列能判定//AB CD 的条件有_______个.①180B BAD ∠+∠=°;②12∠=∠;③34∠=∠;④5BAD ∠=∠.三、解答题16.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.17.综合与探究问题情境:如图,已知OC 平分AOB ∠,CD OA ⊥于点D ,E 为DC 延长线上一点,EF OB ⊥于点F ,EG 平分DEF ∠交OB 于点G ,180DEF AOB ∠+∠=︒.问题发现:(1)如图1,当90AOB ∠=︒时,12∠+∠=____________°;(2)如图2,当AOB ∠为锐角时,1∠与2∠有什么数量关系,请说明理由;拓展探究(3)在(2)的条件下,已知直角三角形中两个锐角的和是90°,试探究OC 和GE 的位置关系,并证明结论; (4)如图3,当AOB ∠为锐角时,若点E 为线段DC 上一点,EF OB ⊥于点F ,EH 平分DEF ∠交OA 于点H ,180DEF AOB ∠+∠=︒.请写出一个你发现的正确结论.18.如图,已知∠ABC=180°-∠A ,BD ⊥CD 于D ,EF ⊥CD 于E .(1)求证:AD ∥BC ;(2)若∠ADB=36°,求∠EFC 的度数.19.如图,AB ∥CD ,∠B =70°,∠BCE =20°,∠CEF =130°,请判断AB 与EF 的位置关系,并说明理由.20.如图,在ABC 中,D 是BC 边上的一点,45B ∠=︒,30BAD ∠=︒,将ABD △沿AD 折叠得到AED ,AE 与BC 交于点F .(1)求AFC ∠和EDF ∠的度数;(2)若32E C ∠∠=::,问:DE //AC 吗,请说明理由. 21.如图,已知∠A =70°,O 是AB 上一点,直线OD 与AB 的夹角∠BOD =82°,要使OD ∥AC ,直线OD 绕点O 按逆时针方向至少旋转多少度?22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 相交于点H ,∠C =∠EFG ,∠BFG =∠AEM ,求证:AB ∥CD .(完成下列填空)证明:∵∠BFG =∠AEM (已知)且∠AEM =∠BEC ( )∴∠BEC =∠BFG (等量代换)∴MC ∥ ( )∴∠C =∠FGD ( )∵∠C =∠EFG (已知)∴∠ =∠EFG ,(等量代换)∴AB ∥CD ( )23.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)20,过点C作CB⊥x轴于点B.(1)求A、C两点坐标;(2)若过点B作BD∥AC交y轴于点D,且AE、DE分别平分∠CAB、∠ODB,如图2,求∠AED的度数.【参考答案】1.D 2.B 3.D 4.B 5.B 6.B 7.C 8.C 9.C 10.C∠=∠11.DAB B12.①①①13.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)14.①AB①BC,BC①CD(已知)①①ABC=①DCB=90°(垂直的定义)①①1=①2(已知)①①EBC =①FCB (等式性质)①BE①CF(内错角相等,两直线平行)15.116.解:BC∥DE;理由如下:∠,因为BE平分ABC所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE =∠BED ,所以BC ∥DE .17.(1)∵CD OA ⊥,∴90AOB ∠=︒,∵180DEF AOB ∠+∠=︒,∴90DEF ∠=︒,∵OC 平分AOB ∠,EG 平分DEF ∠,∴∠1=12∠AOB=45︒,∠2=12∠DEF=45︒, ∴1290∠+∠=︒;故答案为:90;(2)1290∠+∠=︒.理由如下:∵OC ,EG 分别是AOB ∠,DEF ∠的平分线, ∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;(3)OC 和EG 的位置关系为OC ∥GE .证明:∵EF OB ⊥于点F ,∴90EFG ∠=︒.∴190EGF ∠+∠=︒.∵1290∠+∠=︒,∴2EGF ∠=∠,∴OC ∥GE ;(4)答案不唯一,例如1290∠+∠=︒.理由如下:∵OC ,EH 分别是AOB ∠,DEF ∠的平分线, ∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;18(1)证明:∵∠ABC=180°-∠A ,∴∠ABC+∠A=180°,∴AD ∥BC ;(2)∵AD ∥BC ,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD ⊥CD ,EF ⊥CD ,∴BD ∥EF ,∴∠DBC=∠EFC=36°19.AB ∥EF ,理由如下:∵AB ∥CD①∴∠B=∠BCD①∵∠B=70°①∴∠BCD=70°①∵∠BCE=20°①∴∠ECD=50°①∵CEF=130°①∴∠E+∠DCE=180°①∴EF∥CD①∴AB∥EF①20.解:(1)由折叠前后对应的角相等可知,∠BAD=∠DAF=30°,∴①BAF=①BAD+①DAF=30°+30°=60°,在①ABF中,由三角形内角和定理可知,①AFB=180°-①BAF-①B=180°-60°-45°=75°,∴①AFC=180°-①AFB=180°-75°=105°,在①ABD中,由三角形内角和定理可知,①ADB=180°-①BAD-①B=180°-30°-45°=105°,∴∠ADF=180°-①ADB=75°,由折叠前后对应的角相等可知,①ADE=①ADB=105°,∴①EDF=①ADE-①ADF=105°-75°=30°,故答案为:105°,30°;(2) DE//AC,理由如下:∵△ABD沿AD折叠得到△AED,∴∠B=∠E=45°,∵∠E:∠C=3:2,∴∠C=30°,∴∠C=∠EDF=30°,∴DE∥AC.21.解:解:∵OD'∥AC,∴∠BOD'=∠A=70°,∴∠DOD'=82°-70°=12°.故答案为:12°.22.证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC(对顶角相等)∴∠BEC=∠BFG(等量代换)∴MC∥GF(同位角相等,两直线平行)∴∠C=∠FGD(两直线平行,同位角相等)∵∠C=∠EFG(已知)∴∠FGD=∠EFG,(等量代换)∴AB∥CD(内错角相等,两直线平行).故答案是:对顶角相等;GF;同位角相等,两直线平行;FGD;内错角相等,两直线平行.23.(1)∵(a+2)20∴a+2=0,b﹣2=0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,2);(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠5,∠ODB=∠6,∴∠CAB+∠ODB=∠5+∠6=90°,过点E作EF∥AC,如图∵BD∥AC∴BD∥EF∥AC,∵AE、DE分别平分∠CAB、∠ODB,∴∠1=∠3=12∠CAB,∠2=∠4=12∠ODB,∴∠AED=∠1+∠2=12(∠CAB+∠ODB)=45°∴∠AED的度数为45°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学人教版下册5.2平行线及其判定专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,下列推理错误的是( )A. ,B. ,C. ,D. ,【答案】C【解析】解:,(内错角相等,两直线平行),正确;,(同位角相等,两直线平行),正确;,,错误,与既不是同位角也不是内错角,不能推出;,(内错角相等,两直线平行).故答案为:,.2、如图,在下列所给条件中,不能判断的是().A.B.C.D.【答案】C【解析】解:,能判定,,,能判定,,,不能判定,,,能判定,故答案为:.3、如图,下列条件不能判断的是().A.B.C.D.【答案】B【解析】解:,,同位角相等,两直线平行,所以正确,,这两个角是对顶角,所以错误,,,内错角相等,两直线平行,所以正确,,,同旁内角互补,两直线平行,所以正确,故答案为:.4、如图,已知两直线、被第三条直线所截,,下列结论正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】解:,若,则,,故正确答案为:若,则.5、下列说法中,正确的是()A. 在同一平面内,两条线段不平行,就一定相交B. 过一点有且只有一条直线与已知直线平行C. 已知直线、、,且,,那么与相交D. 两点之间线段最短【答案】D【解析】解:线段有长度,不平行也可以不相交.故“在同一平面内,两条线段不平行,就一定相交.”错误;如果点在直线上,则没有过点与已知直线平行的直线.故“过一点有且只有一条直线与已知直线平行.”错误;根据平行线的传递性,,,则与平行.故“已知直线、、,且,,那么与相交”错误;两点之间线段最短.正确.故答案为:两点之间线段最短.6、如图,下列说法错误的是( )A. 若,,则B. 若,则C. 若,则D. 若,则【答案】C【解析】解:根据平行线的判断进行判断:若,,则,利用平行公理,正确;若,则,利用了内错角相等,两直线平行,正确;,不能判断,故错误;若,则,利用同旁内角互补,两直线平行,正确.7、下列说法,正确的有( )①在同一平面内,不相交的两条直线是平行线;②若,,则与不相交;③在同一平面内,两条不相交的射线是平行线;④一条直线的平行线有且只有一条.A. 个B. 个C. 个D. 个【答案】B【解析】解:在同一平面内,不相交的两条直线是平行线是正确的,在同一平面内的两条直线不相交即平行,故①正确;若,,则可知,即与不相交,故②正确;在同一平面内,两条不相交的射线是平行线是错误的,故③错误,射线不相交但射线所在的直线可能是相交的;一条直线的平行线有无数条.故④错误;①②正确,故正确的个数为个.8、不相交的两条直线叫做平行线.()A.B.【答案】B【解析】解:平行线的定义是“在同一平面内,两条不相交的直线角做平行线”.本题中缺少“在同一平面内”这个条件,故是错误的.9、下列说法中,正确的个数有( )(1)在同一平面内不相交的两条线段必平行(2)在同一平面内不相交的两条直线必平行(3)在同一平面内不平行的两条线段必相交(4)在同一平面内不平行的两条直线必相交A. 个B. 个C. 个D. 个【答案】B【解析】解:(1)在同一平面内线段不相交,但延长后不一定不相交,故错误;(2)同一平面内,直线只有平行或相交两种位置关系,所以同一平面内不相交的两条直线必平行,正确;(3)线段是有长度的,可能不平行也可能不相交,故错误;(4)同(2),故正确.所以有个正确.10、下列说法正确的是( )A. 两条不相交的直线一定相互平行B. 在同一平面内,两条不平行的直线一定相交C. 在同一平面内,两条不相交的线段一定平行D. 在同一平面内,两条不相交的射线相互平行【答案】B【解析】解:根据平行线的判断,两条直线相互平行,首先应该在同一平面内.若两条直线没有指明在同一平面内,即使没有交点,也不一定平行,故两条不相交的直线一定相互平行不正确;而同一平面内的两条直线,只有相交和平行两种位置关系,故在同一平面内,两条不平行的直线一定相交不正确;在同一平面内,两条线段或射线平行,是指它们所在的直线平行,即使这两条线段或射线不相交,也不能保证它们所在直线不相交,故在平面内,两条不相交的线段一定平行不正确;在同一平面内,两条不相交的射线互相平行也不正确.11、下列说法正确的是().A. 同角或等角的补角相等B. 平行于同一条直线的两条直线垂直C. 过一点有且只有一条直线与已知直线平行D. 相等的角是对顶角【答案】A【解析】解:若两个角的和为,则这两个角互为补角,由等量减等量可知“同角或等角的补角相等”的说法正确;在同一平面内,平行于同一直线的两条直线互相平行,所以“平行于同一直线的两条直线互相垂直”的说法错误;经过直线外一点有且只有一条直线与已知直线平行,所以“过一点有且只有一条直线与已知直线平行”的说法错误;在一个等腰三角形内,三角形的两个底角相等,这两个角不是对顶角,所以“相等的角是对顶角”的说法错误.故正确的说法为:同角或等角的补角相等.12、下列命题中正确的有()①相等的角是对顶角;②若,,则;③同位角相等;④邻补角的平分线互相垂直.A. 个B. 个C. 个D. 个【答案】B【解析】解:①相等的角是对顶角;根据对顶角相等,但相等的角不一定是对顶角,故此选项错误;②若,,则;根据平行于同一直线的两条直线平行,故此选项正确;③同位角相等;根据两直线平行,同位角相等,故此选项错误,④邻补角的平分线互相垂直,根据角平分线的性质得出,邻补角的平分线互相垂直.故此选项正确.13、下列说法不正确的是()A. 过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过直线外一点只能画一条直线与已知直线垂直D. 平行于同一直线的两直线平行【答案】A【解析】解:若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合.“过任意一点可作已知直线的一条平行线”是不正确的.14、下列说法正确的是()A. 不相交的两条线段是平行线B. 不相交的两条直线是平行线C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线【答案】D【解析】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.15、在同一平面内,不重合的两条直线的位置关系是()A. 平行B. 相交C. 平行或相交D. 平行、相交或垂直【答案】C【解析】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,给出下列推理过程,要求写出理由:已知于点,于点,,那么吗?说明理由.证明:,(),(),即,,又,()=()(),().【答案】已知,垂直的定义,,,等角的余角相等,内错角相等,两直线平行【解析】证明:,(已知),(垂直的定义),即,,又,(等角的余角相等),(内错角相等,两直线平行),故答案为:已知,垂直的定义,,,等角的余角相等,内错角相等,两直线平行.17、在同一平面内的两条直线、,分别根据下列情形,写出、的位置关系:(1) 如果它们都没有公共点,则(),(2)如果它们都平行于第三条直线,则(),(3)如果它们有且只有一个公共点,则(),(4)过平面内的同一点分别画它们的平行线,能画出两条,则(),若只能画出一条,则().【答案】;;与相交;与相交,【解析】解:(1) 如果它们都没有公共点,则,(2)如果它们都平行于第三条直线,则,(3)如果它们有且只有一个公共点,则与相交,(4)过平面内的同一点分别画它们的平行线,能画出两条,则与相交,若只能画出一条,则,故正确答案为;;与相交;与相交,.18、已知直线、、、在同一平面内,且,直线与、都相交,直线与、都相交,则直线,的位置关系是_________.【答案】平行或相交【解析】解:直线,的位置关系是平行或相交.如图19、如图,因为直线、相交于点,,所以不平行于( )【答案】经过直线外一点,有且只有一条直线与这条直线平行.【解析】解:经过直线外一点,有且只有一条直线与这条直线平行.20、若,,则_____.【答案】【解析】解:直线和都与直线平行,根据平行公理得,直线.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,直线与平行吗?为什么?【解析】解:,理由如下,,,.,,.故答案为:.22、如图所示,要想判断是否与平行,我们可以测量那些角?请你写出三种方案,并说明理由.【解析】解:(1)可以测量与,如果,那么根据同位角相等,两直线平行,得出与平行;(2)可以测量与,如果,那么根据内错角相等,两直线平行,得出与平行;(3)可以测量与,如果,那么根据同旁内角互补,两直线平行,得出与平行.23、探究猜想:(1)平面内三条直线,,,都满足,,则_________.(2)平面内有四条直线,,,,,如果,,,那么吗?为什么?(3)平面内条直线,若,猜想这条直线的位置关系.【解析】解:(1)平面内三条直线,,,都满足,,则.(2)平面内有四条直线,,,,,如果,,,那么.因为,,所以.又因为,所以.因为与同一条直线都平行的两条直线相互平行.(3)平面内条直线,若,这条直线都相互平行.。

相关文档
最新文档