2016-2017全国中考二次函数与直角三角形压轴题

合集下载

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。

【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题

【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题

【中考压轴题专题突破】二次函数中的直角三角形存在性问题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).3.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.参考答案与试题解析1.【分析】(1)直线y=x+1与抛物线交于A 点,则点A(﹣1,0)、点E(0,1),可得出点B、C的坐标分别为:(3,0)、(0,3),用待定系数法求出二次函数解析即可求解;(2)求出CQ和AE的长,可得出CQ=AE,由两直线的解析式k相等可得出CQ 与AE平行;(3)联立直线y=x+1与抛物线的表达式,并解得x=﹣1或2.故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1),根据面积关系可求出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【解答】(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ ==,CQ的解析式为y=x+3,又∵AE ==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD 于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴===.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2,∴点P(2,3)或(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,同理可得n=2,解得(舍去),.故点P 为.综上可得,点P的坐标为(2,3)或(0,3)或.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),三角形面积,全等三角形的判定与性质,等腰直角三角形的判定与性质,坐标与图形的性质,正确进行分类是解题的关键.2.【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x =﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.3.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】(1)∵抛物线y=ax2+bx+3与x 轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M (1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S =EF•OB =(﹣m2+3m)×3=﹣(m ﹣)2+.当m =时,S最大=.此时,点E 的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n =﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n =.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(2)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图2,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【解答】(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c的函数值y相等,∴抛物线的对称轴为x ==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A (﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x ﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a =,解得,a =﹣,∴此抛物线的解析式为y =﹣(x+3)(x﹣1)=﹣x2﹣x +;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC =,∴AB=OA+OB=4,AC ==2,BC ==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC 边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t =,CH =,∴OH=OC﹣CH =﹣=,∴y P =,设直线AC的解析式为y=kx +,将点A(﹣3,0)代入y=kx +,得,k =,∴直线AC的解析式为y =x +,将y P =代入y =x +,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx +,将点B(1,0)代入y=kx +,得,k =﹣,∴直线BC的解析式为y =﹣x +,由(2)知△ABC为直角三角形,∠ACB =90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y =﹣x +中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y =﹣x+n,得,n=﹣3,∴直线AF的解析式为y =﹣x﹣3,在y =﹣x﹣3中,当x=﹣1时,y =﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).【点评】本题考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解题关键是注意分类讨论思想在解题过程中的运用.。

2017年中考数学二次函数压轴题(含答案)

2017年中考数学二次函数压轴题(含答案)

2017年中考数学二次函数压轴题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学二次函数压轴题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学二次函数压轴题(含答案)(word版可编辑修改)的全部内容。

2017年中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.考点:二次函数综合题..专题:压轴题;转化思想.分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB 上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定..专题:压轴题;存在型.分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM 的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM 计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.考点:二次函数综合题.。

初三数学压轴题二次函数与等腰三角形、直角三角形、平行四边形、最值专题

初三数学压轴题二次函数与等腰三角形、直角三角形、平行四边形、最值专题

二次函数与等腰三角形、直角三角形、平行四边形、最值专题1. 二次函数y= x2 2x 3图像如下,分别求:和最小,差最大(1)在对称轴上找一点P,使得PB+PC的和最小,求出P 点坐标.(2)在对称轴上找一点P,使得PB-PC的差最大,求出P 点坐标.讨论直角三角(3)连接AC,在对称轴上找一点P,使得ACP 为直角三角形,求出P坐标.(4)在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.讨论等腰三角(5)连接AC,在对称轴上找一点P,使得ACP 为等腰三角形,求出P坐标.yyyB O A xB O A xB O A xCCCDDD122.已知抛物线y=ax +bx+c 经过A( -1,0) 、B(3 ,0) 、C(0 ,3) 三点,直线l 是抛物线的对称轴.(1) 求抛物线的函数关系式;(2) 设点P是直线l 上的一个动点,当△PAC的周长最小时,求点P的坐标;(3) 在直线l 上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2. 已知:如图一次函数y=1x+1 的图象与x 轴交于点A,与y 轴交于点B;二次函数y=2 1 x22+bx+c 的图象与一次函数y=(1)求二次函数的解析式;1x+1 的图象交于B、C两点,与x 轴交于D、E两点且D点坐标为(1,0)2(2)求四边形BDEC的面积S;(3)在x 轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.yC 2BxA O D E22、(2013?连云港)如图,抛物线y=-x 2+mx+n与x 轴分别交于点A(4,0),B(-2 ,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P 的坐标;若不存在,请说明理由.4、(西宁)在平面直角坐标系中,现将一块等腰直角三角板A BC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0).如图所示, B 点在抛物线y=12 x2+2+12x-2 图象上,过点 B 作BD ⊥x 轴,垂足为D,且B 点横坐标为-3.(1)求证:△BDC ≌△COA;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.39、(潼南)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90 °,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值;(2)点 E 是直角三角形ABC 斜边AB 上一动点(点A、B 除外),过点 E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点 E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D 为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.2 bx c a6.如图,已知抛物线y ax ( 0)的顶点坐标为Q 2, 1 ,且与y 轴交于点 C 0,3 ,与x轴交于A、B 两点(点A在点 B 的右侧),点P 是该抛物线上一动点,从点C沿抛物线向点 A 运动(点P 与A不重合),过点P作PD∥y 轴,交AC于点D.(1) 求该抛物线的函数关系式;(2) 当△ADP是直角三角形时,求点P 的坐标;(3) 在问题(2) 的结论下,若点E在x轴上,点 F 在抛物线上,问是否存在以A、P、E、F 为顶点的平行四边形?若存在,求点 F 的坐标;若不存在,请说明理由.4。

2016-2017全国中考二次函数与直角三角形压轴题

2016-2017全国中考二次函数与直角三角形压轴题

4的图象与x轴交于A,B两点与y轴交于点C , O C的半径为.5, P为O C上一动点.(1 )点B,C的坐标分别为B( _____________ ),C( __________ );(2) 是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;⑶连接PB,若E为PB的中点,连接0E ,则0E的最大值= .\F7\\ J-------- 1 ------ V J5 1V J了72在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A (- 2, 0), B (2, 2),与y轴交于点C.(1 )求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ ACD的周长的最小值;(3) 在抛物线y=ax2+bx+2的对称轴上是否存在点ax2 bx c经过平行四边形ABCD的顶点A(0,3)、B( 1,0)、1.如图,已知二次函数巳使厶ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.3如图1,抛物线yD(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点 P •点P 为直线l 上方抛物线上一动点,设点 P 的横坐标为t .(1) 求抛物线的解析式; (2) 当t 何值时, PFE 的面积最大?并求最大值的立方根; (3) 是否存在点P 使 PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由•4.( 12分)如图1,点A 坐标为(2, 0),以OA 为边在第一象限内作等边△ OAB 点C 为 x 轴上一动点,且在点 A 右侧,连接BC,以BC 为边在第一象限内作等边△ BCD 连接AD 交(2)是否存在点P,使得△ ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在, 说明理由;(3) 过动点P 作PE 垂直y 轴 于点E ,交直线AC 于点D,过 点D 作x 轴的垂线.垂足为F , 连接EF ,当线段EF 的长度最 短时,求出点P 的坐标.6如图,抛物线y=- 1 x 2+ 2 x+2与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点.设点P 的坐标为(m, 0),过点P 作x 轴的垂线l 交抛物 线于点Q. (1) 求点A 点B,点C 的坐标;BC 于 E .(2) 求直线BD的解析式;⑶当点P在线段0B上运动时,直线l交BD于点M试探究m为何值时,四边形CQM是平行四边形;⑷在点P的运动过程中,是否存在点Q,使厶BDC是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由37如图,已知点A的坐标为(-2 , 0),直线y=- +3与x轴,y轴分别交于点B和点C,4连接AC顶点为D的抛物线y=ax2+bx+c过A, B, C三点.(1) 请直接写出B, C两点的坐标,抛物线的解析式及顶点D的坐标;(2) 设抛物线的对称轴DE交线段BC于点E, P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFF为平行四边形,求点P的坐标;⑶设点M是线段BC上的一动点,过点M作M M AB交AC于点N点.Q从点B出发,以每秒I个单位长度的速度沿线段BA向点A运动,运动时间为t(秒)•当t(秒)为何值时,存在?QM!为等腰直角三角形?8如图,抛物线y=ax 2+bx+c经过△ ABC的三个顶点,与y轴相交于(0, ^),点A坐标为(-1 , 2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE丄x轴,FG丄y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.3 )将(2 )中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t ,正方形的边EF与AC交于点M, DG所在的直线与AC交于点N,连接DM,是否存在这样的若存在,求t的值;若不存在请说明理由.9如图,抛物线y ax2 bx过A (4, 0), B( 1, 3)两点,点C B关于抛物线的对称轴对称,过点B作直线BH L x轴,交x轴于点H.(1) 求抛物线的表达式;(2) 直接写出点C的坐标,并求出厶ABC的面积;(3) 点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4) 若点M在直线BH上运动,点N在x轴上运动,当以点C M N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN勺面积.第26题图第26题备用图10如图,在平面直角坐标系中,点O为坐标原点,抛物线y ax2 bx 5经过点M( 1,3 )和N(3,5 ),与x轴交于A、B两点,与y轴交于C点。

【中考压轴必刷50题】专题1:二次函数与直角三角形

【中考压轴必刷50题】专题1:二次函数与直角三角形

二次函数与直角三角形分类标准:讨论直角的位置或者斜边的位置例如:请在抛物线上找一点p使得A、B、P三点构成直角三角形,则可分成以下几种情况(1)当为直角时,(2)当为直角时,(3)当为直角时,1 .已知,抛物线y=-x²+bx+c经过点A(-1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.【答案】(1);(2)存在,当的值最小时,点的坐标为;(3)点的坐标为、、或【解析】【分析】(1)由点、的坐标,利用待定系数法即可求出抛物线的解析式;(2)连接交抛物线对称轴于点,此时取最小值,利用二次函数图象上点的坐标特征可求出点的坐标,由点、的坐标利用待定系数法即可求出直线的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点的坐标;(3)设点的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于的一元二次方程或一元一次方程,解之可得出的值,进而即可得出点的坐标.【详解】解:(1)将、代入中,得:,解得:,抛物线的解析式为.(2)连接交抛物线对称轴于点,此时取最小值,如图1所示.当时,有,解得:,,点的坐标为.抛物线的解析式为,抛物线的对称轴为直线.设直线的解析式为,将、代入中,得:,解得:,直线的解析式为.当时,,当的值最小时,点的坐标为.(3)设点的坐标为,则,,.分三种情况考虑:①当时,有,即,解得:,,点的坐标为或;②当时,有,即,解得:,点的坐标为;③当时,有,即,解得:,点的坐标为.综上所述:当是直角三角形时,点的坐标为、、或.【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线解析式;(2)由两点之间线段最短结合抛物线的对称性找出点的位置;(3)分、和三种情况,列出关于的方程.2 .如图,在平面直角坐标系中,直线与轴交于点,与抛物线交于点,此抛物线与轴的正半轴交于点,且.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一点.过点作垂直于轴于点,交线段于点,使.①求点的坐标;②在直线上是否存在点,使为以为直角边的直角三角形?若存在,直接写出符合条件的点的坐标;若不存在,说明理由.【答案】(1);(2)①点坐标是;②存在,或【解析】【分析】(1)根据题意,分别求出点C的坐标,利用AC=2BC求出点A的坐标,在利用待定系数法求出抛物线的解析式即可;(2)①设点P的坐标为(a,-a2-3a+4),利用待定系数法求出直线AB的解析式,用含a的式子表示出点E的坐标,用含a的式子表示出DE和PE的长度,由DE=3PE,得到关于a的方程,求得a的值,即可得到点P的坐标;②设点M的坐标为,分别求得AB、AM、BM的长度,根据△ABM是以AB为直角边的直角三角形,所以可分为两种情况:一是AM为斜边,二是BM为斜边,利用勾股定理列出关于m的方程,求解即可.【详解】解:(1)∵直线与轴交于点.∴∵∴∵∴∵直线与轴交于点.∴点坐标为把点、标代入解析式得解得:∴抛物线的解析式为:(2)①∵是直线上方的抛物线上一点∴设点为坐标为设直线解析式:将点、坐标代入解析式,得解得:∴∵轴于,交于点∴点坐标为∴∵∴解得:(舍去),当时,∴点坐标是②∵点M在直线PD上,∴设点M的坐标为∵点A(-2,6),点B(1,0),∴∵△ABM为以AB为直角边的直角三角形,Ⅰ:当BM为斜边时,可得:AB2+AM2=BM2,∴,∴∴点M的坐标为Ⅱ:当AM为斜边时,可得:AB2+BM2=AM2,∴,∴∴点M的坐标为综上所述,符合题意的点M的坐标为或【点睛】本题主要考查二次函数、勾股定理的综合应用,解决第(2)②小题的题目种,构成直角三角形的问题时,若能求得三角形的长度,则可以利用勾股定理解决,同时此类问题中,要注意分类讨论思想的应用.3 .已知抛物线与轴交于点和点,与直线交于点和点,为抛物线的顶点,直线是抛物线的对称轴.(1)求抛物线的解析式及点的坐标.(2)点为直线上方抛物线上一点,设为点到直线的距离,当有最大值时,求点的坐标.(3)若点为直线上一点,作点关于轴的对称点,连接,,当是直角三角形时,直接写出点的坐标.【答案】(1),点的坐标为;(2)点的坐标为;(3)点的坐标为或.【解析】【分析】(1)先由直线解析式求出B点坐标,再把A,B坐标代入抛物线解析式中,求出a,c的值,从而求出抛物线解析式,再把抛物线解析式化成顶点式,求出顶点坐标即可;(2)过点作轴,交于点,连接,,设点的坐标为,则,写出△PCB面积的表达式,求出△PCB面积最大值所对应的m,从而求出P点坐标;(3)由题意,知,.设点的坐标为,分别求出,,,在分类讨论①当时,,②当时,,求出t,即可求出F的坐标.【详解】解:(1)∵直线,令y=0,解得x=3,∴,将点,代入抛物线中,得,解得∴抛物线的解析式为,∵,∴点的坐标为;(2)过点作轴,交于点,连接,,如解图所示,由题意,可知有最大值时,有最大值,设点的坐标为,则,∴,∴,∵,,∴当时,有最大值,且最大值为,此时有最大值,∴点的坐标为;(3)由题意,知,.设点的坐标为,则,,,由题,易知,则当是直角三角形时,需分以下两种情况进行讨论,①当时,,即,解得,∴点的坐标为;②当时,,即,解得(与点重合,故舍去)或,∴点的坐标为,综上所述,点的坐标为或.【点睛】本题是对二次函数的综合考查,熟练掌握二次函数解析式和图像性质是解决本题的关键,属于中考压轴题,难度较大.4 .定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【答案】(1)y=x+3﹣10=x﹣7;(2)y=2x2+3或y=2(x+1)2+1;(3)a=1或a=.【解析】【分析】(1)先将抛物线的解析式化为顶点式,然后根据关联直线的定义即可得出答案;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x-m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a),B(2,3a),C(-1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【详解】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10,∴关联直线为y=x+3﹣10=x﹣7;(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴,解得或,∴抛物线解析式为y=2x2+3或y=2(x+1)2+1;(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得a=,∵抛物线的顶点在第一象限,∴a>0,即a=1或a=.【点睛】本题是二次函数综合题,考查了直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质,理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5 .已知:抛物线:(为正整数),抛物线的顶点为(1)当k=1时,的坐标为;当k=2时,的坐标为;(2)抛物线的顶点是否在同一条直线上?如在,请直接写出这条直线的解析式;(3)如图(2)中的直线为直线,直线与抛物线的左交点为,求证:与重合;(4)抛物线与x轴的右交点为,是否存在是直角三角形?若存在,求k的值,若不存在,请说明理由.【答案】(1)(1,2),(2,3)(2)在,(3)见解析(4)存在,k=3.【解析】【分析】(1)直接把k=1,k=2代入二次函数解析式进行求解即可;(2)把二次函数的解析式化为顶点式即可求解;(3)由(2)及题意可得,然后联立一次函数解析式及二次函数可求解;(4)根据题意对的三个顶点作为直角顶点进行讨论即可,然后结合直角三角形的性质求解.【详解】解:(1)当k=1时,则有,所以;当k=2时,则有,所以;故答案为;(2)在同一直线上,解析式为,理由如下:由可得,所以顶点坐标为,满足函数关系式为;(3):解得:∴∴∴与重合;(4)存在,理由:分三种情况,,过点、分别作轴,轴,交x轴于点C、E、D,如图所示:①∠=90°则以为直径作圆,它与抛物线只有两个交点、,不存在②∠=90°,D=1,D=1 ∴∠=45°∴∠=45°,∴∴k=0(舍去)③∠=90°则∠=45°∴∠=45°∴,解得(舍去),.综上所述,存在,k=3.【点睛】本题主要考查二次函数的综合,关键是根据题意把二次函数的解析式转化为顶点式,然后根据直角三角形的分类讨论进行求解即可.6 .如图,已知抛物线与轴交于点、,顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1),M(1,4);(2)当时,S最大=,E(,);(3)存在,P1(1,),P2(1,),P3(1,1),P4(1,2).【解析】【分析】(1)将点、的坐标代入函数解析式,列出方程组,通过解方程组求得、的值即可;利用配方法将函数解析式转化为顶点式,即可得到点的坐标;(2)利用待定系数法确定直线解析式,由函数图象上点的坐标特征求得点、的坐标,然后根据两点间的距离公式求得长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点的横坐标,易得其纵坐标,则点的坐标迎刃而解了;(3)需要分类讨论:点、、分别为直角顶点,利用勾股定理求得答案.【详解】解:(1)抛物线与轴交于点、,.解得.,则;(2)如图,作轴交于点,,直线解析式为:.设,则...当时,S.最大此时,点的坐标是,;(3)设,、,,,.①当时,,即.解得.②当时,,即.解得.③当时,,即.解得或2.综上所述,存在,符合条件的点的坐标是或或或,【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.7 .如图,抛物线经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分;(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.【答案】(1);(2)详见解析;(3)存在,点M的坐标为(,-9)或(,11).【解析】【分析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【详解】解:(1)将A(-3,0),B(5,-4)两点的坐标分别代入,得解得故抛物线的表达式为y=.(2)证明:∵AO=3,OC=4,∴AC==5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,-4),B(5,-4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)存在.如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(-3,0),B(5,-4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MBF=2.又∵BF=,∴FM=5,∴M(,-9).∴点M的坐标为(,11)或(,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和M′E的长是解题的关键8 .如图1,在平面直角坐标系中,直线与直线相交于点,点是直线上的动点,过点作于点,点的坐标为,连接.设点的纵坐标为,的面积为.(1)当时,请直接写出点的坐标;(2)关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;(3)在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.【答案】(1)(2);(3)存在,见解析【解析】【分析】(1)根据A点坐标求出直线AB的解析式,然后和直线进行联立即可求出B点的坐标;(2)将,代入,可求出b的值,由题可知,当时,达到最大值,通过求出s,然后由即可求出a的值;(3)若为的直角顶点,则,可求出AC的长度,从而得到结果;若为的直角顶点,过作垂线交于,,则,在中,由勾股定理可求出t,从而得到结果.【详解】(1)当时,,∵直线,,∴可设直线AB的解析式为,将代入,得,∴直线AB的解析式为,联立得,∴;依题有,当时,故得当时,达到最大值,则代入得,解得若为的直角顶点,则此时的方程为,令得,此时若为的直角顶点,过作垂线交于则在中,由勾股定理得即解得:或此时或;或当为的直角顶点,此种情况不存在,当在上方时为锐角,当在下方时,为钝角,故不存在.【点睛】本题考查了函数和几何综合问题,题目较难,明确题意,注意分类讨论的思想是解题的关键.9 .如图,在平面直角坐标系中,抛物线与x轴交于点,与y 轴交于点C,且直线过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段上一动点,过点P作x轴的垂线交抛物线于点M,交直线于点N.(1)求抛物线的函数解析式;(2)当的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.【答案】(1);(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,)或(0,).【解析】【分析】(1)根据直线求出点B和点D坐标,再根据C和D之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P坐标为(m,0),表示出M和N的坐标,再利用三角形面积求法得出S△BMD=,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线过点B,点B在x轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B(6,0),D(0,-6),∵点C和点D关于x轴对称,∴C(0,6),∵抛物线经过点B和点C,代入,,解得:,∴抛物线的表达式为:;(2)设点P坐标为(m,0),则点M坐标为(m,),点N坐标为(m,m-6),∴MN=-m+6=,∴S△BMD =S△MNB+S△MND===-3(m-2)2+48当m=2时,S△BMD最大=48,此时点P的坐标为(2,0);(3)存在,由(2)可得:M(2,12),N(2,-4),设点Q的坐标为(0,n),当∠QMN=90°时,即QM⊥MN,如图,可得,此时点Q和点M的纵坐标相等,即Q(0,12);当∠QNM=90°时,即QN⊥MN,如图,可得,此时点Q和点N的纵坐标相等,即Q(0,-4);当∠MQN=90°时,MQ⊥NQ,如图,分别过点M和N作y轴的垂线,垂足为E和F,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME,∴△MEQ∽△QFN,∴,即,解得:n=或,∴点Q(0,)或(0,),综上:点Q的坐标为(0,12)或(0,-4)或(0,)或(0,). 【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.10 .如图,直线分别与x轴,y轴交于点A,B两点,点C为OB的中点,抛物线经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且的面积为,求点D的坐标;(3)点P为抛物线上一点,若是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.【答案】(1);(2)(2,-3);(3)或或. 【解析】【分析】(1)由直线解析式求出A、B坐标,然后得出C点坐标,再用待定系数法求出抛物线解析式;(2)过点D作DE⊥x轴,交直线AB于点E,设D(m,),利用S△==得出方程,解出m值即可;ABD(3)分点A是直角顶点和点B是直角顶点,结合图像,表示出△ABP三边长度,利用勾股定理得出方程,求解即可.【详解】解:(1)直线中,令x=0,则y=10,令y=0,则x=5,∴A(5,0),B(0,10),∵点C是OB中点,∴C(0,5),将A和C代入抛物线中,,解得:,∴抛物线表达式为:;(2)联立:,解得:或,∴直线AB与抛物线交于点(-1,12)和(5,0),∵点D是直线AB下方抛物线上的一点,设D(m,),∴-1<m<5,过点D作DE⊥x轴,交直线AB于点E,∴E(m,-2m+10),∴DE==,===,∴S△ABD解得:m=2,∴点D的坐标为(2,-3);(3)抛物线表达式为:,∵△APB是以AB为直角边的直角三角形,设点P(n,),∵A(5,0),B(0,10),∴AP2=,BP2=,AB2=125,当点A为直角顶点时,BP2= AB2+ AP2,解得:n=或5(舍),当点B为直角顶点时,AP2= AB2+ BP2,解得:n=或,而抛物线对称轴为直线x=3,则3-=,-3=,3-=,综上:点P到抛物线对称轴的距离为:或或.【点睛】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,三角形面积的铅垂高表示法,解一元二次方程,勾股定理,相似三角形的判定与性质等重要知识点,综合性强,难度较大.。

中考数学总复习《二次函数与直角三角形综合压轴题》专项测试卷及答案

中考数学总复习《二次函数与直角三角形综合压轴题》专项测试卷及答案

中考数学总复习《二次函数与直角三角形综合压轴题》专项测试卷及答案1.如图,一次函数112y x=-+的图象与x轴交于点A,与y轴交于点B,二次函数212y x bx c=++的图象与一次函数112y x=-+的图象交于B、C两点,与x轴交于D、E两点,且点D坐标为(1,0)-.(1)点B坐标为(______,______)(2)求二次函数的解析式;(3)求四边形BDEC的面积S;(4)在x轴上是否存在点P,使得PBC△是直角三角形?若存在,请直接写出所有满足条件的点P的坐标,若不存在,请说明理由.2.如图,一条抛物线与x轴交于A、B两点,与y轴交于C点,已知点A的坐标是(4,0),并且4OA OC OB==.(1)求抛物线的解析式;(2)点P是抛物线上AC之间的动点,过点P作PE垂直于x轴于点E,交直线AC于点D,连接PA、PC,当PAC的面积最大时,求出点P的坐标;(3)抛物线上是否存在点P ,使得ACP △是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.3.在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于(10)(40)A B -,,,两点,与y 轴交于点C ,点P 是直线BC 下方抛物线上一动点.(1)求这条抛物线的解析式;(2)如图(甲),在x 轴上是否存在点E ,使得以E ,B ,C 为顶点的三角形为直角三角形?若存在,请直接写出点E 坐标;若不存在,请说明理由;(3)如图(乙),动点P 运动到什么位置时,P 到BC 距离的最大,求出此时P 到BC 距离的最大值及此时点P 的坐标.4.如图,抛物线23y ax bx =+-经过()1,0A -,与y 轴交于点C ,过点C 作BC x ∥轴,交抛物线于点B ,连接AC AB AB 、,交y 轴于点D ,且2BC OA =.(1)求该抛物线的解析式;(2)若点Q 是抛物线上一点,其横坐标是m ,当点Q 到直线CB 的距离是7时,求m 的值;(3)点P 为抛物线对称轴上一点,连接PA PC 、,若PAC 是以AC 为直角边的直角三角形,求点P 的坐标. 5.如图,抛物线2y x bx c =++与x 轴交于()3,0A -,()1,0B 两点,与y 轴交于点C ,连接AC .(1)求抛物线的表达式.(2)点P 是抛物线上位于线段AC 下方的一个动点,连接AP ,CP ,求APC △面积最大时点P 的坐标; (3)在抛物线上是否存在点Q ,使得以点A ,C ,Q 为顶点的三角形是直角三角形?如果存在,请直接写出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.如图,已知一次函数0.52y x =+的图象与x 轴交于点A ,与二次图象交于y 轴上的一点B ,二次函数的顶点C 在x 轴上,且2OC =.(1)求二次函数的解析式;(2)设一次函数0.52y x =+的图象与二次函数图象另一交点为D . ①在抛物线上是否存在点P ,使BCD △面积与BDP △面积相等. ①已知P 为x 轴上一个动点,且PBD △为直角三角形,求点P 坐标.7.如图,已知抛物线2y x bx c =++的顶点P 在直线4y x =-上,且图象与x 轴交于()1,0A -,B 两点,与y 轴交于点C .(1)求b ,c 的值;(2)D 是线段BP 上的一个动点,过点D 作DE x ⊥轴于点E ,点E 的坐标为(),0a ,DCE △的面积为S . ①求S 的最大值;②在线段BP 上是否存在点D ,使DCE △为直角三角形?若存在,请求出点D 的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,已知抛物线2y x bx c =++过A ,B ,三点,点A 的坐标是()3,0,点C 的坐标是()0,3-,动点P 在抛物线上.(1)b = ,c = ,点B 的坐标为 ;(直接填写结果)(2)是否存在点P ,使得ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)若动点P 在直线AC 下方的抛物线上运动,求ACP 的边AC 上的高h 的最大值.参考知识:①设1122(,,())A x y B x y 、,则2222121()()AB x x y y =-+-;①若直线11y k x b =+与直线22y k x b =+垂直,则121k k .9.如图已知抛物线()()31y a x x =-+与x 轴交于A B 、两点,与y 轴交于点C ,顶点为D .(1)求A B 、两点的坐标;(2)若ABD △为等边三角形,求a 的值;(3)若1a =-,点F 是对称轴与AC 的交点,点P 是抛物线上一点,且横坐标为m ,PE x ⊥轴交AC 于点E ,点P ,E ,F 构成的三角形是直角三角形,求m 的值.10.如图,已知抛物线25y ax bx =++与x 轴交于()1,0A -,()5,0B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求抛物线的解析式;(2)点D 是第一象限内抛物线上的一个动点(与点C ,B 不重合),连接CD 、BD ,求BDC 面积的最大值; (3)若M 为抛物线对称轴上一动点,使得MBC △为直角三角形,请直接写出点M 的坐标. 11.综合运用如图,在平面直角坐标系中,已知抛物线 223y x x =-++与x 轴交于点 A .C (点 A 在点 C 的右侧).与y 轴交于点 B .直线y kx b =+经过点A ,B .(1)求A ,B ,C 三点的坐标及直线AB 的表达式.(2)P 是第二象限内抛物线上的一个动点,过点P 作PQ x ∥轴交直线AB 于点 Q ,设点 P 的横坐标为()0m m <.PQ 的长为 L .①求L 与m 的函数关系式,并写出m 的取值范围; ①若PQ 与BO 交于点D ,1,3DQ OA =求 m 的值. (3)设抛物线的顶点为M ,问在y 轴上是否存在一点 N ,使得NAM △为直角三角形?若存在,直接写出点 N 的坐标;若不存在,请说明理由.12.二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点C (0,−3),P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标; (3)若点P 在直线BC 的下方,当点P 到直线BC 距离最大时,试求点P 的坐标,并且求出点P 到直线BC 的距离.13.如图,已知一次函数0.52y x =+的图象与x 轴交于点A ,与二次图象交于y 轴上的一点B ,二次函数的顶点C 在x 轴上,且2OC =.(1)求二次函数的解析式;(2)设一次函数0.52y x =+的图象与二次函数图象另一交点为D .①在抛物线上是否存在点P ,使BCD △面积与BDP △面积相等,若存在,求出P 点坐标,若不存在,说明理由.①已知P 为x 轴上一个动点,且PBD △为直角三角形,求点P 坐标.14.如图,抛物线2y ax bx c =++与x 轴交于A 、B ,(1,0)A B 在x 轴负半轴,与y 轴交于点(0,3)C ,顶点为D .(1)用关于a 的式子表示b ;(2)联结AD 、BD ,AD 交y 轴于点E ,若8ABDAEOSS=,求B 坐标;(3)平移抛物线使新抛物线的顶点D 在直线AC 上,B 的对应点B '在y 轴上,C 的对应点为C ',C B ''交直线AC 于H ,若B CH '为直角三角形,求平移后新抛物线的解析式.15.如图,二次函数28y ax bx =++的图像与坐标轴分别交于点A 、B 、C ,5cos B =:1:2AO BO =.(1)求二次函数表达式;(2)在第二象限内,线段AC 上有一点D ,作PD 平行于x 轴,交二次函数图像于点P 、H (点P 在y 轴左侧),作点Q 与点P 关于y 轴对称.①证明:四边形AQHO 为平行四边形;①若ACQ 是以AC 为斜边的直角三角形,求点P 的横坐标;①直角坐标系内存在点(,)E x y ,使得四边形CQEH 为平行四边形,请直接写出y 与x 的函数表达式,并求当线段PD 的长度最大时,点E 的坐标.参考答案1.【答案】(1)0;1(2)213122y x x =++(3)4.5(4)P 的坐标为(1,0)-或(3,0)-或1,02⎛⎫- ⎪⎝⎭或11,02⎛⎫- ⎪⎝⎭2.【答案】(1)234y x x =-++(2)()2,6(3)存在,()2,6或()2,6--;3.【答案】(1)234y x x =--(2)(4,0)E -或(0,0)(3)P 到BC 的最大距离为22 ()2,6P -4.【答案】(1)2=23y x x --(2)1122m =+ 2122m =-21,3P ⎛⎫⎪⎝⎭或81,3P ⎛⎫- ⎪⎝⎭5.【答案】(1)抛物线的表达式为223y x x =+-(2)点P 的坐标为315,24⎛⎫-- ⎪⎝⎭(3)存在,满足条件的点Q 的坐标为()1,4--或()2,5或1555-+-+⎝⎭或1555----⎝⎭ 6.【答案】(1)20.522y x x =-+(2)①存在,P 的坐标为()3,0.5 ()1,4.5- ()6,8;①()11,0P 和()27.25,0P 7.【答案】(1)2b =- 3c =-;(2)①当32a =时,CDE 有最大值,最大值为94;②点D 的坐标为()332,6212-+或3,32⎛⎫- ⎪⎝⎭.8.【答案】(1)−2,-3 ()1,0-;(2)存在,P 的坐标是()1,4-或()2,5-;(3)9289.【答案】(1)()3,0A ()1,0B -;(2)3a =;(3)1m =-或2m =或12m .10.【答案】(1)245y x x =-++(2)1258(3)()2,7 ()2,3- ()2,6 ()2,1- 11.【答案】(1)()()()3,0,0,3,1,0A B C - 3y x =-+(2)①()2310L m m m =--<<①12存在,30,2N ⎛⎫- ⎪⎝⎭或70,2N ⎛⎫⎪⎝⎭或()0,1N 或()0,3N12.【答案】(1)223y x x =--(2)235,39⎛⎫- ⎪⎝⎭(3)315,24⎛⎫- ⎪⎝⎭;点P 到直线BC 的距离为92813.【答案】(1)21222y x x =-+(2)①点P 的坐标为()3,0.5 ()1,4.5- ()6,8;①点P 的坐标为:()1,0P 和()7.25,0P .14.【答案】(1)3b a =--(2)点B 的坐标为()3,0-(3)()215123y x =--- 15.【答案】(1)228y x x =-++(2)①①12- ①21102y x =-+ (4,2)E。

二次函数压轴题(一)

二次函数压轴题(一)

二次函数压轴题~~~武汉市中考25题直角三角形问题1. 如图,在平面直角坐标系中,直线231+-=x y 交x 轴于点P ,交y 轴于点A .抛物线 c bx x y ++-=221的图象过点E (-1,0),并与直线相交于A 、B 两点.(1)求抛物线的解析式(关系式);(2)过点A 作AC⊥AB 交x 轴于点C ,求点C 的坐标; (3)除点C 外,在坐标轴上是否存在点M ,使得△MAB 是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.2. 如图,抛物线y =ax 2+bx-3与x 轴交于两点A(1,0)、B(3,0),与y 轴交于点D .(1)求抛物线的解析式;(2)在抛物线是否存在一点P ,使得△BDP 是以BD 为斜边的直角三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.yxD OB AC3. 在平面直角坐标系xoy 中,已知二次函数)0(22≠+-=a c ax ax y 的图象与x 轴交于A ,B 两点(点A 在点B 的左边),AB=4,与y 轴交于点C ,且过点(2,3). (1)求此二次函数的表达式;(2)若抛物线的顶点为D,连接C D 、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC =90°. 若存在,求出点P 的坐标;若不存在,请说明理由;4. 已知抛物线C :m x m a ax y +++-=)13(2经过点(-1,1)和(0,-2).(1)求此抛物线C 的解析式;(2)过点A (0,4)作直线交抛物线于M 、N 两点,是否存在直线MN ,使得OM ⊥ON ?若存在,求出直线MN 的解析式; 若不存在,请说明理由;xyNMAOoy xCBA求最值问题5. 如图,直线y =-x -1与抛物线y =ax 2+bx -4都经过点A(-1, 0)、C(3, -4). ⑴求抛物线的解析式;⑵动点P 在线段AC 上,过点P 作x轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值;6. 如图,已知抛物线经过A (4,0),B (1,0),C (0,-2)三点. (1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大?若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.Oy x A B C P E7. 如图,已知抛物线的方程C 1 :)0)()(2(1>-+-=m m x x my 与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧,若抛物线C 1过点M (2,2)(1)求△BCE 的面积;(2)在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标;8. 如图所示,抛物线y=ax 2+bx+c (a≠0)的顶点坐标为点A (-2,3),且抛物线y=ax 2+bx+c 与y 轴交于点B (0,2).(1)求该抛物线的解析式;(2)若点P 是x 轴上任意一点,则当PA-PB 最大时,求点P 的坐标.相似三角形9. 如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;10. 矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为A (10,0)、C (0,3),直线 x y 31=与BC 相交于点D ,抛物线y=ax 2+bx 经过A 、D 两点.(1)求抛物线的解析式;(2)连接AD ,试判断△OAD 的形状,并说明理由.(3)若点P 是抛物线的对称轴上的一个动点,对称轴与OD 、x 轴分别交于点M 、N ,问:是否存在点P ,使得以点P 、O 、M 为顶点的三角形与△OAD 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.O x y AB C 4 1 2-角相等问题11. 己知抛物线b ax ax y +-=42与X 轴交于A ,B 两点,(A 在B 的左侧),与Y 轴交于C ,若OB =OC ,且C (0,3)。

中考二次函数各类压轴题整理(全)

中考二次函数各类压轴题整理(全)

中考数学冲刺复习资料:二次函数压轴题线段最值类1、如图,抛物线与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).①求抛物线的解析式及顶点D的坐标;②判断△ABC的形状,证明你的结论;③点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.2、如图1,已知抛物线交x轴于A、B两点,交y轴于点C(0,2),此抛物线的对称轴为直线x=2,点A的坐标为(1,0).(1)求B点坐标以及△ABC的面积;(2)求抛物线的解析式;(3)过点C作x轴的平行线交此抛物线的对称轴于点D,你能判断四边形ABDC是什么四边形吗?并证明你的结论;(4)若一个动点P自OC的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点C,求使点P运动的总路径(ME+EF+FC)最短的点E、F的坐标,并求出这个最短总路径的长.面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.3、抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)连结CA,CB,对称轴x=1与线段AB交于点D,求△CAB的铅垂高CD及S △CAB ;(3)如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S △PAB = S△CAB ?若存在,求出P点的坐标;若不存在,请说明理由.4、如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D. E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.平行四边形类1、如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=-x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.3、已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.4、将抛物线c1:沿x轴翻折,得到抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴的交点从左到右依次为D,E.①用含m的代数式表示点A和点E的坐标;②在平移过程中,是否存在以点A,M,E为顶点的三角形是直角三角形的情形?若存在,请求出此时m的值;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.直角三角形类如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0), C(0,-3)两点与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.相似三角形类如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。

2017年中考压轴题(26题)二次函数综合

2017年中考压轴题(26题)二次函数综合

2017年中考压轴题——二次函数、动点综合题1.(本小题满分13分)如图,二次函数32-+=bx ax y 的图象与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .该抛物线的顶点为M . (1)求该抛物线的解析式; (2)判断△BCM 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形与△BCM 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.2.(13分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F,当四边形AECP 的面积最大时,求点P 的坐标; (3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.(第26题图)3.(13分)如图1,抛物线y=ax 2+bx +3(a ≠0)与x 轴交于点A 、点B (点A 在点B 左侧),与y 轴交于点C ,点D 为抛物线的顶点,已知点A 、点B 的坐标分别为A (﹣1,0)、B (3,0). (1)求抛物线的解析式;(2)在直线BC 上方的抛物线上找一点P ,使△PBC 的面积最大,求P 点的坐标;(3)如图2,连接BD 、CD ,抛物线的对称轴与x 轴交于点E ,过抛物线上一点M 作MN ⊥CD ,交直线CD 于点N ,求当∠CMN=∠BDE 时点M 的坐标.4.(本小题满分13分) 如图,已知抛物线232y ax x c =-+与x 轴相交于A 、B 两点,并与直线122y x =-交于B 、C 两点,其中点C 是直线122y x =-与y 轴的交点,连接AC . ⑴求抛物线的解析式; ⑵证明:△ABC 为直角三角形;⑶△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.(第26题图)5.(本小题满分13分)如图,二次函数32-+=bx ax y 的图象与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .该抛物线的顶点为M .(1)求该抛物线的解析式;(2)判断△BCM 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形与△BCM 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.6.(本题满分13分)如图,已知二次函数y =﹣x 2+bx +c 的图象交x 轴于点A (4,0)和点B ,交y 轴于点C (0,4). (1)求这个二次函数的表达式;(2)若点P 在第一象限内的抛物线上,求四边形AOCP 面积的最大值和此时点P 的坐标;(3)在平面直角坐标系内,是否存在点Q ,使A ,B ,C ,Q 四点构成平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.7.(13分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (5,0)两点,与y 轴交于点C (0,5). (1)求该抛物线所对应的函数关系式;(2)D 是笫一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF ⊥x 轴于点F ,交直线BC 于点E ,连结BD 、CD .设点D 的横坐标为m ,△BCD 的面积为S .①求S 关于m 的函数关系式及自变量m 的取值范围;②当m 为何值时,S 有最大值,并求这个最大值; ③直线BC 能否把△BDF 分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.(第26题8.(13分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y=﹣x 2+bx +c 表示,且抛物线的点C 到墙面OB 的水平距离为3m 时,到地面OA 的距离为m .(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?9.(13分)如图,已知抛物线与x 轴交于A (﹣1,0)、E (3,0)两点,与y 轴交于点B (0,3). (1)求抛物线的解析式;(2)设抛物线顶点为D ,求四边形AEDB 的面积;(3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由.26. (满分13分) 如图,抛物线经过A (﹣1,0),B (5,0),C (0,25)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.。

2017年中考数学压轴题(直角三角形三角形问题)

2017年中考数学压轴题(直角三角形三角形问题)
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由
2018年中考数函数压轴题(直角三角形问题)(2月6日)
姓名:班级:
1、如图1,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.
(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.
(2月6日差缺补漏)
例1、如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;

全国最难中考数学压轴题

全国最难中考数学压轴题

全国最难中考数学压轴题一、在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(0,1),点C在直线y=2x上运动,当三角形ABC的面积最大时,点C的坐标是?A. (1/2,1)B. (1,2)C. (2,4)D. (3,6)(答案)A解析:本题考察的是直线与坐标系中三角形的面积计算。

通过设定点C的坐标,利用三角形面积公式,结合直线方程,可以求出面积关于C点横坐标的表达式,进而通过求导找到面积最大值对应的C点坐标。

二、已知二次函数y=ax2+bx+c的图像经过点(1,0),(2,0)和(0,2),则a的值为?A. -1B. 1C. -2D. 2(答案)A解析:本题考察的是二次函数的性质。

将三个点的坐标代入二次函数方程,可以得到三个方程,通过解这个方程组,可以求出a,b,c的值。

三、在三角形ABC中,AB=AC,D是BC的中点,E是AD上的一点,且AE=1:2,BE的延长线交AC于F,则AF等于?A. 1:2B. 1:3C. 2:3D. 3:4(答案)B解析:本题考察的是相似三角形的性质。

通过构造平行线,利用相似三角形的性质,可以得到AF与FC的比例。

四、若关于x的一元二次方程x2-2(m+1)x+m2=0有两个不相等的实数根,则m的取值范围是?A. m<-1B. m>-1C. m<-1或m>1D. -1<m<1(答案)D解析:本题考察的是一元二次方程的根的判别式。

通过计算判别式,并判断其大于0,可以得到m的取值范围。

五、在梯形ABCD中,AD平行BC,AB=DC=3,AD=2,BC=6,点E,F分别在AB,CD上,且AE=CF=1,则EF的长度为?A. 2B. √5C. √6D. √7(答案)D解析:本题考察的是梯形的性质和勾股定理。

通过过点E,F分别作AD,BC的平行线,可以构造出直角三角形,然后利用勾股定理求出EF的长度。

六、已知数列{an}满足a1=1,an+1=an+n,则a10的值为?A. 45B. 46C. 55D. 56(答案)C解析:本题考察的是数列的递推关系。

中考数学中二次函数压轴题分类总结

中考数学中二次函数压轴题分类总结

关于二次函数的压轴题一、抛物线关于三角形面积问题例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习:1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标;(2)求抛物线的函数解析式;(3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 的坐标;yxOBNAMEF2. 如图,已知抛物线4212++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.二、抛物线中线段长度最小问题例题 如图,对称轴为直线x =-1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴,QD 交抛物线于点D ,求线段QD 长度的最大值.OABP EQFxyEN MDCBAOyx练习:1. 如图, Rt△ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.三、抛物线与线段和最小的问题例题 如图,已知抛物线()()()120y x x a a a=-+>与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH+EH 的值最小,直接写出点H 的坐标.练习:1. 如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点B (0,-5). (1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP2. 如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B(2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出H 的坐标;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大并求出最大面积.四、抛物线与等腰三角形例题:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习:1. .如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线12 x=-(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.2. 如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x ﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D 在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.3.如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是,请说明理由;(2)如图2,已知D(12,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)4. 如图,已知抛物线于x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形,若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:(3)若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。

中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)

中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)

中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx经过点A(2,0)和点B(−1,m),顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与x轴交于点P如果点C在x轴上且△ABC与△ABP相似求点C的坐标.2.如图在平面直角坐标系中点A(1,2)B(5,0)抛物线y=ax2−2ax(a>0)交x轴正半轴于点C连结AO AB.(1)求点C的坐标和直线AB的表达式(2)设抛物线y=ax2−2ax(a>0)分别交边BA BA延长线于点D E.①若△CDB与△BOA相似求抛物线表达式②若△OAE是等腰三角形则a的值为______(请直接写出答案即可).3.如图拋物线经过A(4,0),B(1,0),C(0,−2)三点.(1)求出抛物线的解析式(2)若在直线AC上方的抛物线上有一点D使得△DCA的面积最大求出点D的坐标(3)若P是抛物线上一动点过P作PM⊥x轴垂足为M使得以A,P,M为顶点的三角形与△OCA相似请直接写出符合条件的点P的坐标.x2+bx+c与x轴交于A B(4,0)两点与y轴交于点C(0,2)连4.如图抛物线y=−12接BC交抛物线的对称轴于点D连接AC.(1)求抛物线的表达式(2)若点E在对称轴上①当AE+CE的值最小时求点E的坐标②以C D E为顶点的三角形与△ABC相似时求点E的坐标.5.如图已知A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4).点P是第一象限内抛物线上的一点连接AC BC.M为OB上的动点过点M作PM⊥x轴交抛物线于点P交BC于点Q.(1)求抛物线的函数表达式(2)过点P作PN⊥BC垂足为点N设点M的坐标为(m,0)请用含m的代数式表示线段PN的长并求出当m为何值时PN有最大值最大值是多少?(3)试探究M在运动过程中是否存在这样的点Q使得以O M Q为顶点的三角形与△AOC相似.若存在请求出此时点Q的坐标若不存在请说明理由.6.在平面直角坐标系xOy中已知抛物线y=ax2+bx+c(a≠0)的图像经过点B(4,0) D(5,3)设它与x轴的另一个交点为A(点A在点B的左侧)且△ABD的面积是3.(1)求该抛物线的表达式和顶点坐标(2)求∠DAB的度数(3)若抛物线与y轴相交于点C直线CD交x轴于点E点P在线段AD上当△APE与△ABD相似时求AP的长.7.如图抛物线y=−12x2+32x+2与x轴交于A B两点(点A在点B的左边)与y轴交于点C连接BC.(1)求点A B C的坐标(2)设x轴上的一个动点P的横坐标为t过点P作直线PN⊥x轴交抛物线于点N交直线BC于点M.①当点P在线段AB上时设MN的长度为s求s与t的函数关系式②当点P在线段OB上时是否存在点P使得以O P N三点为顶点的三角形与△COB相似?若存在请求出点P的坐标若不存在请说明理由.8.如图在同一直角坐标系中抛物线L1:y=ax2+bx+8与x轴交于A(−8,0)和点C 且经过点B(−2,12)若抛物线L1与抛物线L2关于y轴对称点A的对应点为A′点B的对应点为B′.(1)求抛物线L2的表达式(2)现将抛物线L2向下平移后得到抛物线L3抛物线L3的顶点为M 抛物线L3的对称轴与x轴交于点N 试问:在x轴的下方是否存在一点M 使△MNA′与△ACB′相似?若存在请求出抛物线的L3表达式若不存在说明理由.9.抛物线y=−x2+bx+3与x轴交于A(−3,0),B(1,0)两点与y轴交于点C点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标S△ACD求点P的坐标(2)在直线AC上方的抛物线上找一点P使S△ACP=12(3)在坐标轴上找一点M使以点B C M为顶点的三角形与△ACD相似直接写出点M 的坐标.(x+2)(ax+b)的图象过点A(−4,3),B(4,4).10.如图已知二次函数y=148(1)求二次函数的解析式(2)请你判断△ACB是什么三角形并说明理由.(3)若点P在第二象限且是抛物线上的一动点过点P作PH垂直x轴于点H试探究是否存在以P H D为顶点的三角形与△ABC相似?若存在求出P点的坐标.若不存在请说明理由.11.如图直线y=−x+4与x轴交于点A与y轴交于B抛物线y=−x2+bx+c经过A B两点与x轴负半轴交于点C连接BC抛物线对称轴与x轴交于点F P为y轴右侧抛物线上的动点直线BP交对称轴于点D.(1)求抛物线的解析式(2)当BD=3PD时求点P的坐标(3)作PQ⊥AB垂足为Q当△BPQ与△BCO相似时直接写出点Q的坐标.12.在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-3 0)B (1 0)两点与y轴交于点C.(1)求这个二次函数的解析式(2)点Q是线段AC上方的抛物线上一动点过点Q作QE垂直于x轴垂足为E.是否存在点Q使以点B Q E为顶点的三角形与△AOC相似?若存在求出点Q的坐标若不存在说明理由(3)点M为抛物线上一动点在x轴上是否存在点Q使以A C M Q为顶点的四边形是平行四边形?若存在直接写出点Q的坐标若不存在说明理由.13.如图① 抛物线y=ax2+bx+c(a≠0)经过点A(−4,0)点B(2,0)和点C(0,−4)它的对称轴为直线l顶点为D.(1)求该抛物线的表达式(2)如图② 点P是直线AC下方该抛物线上的一个动点连接AP CP AC当△APC的面积取得最大值时求点P的坐标(3)如图③ 点E是直线AD下方该抛物线上的一个动点过E点作EF⊥直线l于F连接DE当以D E F为顶点的三角形与△BOC相似时求点E的坐标.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3 0)B(1 0)两点与y轴交于点C(0 ﹣3m)(m>0)顶点为D.(1)如图1 当m=1时①求该二次函数的解析式②点P为第三象限内的抛物线上的一个动点连接AC OP相交于点Q求PQ的最大值OQ(2)如图2 当m取何值时以A D C为顶点的三角形与∠BOC相似.15.如图1 在平面直角坐标系中抛物线y=ax2+bx+c经过A(−2,0)B(8,0)C(0,4)三点.(1)求抛物线y=ax2+bx+c的表达式(2)如图2 设点P是抛物线上在第一象限内的动点(不与B C重合)过点P作PD⊥BC 垂足为点D点P在运动的过程中以P D C为顶点的三角形与△AOC相似时求点P 的坐标(3)在y轴负半轴上是否存在点N使点A绕点N顺时针旋转后恰好落在第四象限抛物线上的点M处且使∠ANM+∠ACM=180°若存在请求N点坐标若不存在请说明理由.(请在备用图中自己画图)16.抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点(A在B的左边)C是抛物线的顶点.(1)当m=2时直接写出A B两点的坐标:(2)点D是对称轴右侧抛物线上一点∠COB=∠OCD①如图(1)求线段CD长度②如图(2)当m>2T(t,0)(t>0)P为线段OC上一点.若△PCD与△POT相似并且符合条件的点P有2个求t和m之间的数量关系.17.如图1 抛物线y=−x2+bx+c经过A(0,3)和B(72,−94)两点直线AB与x轴相交于点C P是直线AB上方的抛物线上的一个动点PD⊥x轴交AB于点D抛物线与x轴的交点为F G.(1)求该抛物线的表达式.(2)当点P的坐标为(2,3)时求四边形APGO的面积.(3)如图2 若PE∥x轴交AB于点E且点P在直线AB上方求PD+PE的最大值.(4)若以A P D为顶点的三角形与△AOC相似请直接写出所有满足条件的点P的坐标.18.如图1 抛物线y=ax2+23x+c(a≠0)与x轴交于A(−2,0)B两点与y轴交于点C(0,4).(1)求抛物线的解析式(2)若点D是第一象限内抛物线上的一点AD与BC交于点E且AE=5DE求点D的坐标(3)如图2 已知点M(0,1)抛物线上是否存在点P使锐角∠MBP满足tan∠MBP=1若2存在求出点P的坐标若不存在说明理由.19.如图1 平面直角坐标系xOy中抛物线y=ax2+bx+c过点A(−1,0)B(2,0)和C(0,2)连接BC点P(m,n)(m>0)为抛物线上一动点过点P作PN⊥x轴交直线BC于点M交x 轴于点N.(1)直接写出抛物线和直线BC的解析式(2)如图2 连接OM当△OCM为等腰三角形时求m的值(3)当P点在运动过程中在y轴上是否存在点Q使得以O P Q为顶点的三角形与以B C N为顶点的三角形相似(其中点P与点C相对应)若存在直接写出点P和点Q的坐标若不存在请说明理由.20.如图(1)在平面直角坐标系中抛物线y=ax2+bx−4(a≠0)与x轴交于A B两点(点A在点B的左侧)与y轴交于点C点A的坐标为(−1,0)且OC=OB点D和点C关于抛物线的对称轴对称.(1)分别求出a b的值和直线AD的解析式(2)直线AD下方的抛物线上有一点P过点P作PH⊥AD于点H作PM平行于y轴交直线AD 于点M交x轴于点E求△PHM的周长的最大值(3)在(2)的条件下 如图2 在直线EP 的右侧 x 轴下方的抛物线上是否存在点N 过点N 作NG ⊥x 轴交x 轴于点G 使得以点E N G 为顶点的三角形与△AOC 相似?如果存在 请直接写出点G 的坐标 如果不存在 请说明理由.参考答案1.(1)解:∠抛物线y =x 2+bx 经过点A (2 0) ∠22+2b =0 解得:b =−2 ∠抛物线解析式为y =x 2−2x 当x =−1 时 y =3 ∠点B 的坐标为B (−1,3)设直线AB 的解析式为y =kx +m (k ≠0) 把A (2 0) B (−1,3) 代入得: {2k +m =0−k +m =3 解得:{k =−1m =2 ∠直线AB 的解析式为y =−x +2 (2)如图 连接BD AD∠y =x 2−2x =(x −1)2−1 ∠点D 的坐标为D (1,−1) ∠A (2 0) B (−1,3)∠AB 2=(−1−2)2+32=18,AD 2=(2−1)2+(−1)2=2,BD 2=(−1−1)2+(−1−3)2=20∠AB 2+AD 2=BD 2 ∠∠ABD 为直角三角形 ∠tan∠ABD =ADAB =√2√18=13(3)设直线BD 的解析式为y =k 1x +b 1(k 1≠0) 把点D (1,−1) B (−1,3)代入得:{k 1+b 1=−1−k 1+b 1=3 解得:{k 1=−2b 1=1∠直线BD 的解析式为y =−2x +1当y =0 时 x =12 ∠点P 的坐标为P (12,0) 当∠ABP ∠∠ABC 时 ∠ABC =∠APB如图 过点B 作BQ ∠x 轴于点Q 则BQ =3 OQ =1∠∠ABP ∠∠ABC∠∠ABD =∠BCQ由(2)知tan∠ABD =13∠tan∠BCQ =13 ∠BQ CQ =13∠CQ =9∠OC =OQ +CQ =10∠点C 的坐标为C (−10,0)当∠ABP ∠∠ABC 时 ∠APB =∠ACB 此时点C 与点P 重合∠点C 的坐标为C (12,0)综上所述 点C 的坐标为C (−10,0)或(12,0).2.(1)解:∠x =−b 2a =1∠O C 两点关于直线x =1对称∠C (2,0)设直线AB :y =kx +b (k ≠0)把A (1,2) B (5,0) 代入得{k +b=25k +b=0解得{k =−12b =52则y =−12x +52 (2)①设D 的坐标为(p,q ) 则BD AB =q 2 若△CDB 与△BOA 相似 则BD AB =BC BO∠q 2=BC BO =35∠q =65 ∠D (p,q )在直线AB 上∠D (135,65) 代入抛物线解析式可得a =1013∠抛物线解析式为y =1013x 2−2013x .②∠A (1,2) B (5,0) O (0,0)∠OA =√5 OB =5 AB =2√5∠OA 2+AB 2=OB 2∠∠OAB=90°∠∠OAE=90° 设E 的坐标为(m,n )∠△OAE 是等腰三角形∠AE =AO =√5∠BE =3√5∠S △BEO =12BE ⋅OA =12BO ⋅n ∠12×3√5×√5=12×5n∠n =3∠E (m,n )在直线AB 上∠3=−12m +52 ∠m =−1又∠E (−1,3)在抛物线上∠3=a +2a故答案为:1.3.解:(1)设抛物线的解析式为y =a (x −4)(x −1)∵点C (0,−2)在抛物线上∴−4×(−1)a =−2∴a =−12∴抛物线的解析式为y =−12(x −4)(x −1)=−12x 2+52x −2(2)如图当点D 在抛物线上 且使△DCA 的面积最大 必有平行于直线AC 的直线DE且和抛物线只有一个交点设直线AC 解析式为y =kx +m∵A (4,0) C (0,−2)∠{4k +m =0m =−2解得{k =12m =−2∴直线AC 解析式为y =12x −2设直线DE 解析式为y =12x +b ①∵抛物线的解析式为y =−12x 2+52x −2②联立①②化简得 x 2−4x +4+2b =0∴ Δ=16−4(4+2b )=0∴b =0∴x 2−4x +4=0∴x =2∴D (2,1)过点P 作PM ⊥OAA (4,0) C (0,−2)∴OA =4 OC =2∴ OA OC =2设点P (p,ℎ)∴AM =|4−p|.PM =|ℎ| ℎ=−12p 2+52p −2③∵∠APM =∠AOB =90°∵以A P M 为顶点的三角形与△OAC 相似∴ PM AM=OA OC =2 ① ∴ |ℎ||4−p|=2④联立③④解得{p =4ℎ=0 (舍)或{p =5ℎ=−2或{p =−3ℎ=−14 ∴P (−3,−14)或(5,−2)②PM AM=OC OA =12 ∴ |ℎ||4−p|=12⑤联立③⑤解得 {p =2ℎ=1 或{p =4ℎ=0 (舍)或{p =0ℎ=−2∴P (2,1)或(0,−2)综上 得到点P (−3,−14)或(5,−2)或(2,1)或(0,−2).4.(1)解:将点B C 的坐标代入抛物线表达式得:{c =2−12×16+4b +c =0解得:{b =32c =2故抛物线的表达式为:y =−12x 2+32x +2(2)解:①∵B 是点A 关于抛物线对称轴的对称点 连接BC 交抛物线对称轴于点E 则点E 为所求点则点D E 重合设BC 的解析式为y =kx +b将B(4,0) C(0,2)代入解析式可得{0=4k +b b =2解得{k =−12b =2∴直线CB 的表达式为:y =−12x +2 由y =−12x 2+32x +2知 点D 的横坐标为−b 2a =32把x =32代入y =−12x +2 可得y =54∴E (32,54)②令y =−12x 2+32x +2=0 解得:x =−1或4 则点A(−1,0)由点A B C 的坐标得 AB =5 AC =√5 BC =√20∵AB 2=AC 2+BC 2∴△ABC 为直角三角形 且∠ACD =90°∵以C D E 为顶点的三角形与△ABC 相似则△CDE 为直角三角形当∠CE ′D 为直角时 如图则点E ′的坐标为E ′(32,2)当∠ECD 为直角时 如图∵∠ACB 为直角∴A,C,E 三点共线设AC 的解析式为y =k 1x +b 1把A (−1,0),C (0,2)代入可得{2=b 0=−x +b 解得{k =2b =2∴直线AC 的表达式为:y =2x +2当x =32时 y =2x +2=5即点E(32,5)综上点E的坐标为:(32,2)或(32,5).5.(1)解:∵A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4)∴c=4{4a−2b+4=016a+4b+4=0解得{a=−12 b=1∴抛物线解析式为y=−12x2+x+4(2)解:设直线BC的解析式为y=kx+b1∵点C的坐标为(0,4)B点坐标为(4,0)∴{4k1+b=0b=4∴{k1=−1b=4∴直线BC的解析式为y=−x+4∴点P的坐标为(m,−12m2+m+4)点Q的坐标为(m,−m+4)∴PQ=−12m2+m+4−(−m+4)=−12m2+2m=−12(m−2)2+2∵OC=OB=4∴∠B=45°∠BQM=∠PQN=45°∴PN=√22PQ=−√22m2+√2m=−√22(m−2)2+√2∴当m=2时PN有最大值√2(3)解:存在Q(43,83)或Q(83,43)理由:如图所示OC=4OA=2Q的坐标为(m,−m+4)∠COA=∠OMQ=90°当△OAC∽△MOQ时MQOM =OCOA=2即−m+4m=2解得m=43此时Q的坐标为(43,83)当△OAC∽△MQO时MQOM =OAOC=12即−m+4m=12解得m=83此时Q的坐标为(83,43)综上Q点坐标为(43,83)或(83,43).6.解:(1)设A(m,0)∵B(4,0),D(5,3)∴AB=4−m AB边上的高为3则由ΔABD的面积是3可得:12(4−m)×3=3解得m=2∴A(2,0)设抛物线解析式为y=a(x−2)(x−4)将D(5,3)代入得:3a=3解得a=1∴y=(x−2)(x−4)=x2−6x+8∵y=x2−6x+8=(x−3)2−1∴顶点坐标为(3,−1)故该抛物线的表达式为y=x2−6x+8顶点坐标为(3,−1)(2)如图过点D作DF⊥x轴于点F∵A(2,0),B(4,0),D(5,3)∴DF =3,AF =5−2=3,AB =4−2=2∴DF =AF∴∠DAB =∠DAF =45°(3)如图∵抛物线的表达式为y =x 2−6x +8令x =0 则y =8∴ C(0,8)设直线CD 解析式为y =kx +b将C(0,8),D(5,3)代入得{b =85k +b =3解得{k =−1b =8直线CD 解析式为:y =-x +8当y =0时 −x +8=0 解得x =8∴E(8,0)∵A(2,0),B(4,0),D(5,3)∴AB =4−2=2 AD =√(5−2)2+32=3√2,BD =√(5−4)2+32=√10 ①若ΔADB ∽ΔAPE 则AP AE =AD AB∴AP =AE⋅AD AB =3√2×62=9√2>AD∵点P 在线段AD 上∴此种情形不存在 不合题意②若ΔADB ∽ΔAEP 则AP AB =AE AD∴AP =AE ⋅AB AD =3√2=2√2 综上所述 AP 的长为2√2.7.(1)解:当x =0时 y =2当y =0时 即−12x 2+32x +2=0 解得:x 1=−1 x 2=4∠A(−1,0) B(4,0) C(0,2)(2)解:①设直线BC 的解析式为y =kx +b (k ≠0)把B(4,0) C(0,2)代入 得{4k +b =0b =2解得:{k =−12b =2∠直线BC 的解析式为y =−12x +2 ∠点P 的横坐标为t∠M (t,−12t +2) N (t,−12t 2+32t +2) 当点P 在y 轴的左侧 即−1≤t <0时由题意得:s =−12t +2−(−12t 2+32t +2)=−12t +2+12t 2−32t −2=12t 2−2t 当点P 在y 轴的右侧(包含原点) 即0≤t ≤4时 由题意得:s =−12t 2+32t +2−(−12t +2)=−12t 2+32t +2+12t −2=−12t 2+2t 综上 s ={12t 2−2t (−1≤t <0)−12t 2+2t (0≤t ≤4)②如图 当△OP 1N 1∽△COB 时可得OP 1CO =N 1P 1BO 即t 2=−12t 2+32t+24∠−t 2+3t +4=4t整理得:t 2+t −4=0 解得:t 1=−1+√172 t 2=−1−√172(不合题意 舍去)当△OP2N2∽△BOC时可得OP2BO =N2P2CO即t4=−12t2+32t+22∠−2t2+6t+8=2t整理得:t2−2t−4=0解得:t3=1+√5t4=1−√5(不合题意舍去)综上点P的坐标为(−1+√172,0)和(1+√5,0).8.解:(1)将A(−8,0)B(−2,12)分别代入y=ax2+bx+8中得{a×(−8)2−8b+8=0a×(−2)2−2b+8=12解得{a=−12 b=−3∴抛物线L1的解析式为y=−12x2−3x+8=−12(x+3)2+252则:顶点为(−3,252)∵抛物线L1与抛物线L2关于y轴对称顶点也关于y轴对称开口方向及大小均相同即二次项系数相同∴抛物线L2的顶点为(3,252)∴抛物线L2的解析式为y=−12(x−3)2+252=−12x2+3x+8.故抛物线L2的解析式为y=−12x2+3x+8.(2)如图存在点M 使△MNA′与△ACB′相似.由题意得:A′(8,0) B′(2,12) C (2,0) N (3,0) ∴ AC =10 B′C =12 A′N =5 ∵ ∠A′NM =∠ACB′=90°∴ △A′MN 与△AB′C 相似 可以分两种情况: ①当△AB′C ∽△A′MN 时 则MNNA′=B′C AC=1210=65∴ MN =6 即点M (3,−6)此时 抛物线L 3的表达式为y =−12(x −3)2−6=−12x 2+3x −212.②当△AB′C ∽△MA′N 时 同理可得:点M (3,−256)此时 抛物线L 3的表达式为y =−12(x −3)2−256=−12x 2+3x −263故:函数L 3的解析式为:y =−12x 2+3x −212或y =−12x 2+3x −263.9.解:(1)将A(−3,0),B(1,0)代入抛物线解析式中得:{9a −3b +3=0a +b +3=0解得:{b =−2c =3∠抛物线解析式为y =−x 2−2x +3=−(x 2+2x)+3 =−(x 2+2x +1−1)+3=−(x +1)2+4 当x =−1时 y =4 ∠顶点D(−1,4)(2)当x =0时 ∠点C 的坐标为(0,3)∠AC =√32+32=3√2,CD =√12+12=√2,AD =√22+42=2√5 ∠AC 2+CD 2=AD 2∠△ACD 为直角三角形 ∠ACD =90°. 设直线AC 的解析式为y =kx +b 根据题意得:{−3k +b =0b =3解得:{k =1b =3∠直线AC 的解析式为y =x +3 ∠A(−3,0) D(−1,4)∠线段AD 的中点N 的坐标为(−2,2) 过点N 作NP//AC 交抛物线于点P 设直线NP 的解析式为y =x +c 则−2+c =2 解得:c =4 ∠直线NP 的解析式为y =x +4由y =x +4,y =−x 2−2x +3联立得:−x 2−2x +3=x +4 解得:x 1=−3−√52,x 2=−3+√52∠P (−3−√52,5−√52)或(−3+√52,5+√52)(3)分三种情况: ①△CMB ∽△ACD∴CM CB =ACAD ∴CM √10=3√22√5∴CM =3此时M 恰好为原点 M(0,0) ②△MCB ∽△ACD∴MC AC =CBCD∴3√2=√10√2 ∴CM =3√10设M(x,0)∵OM 2+OC 2=CM 2 ∴x 2+32=(3√10)2∴x 2=81∴x =−9或x =9(舍去) 此时M(−9,0) ③△CBM ∽△ACD∴CB AC =CM AD∴√103√2=CM2√5 ∴CM =103设M(x,0)∴|CM −OC |=103−3=13∴x =−13或x =13(舍去)此时M 在y 轴负半轴上 M (0,−13)综上所述 点M 的坐标为(0,0)或(−9,0)或(0,−13).10.(1)解:由题意得 函数图象经过点A (﹣4 3) B (4 4) 故可得:{3=148(−4+2)(−4a +b )4=148(4+2)(4a +b )解得:{a =13b =−20故二次函数关系式为: y =148(x +2)(13x −20)=1348x 2+18x −56.故答案为:y =1348x 2+18x −56.(2)解:△ACB 是直角三角形 理由如下: 由(1)所求函数关系式y =1348x 2+18x −56当y =0时 0=1348x 2+18x −56解得x 1=−2 x 2=2013∠点C 坐标为(﹣2 0) 点D 坐标为(2013 0) 又∠点A (﹣4 3) B (4 4) ∠AB =√(4+4)2+(4−3)2=√65 AC =√(−2+4)2+(0−3)2=√13BC =√(4+2)2+(4−0)2=2√13∠满足AB 2=AC 2+BC 2 ∠△ACB 是直角三角形. (3)解:存在 点P 的坐标为(−50133513)或(−1221328413).设点P 坐标为(x 148(x +2)(13x ﹣20)) 则PH =148(x +2)(13x ﹣20) HD =﹣x +2013 若∠DHP ∠∠BCA 则PH AC=DH BC即148(x+2)(13x−20)√13=−x+20132√13解得:x =−5013或x =2013(因为点P 在第二象限 故舍去) 代入可得PH =3513即P 1坐标为(−50133513)若∠PHD ∠∠BCA 则PH BC=HD AC即148(x+2)(13x−20)2√13=−x+2013√13解得:x =−12213或 x =2013(因为点P 在第二象限 故舍去). 代入可得PH =28413即P 2坐标为:(−1221328413).综上所述 满足条件的点P 有两个 即P 1(−50133513)或P 2(−1221328413).11.(1)解:∠直线y =−x +4与x 轴交于点A 与y 轴交于B ∴当x =0时 y =4 当y =0时 ∴A (4,0) B (0,4)又抛物线y =−x 2+bx +c 经过A B 两点 把A (4,0) B (0,4)代入得:{−16+4b +c =0c =4解得:{b =3c =4∠抛物线的解析式是y =−x 2+3x +4 (2)解:作PE ⊥AC 垂足为E 如图所示∠∠DFA =∠PEA =∠BOA =90° ∠DF ∥PE ∥BO由(1)得:抛物线的解析式是y =−x 2+3x +4 抛物线对称轴是x =−b2a =−32×(−1)=32 ∠BD =3PD①当P 在对称轴右侧时 OF ∶OE =BD ∶BP =3∶4 点P 的横坐标是2 y =−4+6+4=6 ∠点P 的坐标是(2,6)②当P 在对称轴左侧时 OF ∶OE =BD ∶BP =3∶2 点P 的横坐标是1 y =−1+3+4=6 ∠点P 的坐标是(1,6)∠点P 的坐标是(2,6)或(1,6)(3)解:∠抛物线对称轴与x轴交于点F对称轴是x=−b2a =−32×(−1)=32∠F(32,0)∠点A C关于对称轴对称∠CF=AF=4−32=52∠C(−1,0)∠A(4,0)B(0,4)∠OC=1OA=OB=4∠△ABO是等腰直角三角形∠∠BAO=∠ABO=45°设P(t,−t2+3t+4)过点P作PM∥y轴交直线AB于点M过点M作MN⊥y轴于点N 当点P在AB上方点Q在点B的右侧时如图所示则M(t,−t+4)MN=t∠PM=−t2+3t+4−(−t+4)=−t2+4t∠△BMN是等腰直角三角形∠BM=√2MN=√2t∠∠PMQ=∠ABO=45°∠PQM=90°∠△PMQ是等腰直角三角形∠PQ=MQ=√22PM=√22(−t2+4t)∠BQ=BM−MQ=√2t−√22(−t2+4t)=√22t2−√2t若△BPQ∼△BCO则PQOB =BQOC∠√22(−t 2+4t )4=√22t 2−√2t 1解得:t 1=0(舍) t 2=125当t 2=125时 −t 2+3t+4=−(125)2+3×125+4=13625∠P (125,13625) M (125,85) ∠PM =13625−85=9625过点Q 作QK ⊥PM 轴于点K 则QK =12PM =12×9625=4825∠点Q 的横坐标为125−4825=1225 纵坐标为−1225+4=8825 ∠Q (1225,8825)若△BPQ ∼△CBO 则PQ OC =BQOB ∠√22(−t 2+4t )1=√22t 2−√2t 4解得:t 1=0(舍) t 2=185当t 2=185时 −t 2+3t+4=−(185)2+3×185+4=4625∠P (185,4625) M (185,25) ∠PM =4625−25=3625 同理可得:Q (7225,2825)当点P 在AB 上方 点Q 在点B 的左侧时 如图所示则M (t,−t+4) MN =t∠PM =−t 2+3t+4−(−t+4)=−t 2+4t同理可得:PQ =MQ =√22PM =√22(−t 2+4t ) BM =√2MN =√2t∠BQ =BM −MQ =−√22t 2+√2t 若△BPQ ∼△CBO 则PQOB =BQOC ∠√22(−t 2+4t )4=−√22t 2+√2t 1解得:t 1=0(舍) t 2=43当t 2=43时 −t 2+3t+4=−(45)2+3×43+4=569∠P (43,569)同理可得:Q (−49,329) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22(−t 2+4t )1=−√22t 2+√2t 4解得:t 1=0(舍) t 2=143(舍去)当点P 在AB 下方 对称轴左侧的抛物线上时 则t <0 如图所示∠PM =−t+4−(−t 2+3t+4)=t 2−4t ME =−t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =−√2t∠BQ =MQ −BM =√22t 2−√2t若△BPQ ∼△CBO 则PQOB =BQOC ∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQOC =BQOB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当点P 在AB 下方 对称轴右侧的抛物线上时 则t>4 如图所示∠PM =t 2−4t ME =t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =√2t∠BQ =BM+MQ =√22t 2−2√2t+√2t =√22t 2−√2t若△BPQ ∼△CBO 则PQOB=BQ OC∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当t 2=143时 −t 2+3t+4=−(143)2+3×143+4=−349∠P (143,−349)同理可得:Q (569,−209)综上所述:点Q 的坐标为Q 1(7225,2825),Q 2(1225,8825),Q 3(569,−209),Q 4(−49,409) 12.解:(1)∠抛物线y =ax 2+bx +2过点A (-3 0) B (1 0)∠{9a −3b +2=0a +b +2=0 解得:{a =−23b =−43∠二次函数的关系解析式为y =−23x 2−43x +2.(2)存在点Q (-2 2)或(−34,218)使以点B Q E 为顶点的三角形与△AOC 相似.理由如下:如图①设点E 的横坐标为c 则点Q 的坐标为(c −23c 2−43c +2)∠BE =1-c QE =−23c 2−43c +2①OA 和BE 是对应边时 ∠∠BEQ ∠∠AOC ∠OA BE=OC QE即31−c =2−23c 2−43c+2整理得 c 2+c -2=0 解得c 1=-2 c 2=1(舍去)此时 −23×(−2)2−43×(−2)+2=2点Q (-2 2)②OA 和QE 是对应边时 ∠∠QEB ∠∠AOC ∠OA QE=OC BE 即3−23c 2−43c+2=21−c整理得 4c 2-c -3=0解得c 1=−34 c 2=1(舍去)此时−23×(−34)2−43×(−34)+2=218点Q(−34,21 8)综上所述存在点Q(-2 2)或(−34,218)使以点B Q E为顶点的三角形与∠AOC相似.(3)①如图2当MC//AQ且MC=AQ时M与C关于对称轴x=-1对称∠AQ=MC=2∠Q1(-1 0)Q2(-5 0)②如图3当AC//MQ且AC=MQ时因为平行四边形是中心对称图形并且中心对称点在x轴上所以点M到x轴的距离为2.设M(m23m2−43m+3)∠2 3m2−43m+3=-2∠m2+2m-6=0∠m=-1±√7∠QG=3∠Q 3(2+√7 0) Q 4(2−√7 0).综上所述 满足条件的点Q 的坐标为:Q 1(-5 0) Q 2(-1 0) Q 3(2+√7 0) Q 4(2−√7 0).13.解:(1)将点A (−4,0) 点B (2,0) 点C (0,−4)代入y =ax 2+bx +c得{c =−416a −4b +c =04a +2b +c =0∠{a =12b =1c =−4∠y =12x 2+x −4(2)如图 过P 点作x 轴垂线交AC 于点Q设直线AC 的解析式为y =kx +b∠{−4k +b =0b =−4∠{k =−1b =−4∠y =−x −4设P (t,12t 2+t −4) 则Q (t,−t −4) ∠PQ =−t −4−12t 2−t +4=−12t 2−2t∠S △ACP =12×4×(−12t 2−2t)=−t 2−4t =−(t +2)2+4∠当t =−2时 S △ACP 有最大值∠P (−2,−4)(3)抛物线的对称轴为x =−1 顶点D (−1,−92)设E (m,12m 2+m −4) 则F (−1,12m 2+m −4)∠EF =−1−m DF =12m 2+m −4+92=12m 2+m +12∠点E 是直线AD 下方该抛物线上的一个动点∠−4<m <−1∠B (2,0) C (0,−4)∠OB =2 OC =4∠tan∠OCB =12当∠EDF =∠OCB 时 △EDF ∼△BCO∠EF FD =12∠2(−1−m)=12m 2+m +12解得m =−1(舍)或m =−5(舍)当∠FED =∠OCB 时 △EDF ∼△DBO∠EF FD =2∠2(12m 2+m +12)=−1−m解得m =−1(舍)或m =−2∠E (−2,−4)综上所述:当以D E F 为顶点的三角形与△BOC 相似时 E 点坐标(−2,−4).14.(1)解:①由m =1可知点C (0 ﹣3)∵抛物线与x 轴交点为A(−3,0) B(1,0)∴抛物线解析式为:y =a(x +3)(x −1)将点C(0,−3)代入上式 得a ×3×(−1)=−3∴a =1∴抛物线的解析式为:y =(x +3)(x −1)=x 2+2x −3②由①可知抛物线解析式为y =x 2+2x −3 则设P(x,x 2+2x −3) 设直线AC 的解析式为y =kx +b由题意可得{−3k +b =0b =−3解得{k =−1b =−3∴直线AC 的解析式为y =−x −3如图1 过点P 作PN ⊥x 轴 交AC 于N 则PN//OC∴点N(x,−x −3)∴PN =(−x −3)−(x 2+2x −3)=−x 2−3x∵PN//OC∴△PQN ∽△OQC∴ PQ OQ =PN OC∴ PQ OQ =−x 2−3x 3=−(x+32)2+943 ∴当x =−32时 PQ OQ 的最大值为34 (2)解:∵y =mx 2+2mx −3m =m(x +1)2−4m∴顶点D 坐标为(−1,−4m)如图2 过点D 作DE ⊥x 轴于点E 则DE =4m OE =1 AE =OA −OE =2 过点D 作DF ⊥y 轴于点F 则DF =1 CF =OF −OC =4m −3m =m由勾股定理得:AC2=OC2+OA2=9m2+9CD2=CF2+DF2=m2+1AD2=DE2+AE2=16m2+4∵ΔACD与ΔBOC相似且ΔBOC为直角三角形∴ΔACD必为直角三角形i)若点A为直角顶点则AC2+AD2=CD2即:(9m2+9)+(16m2+4)=m2+1整理得:m2=−12∴此种情形不存在ii)若点D为直角顶点则AD2+CD2=AC2即:(16m2+4)+(m2+1)=9m2+9整理得:m2=12∵m>0∴m=√2 2此时可求得ΔACD的三边长为:AD=2√3CD=√62AC=3√62ΔBOC的三边长为:OB=1OC=3√22BC=√222两个三角形对应边不成比例不可能相似∴此种情形不存在iii)若点C为直角顶点则AC2+CD2=AD2即:(9m2+9)+(m2+1)=16m2+4整理得:m2=1∵m>0∴m=1此时可求得ΔACD的三边长为:AD=2√5CD=√2AC=3√2ΔBOC的三边长为:OB=1OC=3BC=√10∵ADBC =ACOC=CDOB=√2∴满足两个三角形相似的条件∴m=1.综上所述当m=1时以A D C为顶点的三角形与ΔBOC相似.15.(1)解:将A(−2,0),B(8,0),C(0,4)三点坐标代入y=ax2+bx+c中得{4a−2b+c=0c=464a+8b+c=0解得{a=−14b=32c=4所以抛物线表达式为:y=−14x2+32x+4.(2)解:根据题意得:∵A(−2,0),B(8,0),C(0,4)∠OA=2,OB=8,OC=4∴AOOC=COBO=12又∠AOC=∠COB=90°∴△AOC∽△COB∴∠ACO=∠CBO∴∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°当△AOC∽△PDC时∴∠ACO=∠PCD∵∠ACO+∠OCB=90°∴∠PCD+∠OCB=90°∴PC⊥OC∴点P的纵坐标为4当y=4时有−14x2+32x+4=4解得x=6或x=0(舍)∴点P的坐标为(6,4)当△AOC∽△CDP时∠P′CD′=∠CAO作P′G⊥y轴于点G过点P′作P′H∥y轴交BC于点H如图∴∠P′HC=∠BCO∵AOOC=COBO=12,∠AOC=∠BOC=90°∴△AOC∽△COB∴∠OCB=∠OAC∴∠P′CH=∠P′HC∴P′C=P′H设直线BC的解析式为y=k′x+b′把点B(8,0),C(0,4)代入得:{8k ′+b′=0b′=4解得:{k′=−12b′=4∠直线BC的解析式为y=−12x+4设P′(m,−14m2+32m+4)则H(m,−12m+4)∴P′C=P′H=−14m2+32m+4−(−12m+4)=−14m2+2m在Rt△P′GC中由勾股定理得P′C2=P′G2+GC2即(−14m2+2m)2=m2+(−14m2+32m)2解得m=3∴P′(3,254)综上点P的坐标为:(6,4)或(3,254).(3)解:过N作NF⊥MC交MC于点F过N点作NG⊥AC交CA的延长线于点G则∠G=∠CFN=90°∴∠ACM+∠GNF=180°设CM与x轴交于K由旋转得:AN=MN∵∠ANM+∠ACM=180°∴∠ANM=∠GNF∴∠ANG=∠MNF∵∠G=∠MFN=90°∴△NGA≌△NFM∴NG=NF∴NC平分∠ACM∵CO⊥AB ∴OK=OA=2∴K(2,0)∴CK的解析式为:y=−2x+4∴−2x+4=−14x2+32x+4解得:x1=0,x2=14∴M(14,−24)设N(0,n)∵AN=MN∴(−2)2+n2=142+(−24−n)2解得:n=−16所以点N坐标为(0,−16).16.解:(1)∠抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点∠当m=2∠y=−x2+4x∠x1=0x2=4∠A(0,0)B(4,0).(2)①∠y=−x2+2mx−m2+2m∠对称轴x=−b2a=m∠顶点坐标C(m,2m)延长CD交x轴于点E设点E(a,0)a>m∠∠COB=∠OCD∠|OE|=|CE|∠a2=(a−m)2+(2m)2解得:a=52m∠点E的坐标为:(52m,0)设直线CE的解析式为:y=k1x+b1(k≠0)∠{2m=km+b 0=52mk+b解得:{k=−43b=103m∠y=−43x+103m∠−43x+103m=−x2+2mx−m2+2m解得:x1=m(舍)x2=m+43∠点D(m+43,2m−169)∠CD=209.②设直线OC的解析式为:y=k1x(k≠0)∠y=2x∠设点P(b,2b)∠OP=√b+24b2=√5b CP=√(m−b)2+(2m−2b)2=√5(m−b)当△OPT∼△CDP∠OP CD =OTCP∠√5b×920=√5(m−b)整理得:9b2−9mb+4t=0∠Δ>0∠81m2−4×9×4t>0∠9m2−16t>0当△OTP∼△CDP∠OT CD =OPCP∠t×920=√5b√5(m−b)整理得:b =9tm 20+9t∠仅存在一个点P∠不符合题意∠综上 t 和m 之间的数量关系为:9m 2−16t >0.17.(1)解:∵抛物线y =−x 2+bx +c 经过A (0,3)和B (72,−94)两点∴将A (0,3)和B (72,−94)代入y =−x 2+bx +c 得{c =3−(72)2+72b +c =−94 解得{b =2c =3 ∴抛物线的解析式为y =−x 2+2x +3(2)解:在 y =−x 2+2x +3中 当y =0时 −x 2+2x +3=0 解得x =3或x =−1 ∠G(3,0)∠OG =3∠A(0,3),P(2,3)∠OA =3,AP =2,AP ∥x 轴∠S 四边形APGO =AP+OG 2⋅OA =2+32×3=7.5(3)解:设直线AB 的解析式为y =kx +n 把A (0,3)和B (72,−94)代入得{n =372k +n =−94解得{k =−32n =3∴直线AB 的解析式为y =−32x +3 在y =−32x +3 当y =0时 −32x +3=0 解得x =2 ∴C (2,0)联立{y =−x 2+2x +3y =−32x +3 解得x 1=0 x 2=72 ∵PD ⊥x 轴 PE ∥x 轴∴∠ACO =∠DEP∴Rt △DPE ∽Rt △AOC∴ PD PE =OA OC =32 即PE =23PD∴PD +PE =53PD设点P (a,−a 2+2a +3) 0<a <72 则D (a,−32a +3)∴PD =(−a 2+2a +3)−(−32a +3)=−(a −74)2+4916 ∴PD +PE =−53(a −74)2+24548∵−53<0 抛物线开口向下 PD +PE 有最大值 0<a <72 ∴当a =74时 PD +PE 有最大值为24548(4)解:∵PD ⊥x 轴∴PD ∥y 轴 即∠OAC =∠PDA根据题意 分两种情况:①当△AOC ∽△DPA 时∴∠DPA =∠AOC =90°∵PD ⊥x 轴 ∠DPA =90° A (0,3)∴点P 纵坐标是3 横坐标x >0 即−x 2+2x +3=3 解得x =2∴点D 的坐标为(2,0)∵PD ⊥x 轴∴点P 的横坐标为2∴点P (2,3)②当△AOC ∽△DAP 时∴ ∠APD =∠ACO过点A 作AG ⊥PD 于点G 如图所示:∴△APG ∽△ACO∴ PG AG =OC AO设点P (n,−n 2+2n +3) 则D (n,−32n +3) 则−n 2+2n+3−3n =23 解得n =43 ∠P (43,359)综上所述 P (2,3)或P (43,359).18.(1)解:把点A(−2,0) C(0,4)代入y =ax 2+23x +c (a ≠0)得:{4a −43+c =0c =4 解得:{a =−23c =4 ∠抛物线的解析式为y =−23x 2+23x +4 (2)解:过点D 作DF∥AB 交BC 于点F当y =0时 有−23x 2+23x +4=0 解得x 1=−2,x 2=3∠B (3,0)设直线BC 的解析式为:y =kx +b代入B (3,0) C(0,4)得:{3k +b =0b =4解得{k =−43b =4∠直线BC 的解析式为:y =−43x +4 设点D 的横坐标为t 则D (t ,−23t 2+23t +4) ∠F (12t 2−12t,−23t 2+23t +4) ∠DF =t −(12t 2−12t)=−12t 2+32t∠A(−2,0) B(3,0)∠AB =5∠DF∥AB∠△DEF∽△AEB∠DF AB =DE AE∠−12t 2+32t 5=DE 5DE =15 ∠−12t 2+32t =1解得:t 1=1 t 2=2∠点D 的坐标为(1,4)或(2,83)(3)解:存在点P 使tan∠MBP =12 ①当PB 在MB 上方时 过点M 作IM ⊥PB 交PB 于I 过I 作IJ ⊥y 轴于J则tan∠MBI =MI MB =12∠∠JMI +∠JIM =90° ∠JMI +∠OMB =90°∠∠JIM =∠OMB又∠∠IJM =∠MOB =90°∠△MIJ∽△BMO∠IJ MO=JM OB =IM MB ∠IJ 1=JM 3=12 ∠IJ =12 JM =32∠OJ =JM +OM =52∠I (12,52)设直线BI 的解析式为:y =mx +n代入B(3,0) I (12,52)得:{3m +n =012m +n =52 解得:{m =−1n =3∠直线BI 的解析式为:y =−x +3联立{y =−23x 2+23x +4y =−x +3解得:{x =−12y =72或{x =3y =0 (不合题意 舍去)∠此时点P 的坐标为(−12,72)②当PB 在MB 下方时 过点M 作KM ⊥P ′B 交P ′B 于K 过K 作KL ⊥y 轴于L 同理可得 点P 的坐标为(−3114,−7398)综上所述 点P 的坐标为(−12,72)或(−3114,−7398).19.(1)解:∠抛物线y =ax 2+bx +c 过点A (−1,0) B (2,0)∠抛物线的表达式为y =a (x +1)(x −2)将点C (0,2)代入y =a (x +1)(x −2) 得:2=−2a解得:a =−1∠抛物线的表达式为y =−(x +1)(x −2) 即y =−x 2+x +2设直线BC 的表达式为y =kx +t 过点B (2,0) C (0,2)∠{2k +t =0t =2解得:{k =−1t =2∠直线BC 的表达式为y =−x +2(2)∠点M 在直线BC 上且P (m,n )(m >0) PN ⊥x 轴 C (0,2)∠M (m,−m +2) OC =2∠CM 2=(m −0)2+(−m +2−2)2=2m 2 OM 2=m 2+(−m +2)2=2m 2−4m +4 当△OCM 为等腰三角形时①若CM =OM 则CM 2=OM 2即2m 2=2m 2−4m +4解得:m =1②若CM =OC 则CM 2=OC 2即2m2=4解得:m=√2或m=−√2(舍去)③若OM=OC则OM2=OC2即2m2−4m+4=4解得:m=2或m=0(舍去)综上所述m=1或m=√2或m=2(3)∠B(2,0)C(0,2)∠COB=90°∠OC=OB=2∠∠OCB=∠OBC=45°CB=√OC2+OB2=√22+22=2√2∠点P与点C相对应P(m,n)(m>0)∠△POQ∽△CBN或△POQ∽△CNB①若点P在点B的左侧则∠CBN=45°BN=2−m CB=2√2∠CNB=∠CON+∠OCN=90°+∠OCN>90°如图当△POQ∽△CBN即∠POQ=45°时∠P(m,m)此时直线OP的表达式为y=x∠直线OP:y=x与抛物线y=−x2+x+2交于点P(m,m)(m>0)∠−m2+m+2=m解得:m=√2或m=−√2(负值舍去)∠OP=√(√2)2+(√2)2=2∠OP BC =OQBN即2√2=2−√2解得:OQ=√2−1∠P(√2,√2)Q(0,√2−1)如图当△POQ∽△CNB即∠PQO=45°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−m2+m+2∠PQ=KPsin∠PQO =msin45°=√2m OQ=KQ−KO=m−(−m2+m+2)=m2−2∠PQ CB =OQNB即√2m2√2=m2−22−m解得:m=1+√133或m=1−√133(负值舍去)∠P(1+√133,7+√139)Q(0,4−2√139)②若点P在点B的右侧则∠CBN=135°BN=m−2如图当△POQ∽△CBN即∠POQ=135°时过点P作PK⊥y轴于K点∠P(m,−m)此时直线OP的表达式为y=−x PK=KQ=m KO=−(−m2+m+2)=m2−m−2∠m2−m−2=m解得:m=1+√3或m=1−√3(负值舍去)∠OP=PKsin∠POK =msin45°=√2m=√2(1+√3)=√2+√6∠OP BC =OQBN即√2+√62√2=1+√3−2解得:OQ=1∠P(1+√3,−1−√3)Q(0,1)如图当△POQ∽△CNB即∠PQO=135°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−(−m2+m+2)=m2−m−2∠PQ=KPsin∠PQK =msin45°=√2m OQ=KO−KQ=m2−m−2−m=m2−2m−2∠PQ CB =OQNB即√2m2√2=m2−2m−2m−2解得:m=1+√5或m=1−√5(负值舍去)∠P(1+√5,−3−√5)Q(0,−2)综上所述P(√2,√2)Q(0,√2−1)或P(1+√133,7+√139)Q(0,4−2√139)或P(1+√3,−1−√3)Q(0,1)或P(1+√5,−3−√5)Q(0,−2).20.解:(1)∵点A的坐标为(−1,0)∴OA=1.令x=0则y=−4∴C(0,−4)OC=4∵OC=OB∴OB=4∴B(4,0)设抛物线的解析式为y=a(x+1)(x−4)∵将x=0y=−4代入得:−4a=−4解得a=1∴抛物线的解析式为y=x2−3x−4∴a=1b=−3∵抛物线的对称轴为x=−−32×1=32C(0,−4)∵点D和点C关于抛物线的对称轴对称∴D(3,−4)设直线AD的解析式为y=kx+b.∵将A(−1,0)D(3,−4)代入得:{−k+b=03k+b=−4解得k=−1b=−1∴直线AD的解析式y=−x−1(2)∵直线AD的解析式y=−x−1∴直线AD的一次项系数k=−1∴∠BAD=45°.∵PM平行于y轴∴∠AEP=90°∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+√22MP+√22PM=(1+√2)PM.设P(a,a2−3a−4)则M(a,−a−1)则PM=−a−1−(a2−3a−4)=−a2+2a+3=−(a−1)2+4.∴当a=1时PM有最大值最大值为4.∴△MPH的周长的最大值=4×(1+√2)=4+4√2(3)在直线EP的右侧x轴下方的抛物线上存在点N过点N作NG⊥x轴交x轴于点G使得以点E N G为顶点的三角形与△AOC相似理由如下:设点G的坐标为(a,0)则N(a,a2−3a−4)①如图2.1若OAOC =EGGN时△AOC∠△EGN.则a−1−a2+3a+4=14整理得:a2+a−8=0.得:a=−1+√332(负值舍去)∴点G为(−1+√332,0)②如图2.2若OAOC =GNEN时△AOC∠△NGE则a−1−a2+3a+4=4整理得:4a2−11a−17=0得:a=11+√3938(负值舍去)∴点G为(11+√3938,0)综上所述点G的坐标为(−1+√332,0)或(11+√3938,0).。

2017中考数学全国试题汇编------二次函数和直角三角形综合题

2017中考数学全国试题汇编------二次函数和直角三角形综合题

2017中考数学全国试题汇编------二次函数和直角三角形综合题28(2017江苏徐州).如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【考点】HF:二次函数综合题.【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到==2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2=,EP2=,求得P2(,﹣),过P1作P1G⊥x轴于G,P1H ⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图2,当PB与⊙C相切时,OE的值最大,过E作EM⊥y轴于M,过P 作PF⊥y轴于F,根据平行线等分线段定理得到ME=(OB+PF)=,OM=MF= OF=,根据勾股定理即可得到结论.【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴==2,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴==2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴==,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4);(3)如图(3),当PB与⊙C相切时,PB与y 轴的距离最大,OE的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,∴ME=(OB+PF)=,OM=MF=OF=,∴OE==.故答案为:.26(2017江苏连云港).如图,已知二次函数()230y ax bx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.28(2017江苏淮安).如图①,在平面直角坐标系中,二次函数的图像与坐标轴交于,,A B C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接,AC BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=▲,a=▲;(2)在点,P Q运动过程中,APQ∆可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图像上是否存在点M,使P Q M∆是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(-32,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q'恰好落在线段BC上时,请直接写出点Q'的坐标.25(2017山东潍坊).如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P 在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E 点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y 轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+∴S△PEF)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。

2017年中考数学分类汇编二次函数压轴题14道

2017年中考数学分类汇编二次函数压轴题14道

中考数学分类汇编二次函数压轴题1.(2016•成都第28题)如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,﹣),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2.(2016•扬州第28题)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y轴交OC 于点N 。

若在点T 运动的过程中,2ON OM为常数,试确定k 的值。

xy图3NM OC Tx y图2(备用图)BAOxy13-1图1B AO二、与轴对称和等腰三角形性质有关的综合题3.(2016•益阳第21题)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.4.(2016•哈尔滨第27题)如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M =52,求点Q 的坐标.xyA D CBOxyA DCBO xyA DCBOKOyxC BA图2三、与图形的平移与旋转变换性质有关的综合题5.(2016•重庆第26题)如图1,二次函数1x 2-x 21y 2+=的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,已知二次函数2449y x =-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的半径为5,P 为⊙C 上一动点.
(1)点,B C 的坐标分别为B ( ),C ( );
(2)是否存在点P ,使得PBC ∆为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;
(3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= .
2在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过点A (﹣2,0),B (2,2),与y 轴交于点C .
(1)求抛物线y=ax 2+bx+2的函数表达式;
(2)若点D 在抛物线y=ax 2+bx+2的对称轴上,求△ACD 的周长的最小值;
(3)在抛物线y=ax 2+bx+2的对称轴上是否存在点P ,使△ACP 是直角三角形?若存在直接写出点P 的坐标,若不存在,请说明理由.
3如图1,抛物线c bx ax y ++=2
经过平行四边形ABCD 的顶点)30(,
A 、)01(,-
B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .
(1)求抛物线的解析式;
(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;
(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.
4.(12分)如图1,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,点C 为x 轴上一动点,且在点A 右侧,连接BC ,以BC 为边在第一象限内作等边△BCD ,连接AD 交BC 于E .
(1)①直接回答:△OBC 与△ABD 全等吗?
②试说明:无论点C 如何移动,AD 始终与OB 平行;
(2)当点C 运动到使AC 2=AEAD 时,如图2,经过O 、B 、C 三点的抛物线为y 1.试问:y 1上是否存在动点P ,使△BEP 为直角三角形且BE 为直角边?若存在,求出点P 坐标;若不存在,说明理由;
(3)在(2)的条件下,将y 1沿x 轴翻折得y 2,设y 1与y 2组成的图形为M ,函数y=x+m 的图象l 与M 有公共点.试写出:l 与M 的公共点为3个时,m 的取值.
5如图,在平面直角坐标系中,已知抛物线c bx x y ++=2过A ,B ,C 三点,点A 的坐 标是)0,3(,点C 的坐标是)3,0(-,动点P 在抛物线上.
(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)
(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,
说明理由;
(3)过动点P 作PE 垂直y 轴
于点E ,交直线AC 于点D ,过
点D 作x 轴的垂线.垂足为F ,
连接EF ,当线段EF 的长度最
短时,求出点P 的坐标.
6如图,抛物线y=-21x 2
+23x+2与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点. 设点P 的坐标为(m, 0),过点P 作x 轴的垂线l 交抛物线于点Q.
(1)求点A ,点B ,点C 的坐标;
(2)求直线BD 的解析式;
(3)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;
(4)在点P 的运动过程中,是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.
7如图,已知点A 的坐标为(-2,0),直线y =-43+3与x 轴,y 轴分别交于点B 和点C , 连接AC ,顶点为D 的抛物线y =ax 2+bx +c 过A ,B ,C 三点.
(1)请直接写出B ,C 两点的坐标,抛物线的解析式及顶点D 的坐标;
(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第一象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F 若四边形DEFP 为平行四边形,求点P 的坐标;
(3)设点M 是线段BC 上的一动点,过点M 作MN ∥AB ,交AC 于点N 点.Q 从点B 出发,以每秒l 个单位长度的速度沿线段BA 向点A 运动,运动时间
为t (秒).当t (秒)为何值时,存在∆QMN 为等腰直角三角形?
8如图,抛物线y=ax 2+bx+c 经过△ABC 的三个顶点,与y
轴相交于(0,),点A 坐标为(﹣1,2),点B 是点A
关于y 轴的对称点,点C 在x 轴的正半轴上.
(1)求该抛物线的函数关系表达式.
(2)点F 为线段AC 上一动点,过F 作FE⊥x 轴,FG⊥y 轴,垂足分别为E 、G ,当四边形OEFG 为正方形时,求出F 点的坐标.
(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在请说明理由.
9如图,抛物线bx ax y +=2过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对
称,过点B 作直线BH ⊥x 轴,交x 轴于点H .
(1)求抛物线的表达式;
(2)直接写出点C 的坐标,并求出△ABC 的面积;
(3)点P 是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P 的坐
标;
(4)若点M 在直线BH 上运动,点N 在x 轴上运动,当以点C 、M 、N 为顶点的三角形为
等腰直角三角形时,请直接写出此时△CMN 的面积.
10如图,在平面直角坐标系中,点O 为坐标原点,抛物线52++=bx ax y
经过点M (1,3)和N (3,5),与x 轴交于A 、B 两点,与y 轴交于C 点。

(1)试判断抛物线与x 轴交点的情况;
(2)平移这条抛物线,使平移后的抛物线经过A (-2,0)且与y 轴的交点为B 同时满足以A 、O 、B 为顶点的三角形是等腰直角三角形.请写出平移的过程,并说明理由。

1如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其
中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的
抛物线上一动点,过点P 作PC⊥x 轴于点C ,交AB 于点D .
(1)求抛物线的解析式;
第26题图 x y O A H C B 第26题 备用图
x y
O A H C
B
(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.
(3)当点P 运动到直线AB 下方某一处时,过点P 作PM⊥AB,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.
11如图,对称轴为直线21=x 的抛物线经过B (2,0)、C (0,4)两点,抛物线与x 轴的另一交点为A .
(1)求抛物线的解析式;
(2)若点P 为第一象限内抛物线上一点,设四边形COBP 的面积为S ,求S 的最大值;
(3)如图①,若M 是线段BC 上一动点,在x 轴上是否存在这样有点Q ,使∆MQC 为等腰
三角形且∆MQB 为直角三角形?若存在,求出Q 点坐标;若不存在,请说明理由.。

相关文档
最新文档