多元函数的微分中值定理与极值判定

合集下载

多元函数的极值与最值的求法

多元函数的极值与最值的求法
2.4数形结合法………………………………………………………………20
2.5柯西不等式法………………………………………………………………21
2.6向量法………………………………………………………………………22
2.7 利用极值求最值……………………………………………………………23
小结…………………………………………………………………………………25
1.2利用拉格朗日(Lagrange)乘数法求极值………………………………2
1.3利用几何模型法求解极值…………………………………………………3
1.4 通过雅可比(Jacobi)矩阵求条件极值…………………………………5
1.5利用参数方程求解条件极值………………………………………………11
1.6 利用方向导数判别多元函数的极值………………………………………12
1.7 用梯度法求极值……………………………………………………………15
2多元函数最值的求法……………………………………………………………17
2.1消元法………………………………………………………………………18
2.2均值不等式法………………………………………………………………18
2.3换元法………………………………………………………………………19
又方程(1)对x求偏导: ,得 , .
方程(1)对y求偏导: ,得 .
方程(2)对y求偏导: ,得 ,
在点(1,-1,6)有 ,且A<0,所以 是极大值。
在点(1,-1,2)处有 ,且A>0,所以 是极小值。
综上所述,知由方程 在点(1,-1,6)的某邻域内确定的函数, 是极大值;在点(1,-1,2)的某邻域内确定的函数, 是极小值.

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用1. 引言1.1 多个函数多介值的微分中值定理及其应用多个函数多介值的微分中值定理是微积分中的重要定理之一,它是多元函数微分中值定理的推广和应用。

在多个函数多介值的情况下,该定理可以帮助我们更准确地分析函数在不同点的变化情况。

我们需要了解多元函数的微分中值定理。

该定理告诉我们,如果一个函数在某个区域内是连续的且可微的,那么在这个区域内存在一点,该点的梯度等于函数在这个区域内平均变化率的值。

这个定理对于研究函数的变化趋势和最值点是非常有帮助的。

我们将探讨多个函数多介值的微分中值定理在实际问题中的应用。

这包括在经济学、物理学、工程学等领域中的具体案例分析,以及如何利用该定理来解决实际问题中的挑战。

多个函数多介值的微分中值定理及其应用是微积分中的重要内容,通过深入研究和实践,我们可以更好地理解和应用这一定理。

希望通过本文的介绍,读者可以对该定理有更深入的认识和理解。

2. 正文2.1 多元函数的微分中值定理多元函数的微分中值定理是微积分中的重要定理之一,它是一种关于多元函数的函数值与导数之间的关系的定理。

在单变量函数的微积分中,我们熟悉的是微分中值定理,它表达了函数在某个区间内的平均增长率与瞬时增长率相等的性质。

而对于多元函数,微分中值定理的表述则需要引入偏导数的概念。

多元函数的微分中值定理可以描述为:设函数f(x,y)在闭区域D上连续且在开区域D内可微,且对于P(x_1,y_1)和Q(x_2,y_2)属于D,则存在一点C(x_0,y_0)属于线段PQ,使得f(x_2,y_2) - f(x_1,y_1) = \frac{\partial f}{\partial x}(x_0,y_0)(x_2 - x_1) + \frac{\partial f}{\partial y}(x_0,y_0)(y_2 - y_1)其中\frac{\partial f}{\partial x}和\frac{\partial f}{\partial y}分别表示f(x,y)对x和y的偏导数。

数学分析 第八讲 微分积分中值定理和极值

数学分析 第八讲 微分积分中值定理和极值

第八讲 微分与积分中值定理和函数极值§8.1 微分与积分中值定理一、知识结构 1、微分中值定理(1) 罗尔(Rolle )中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导;(iii))()(b f a f =,则在()b a ,内至少存在一点ξ,使得0=')(ξf .(2)拉格朗日(Lagrange)中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导,则在()b a ,内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.(3)柯西中值(Cauchy)定理 若函数)(x f 和)(x g 满足下列条件:(i) )(x f 和)(x g 在闭区间[]b a ,上连续; (ii) )(x f 和)(x g 在开区间()b a ,内可导,(iii))(x f '和)(x g '不同时为零; (iv))()(b g a g ≠,则在()b a ,内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ.2、积分中值定理 (1)积分第一中值定理若函数)(x f 在[]b a ,上连续,则至少存在一点[]b a ,∈ξ,使得()⎰-=baa b f dx x f )()(ξ.(2)推广的积分第一中值定理若函数)(),(x g x f 在[]b a ,上连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ.3、积分第二中值定理 若函数)(x f 在[]b a ,上连续,(i)若函数)(x g 在[]b a ,上单调递减, 且0≥)(x g , 则存在[]b a ,∈ξ,使得⎰⎰=baadx x f a g dx x g x f ξ)()()()(.(ii)若函数)(x g 在[]b a ,上单调递增, 且0≥)(x g , 则存在[]b a ,∈η,使得⎰⎰=ba bdx x f b g dx x g x f η)()()()(.3、泰劳公式(微分中值定理的推广)麦克劳林公式 (1) 一元函数)(x f y =泰劳公式泰劳公式产生的背景: 将函数)(x f ()(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数) 近似的表示为关于)(0x x -的一个n 次多项式,由于多项式的算法是好算法,我们可以用关于)(0x x -的一个n 次多项式来求函数)(x f 在某点(()b a x ,∈)的近似值.定理1 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个余项)(x R n 之和:(x)R )x (x n!)(x f)x )(x (x f )f(x f(x)n n(n)+-++-'+=00000!11 ,其中()()()()101!1)(++-+=n n n x x n fx R ξ(拉格朗日型余项),这里ξ是属于x 与0x 之间的某个值.或, 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个当0x x →时的n)x (x 0-的高阶无穷小之和:()()nn(n)x x o )x (x n!)(x f)x )(x (x f )f(x f(x)000000!11-+-++-'+=其中()n )x (x o 0-为当0x x →时n)x (x 0-的高阶无穷小.(2)麦克劳林公式定理2 如果函数)(x f 在含有0的某个开区间()b a ,内具有直到1+n 阶地导数,则当()b a x ,∈时, )(x f 可以表示为x 的一个n 次多项式与一个余项)(x R n 之和:(x)R x n!)(x fx !)(f )x (f )f(f(x)n n(n)+++''+'+=022000 ,其中()()()11!1)(+++=n n n x n x fx R θ,(10<<θ).2、二元函数),(y x f z =的泰劳公式和麦克劳林公式 (1)泰劳公式定理3 如果函数),(y x f 在含有()00,y x 的某一领域内连续且有直到1+n 阶的连续偏导数,()k y h x ++00,为此邻域内任一点,则有()200000000100001,,,,2!11,,,1nn f(x h y k)f(x y )h k f(x y )h k f(x y )x y x y h k f(x y )h k f(x h y k)n!x y n !xy θθ+⎛⎫⎛⎫∂∂∂∂++=++++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂+++++++ ⎪ ⎪∂∂+∂∂⎝⎭⎝⎭ 其中10<<θ,记号()()000000,,,y x kf y x hf )y f(x y k xh y x +=⎪⎪⎭⎫⎝⎛∂∂+∂∂, ()()()00200002002,,2,,y x f k y x hkf y x f h )y f(x y k x h yy xy xx ++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂, ……)y f(x yx kh C)y f(x y k x h pm pm pm p mp pmm00000,,--=∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∑,()k)y h f(x y k x h !n x R n n θθ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=+001,11)(, 10<<θ 称为拉格朗日型余项.(2)麦克劳林公式定理4 如果函数),(y x f 在含有()0,0的某一领域内连续且有直到1+n 阶的连续偏导数,()k h ,为此邻域内任一点,则有+⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=)f y y x x )f(y y x x )f(y)f(x 0,0!210,00,0,2()y)x f(y y x x !n )f(y y x x n!n n θθ,110,011+⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+,其中10<<θ.二、解证题方法 1、微分中值定理例1 (山东师范大学2006年)设)(x P 为多项式函数,试证明:若方程0=')(x P 没有实根,则0=)(x P 至多有一个实根.证明 用反证法.因为)(x P 为多项式函数, 所以)(x P 在()+∞∞-,上连续并且可导. 如果0=)(x P 至少有两个实根, 不妨设为21ξξ<,则021==)()(ξξP P .在闭区间上用罗尔定理得,存在()21ξξη,∈,使得0=')(ηP . 这与方程0=')(x P 没有实根发生矛盾, 所以0=)(x P 至多有一个实根.例2 (河北大学2005年)设)(x f 可导,λ为常数,则)(x f 的任意两个零点之间必有0='+)()(x f x f λ的根.证明 不妨设)(x f 的任意两个零点为ηξ<. 令xex f x F λ)()(=,则0==)()(ηξF F . 因为)(x F 在[]ηξ,上连续, 在()ηξ,内可导,且0==)()(ηξF F , 所以, 由罗尔定理得:存在()ηξ,∈x ,使得0=')(x F ,即0='+='xxe xf ex f x F λλλ)()()(,进而有0='+)()(x f x f λ, 所以()ηξ,∈x 是0='+)()(x f x f λ的根.例3(电子科技大学2002年))(x f 在[]10,上二次可导,010==)()(f f ,试证明:存在()10,∈ξ,使得()())(ξξξf f '-=''211.证明 因为)(x f 在[]10,上连续, )(x f 在()10,内可导, 且010==)()(f f ,所以由罗尔定理得:存在()10,∈ξ,使得0=')(ξf .令⎪⎩⎪⎨⎧=∈'=-101011x x ex f x g x ,),[,)()(. 因为)(x g 在[]10,上连续,在()10,内可导, 且()()01==g g ξ, 所以由罗尔定理知, 存在()1,ξξ∈', 使得()0='ξg ,即()())(ξξξf f '-=''211.例4(山东科技大学2005年)设()x f 在整个数轴上有二阶导数,且00=→xx f x )(lim,01=)(f ,试证明: 在()10,内至少存在一点β,使得()0=''βf .证明 因为()x f 在整个数轴上有二阶导数,所以()x f 在整个数轴上连续. 进而0lim )(lim )(lim )(lim )0(0000=⋅=⎥⎦⎤⎢⎣⎡==→→→→x x x f x x x f x f f x x x x . 又因为01=)(f , 所以函数在()10,内满足罗尔定理的条件, 进而存在()10,∈α,使得0=')(αf . 又因00000=-=-='→→xx f xf x f f x x )(l i m)()(l i m)(, 并且()x f '在[]α,0上连续, 在()α,0内可导, 所以()x f '在[]α,0上满足罗尔定理的条件, 进而存在()αβ,0∈,使得()0=''βf .例5(汕头大学2005年) 设()x f 在闭区间[]b a ,上有二阶导数,且)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 试证明: 存在()b a ,∈ξ,使得0='')(ξf .证明 由于)(x f 在[]b a ,上连续, 所以)(x f 在[]b a ,上取得最大值和最小值. 又因为)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 所以存在()b a ,,∈21ξξ, 不妨设21ξξ<,使得()21ξξf f ),(是)(x f 在[]b a ,上的最大值和最小值. 进而()021='='ξξf f )(.由()x f 在闭区间[]21ξξ,上有二阶导数, 所以()x f '在闭区间[]21ξξ,上连续, 在开区间()21ξξ,内可导. 由罗尔定理知, 存在()21ξξξ,∈,使得0='')(ξf . 进而存在()b a ,∈ξ,使得0='')(ξf .例6(北京工业大学2005年)设)(x f 在()+∞∞-,上可导, 试证明:0=')(x f 当且仅当)(x f 为一常数.证明 (1)充分性 因为)(x f 为一常数C , 所以()0000==∆-=∆-∆+='→∆→∆→∆x x x xC C xx f x x f x f lim lim)(lim)(.(2)必要性对任意的()+∞∞-∈,,21x x , 不妨设21x x <. 显然()x f 在闭区间[]21x x ,上满足拉格朗日中值定理的条件, 所以存在()21x x ,∈ξ, 使得()()()()2121x f x f x x f -=-'ξ.因为()0='ξf , 所以()()21x f x f =. 进而)(x f 为一常数.例7(南京大学2001年)设)(x f 在()10,内可导, 且1<')(x f , ()10,∈x .令⎪⎭⎫⎝⎛=n f x n 1(2≥n ), 试证明n n x ∞→lim 存在且有限.分析 ()1111n m n m x x x x f f f n m n m εξ⎛⎫⎛⎫⎛⎫'-<⇐-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11111n f nmnmnmmξε'=-<-<=<.证明 对0>∀ε, 存在⎥⎦⎤⎢⎣⎡=11,εN ,当N m n >>时, 有ε<=<-=-=-mnmn nmm n mn x x m n 111, 所以()()εξξ<=<-<-'=⎪⎭⎫ ⎝⎛-'=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-m nm n m n m n f m n f m f n f x x m n 111111111,进而由柯西收敛准则知, n n x ∞→lim 存在且有限.例8(华东师范大学2001年)证明: 若函数)(x f 在有限区域()b a ,内可导, 但无界,则其导函数)(x f '在()b a ,内必无界. 证明 用反证法 若函数)(x f '在()b a ,内有界, 则存在正数M ,使得M x f ≤')(,()b a x ,∈. 由拉格朗日中值定理得:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=22)(22)()(b a f b a f x f b a f b a f x f x f ()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-'=2222b a f b a M b a f b a x f ξ,所以函数)(x f 在有限区域()b a ,内有界. 与已知矛盾.例9(天津工业大学2005年)设R x n ∈, ()1arctan -=n n ky y (10<<k ), 证明: (1)11-+-≤-n n n n y y k y y ; (2)n n y ∞→lim 收敛.证明 (1)令kx x f arctan )(=, ()+∞∞-∈,x ,则221xk k x f +=')(,于是kx f ≤')(,从而由拉格朗日中值定理得:()()1111---+-≤-'=-=-n n n n n n n n y y k y y f y f y f y y ξ)()(, 其中ξ介于1-n y ,n y 之间.(2)由(1)的递推关系知,011y y ky y nn n -≤-+,又因为级数∑∞=-101n ny y k收敛,所以由比较判别法知, 级数()∑∞=+-11n n n y y 绝对收敛,所以n n S ∞→lim 收敛, 其中()1111y y y yS k nk k k n -=-=+=+∑, 进而n n y ∞→lim 收敛.例10(湖南师范大学2004年)设)(x f 在),[+∞0上连续, 在()+∞,0内可导且00=)(f , )(x f '在()+∞,0内严格单调递增, 证明:xx f )(在()+∞,0内内严格单调递增.分析 关键是证明02>-'='⎪⎭⎫⎝⎛x x f x f x x x f )()()(. 证明 因为()[]000>'-'=⎥⎦⎤⎢⎣⎡---'=⎥⎦⎤⎢⎣⎡-'=-'ξf x f x x f x f x f x x x f x f x x f x f x )()()()()()()()(, 其中()+∞∈,0x , ()x ,0∈ξ, 所以xx f )(在()+∞,0内内严格单调递增.练习[1](辽宁大学2005年)设)(x f 在],[b a 上可导,且b x f a <<)(,1)(≠'x f . 证明: 方程x x f =)(在()b a ,内存在惟一的实根.[2] (南京农业大学2004年) 设函数)(x f 在]1,0[上可微, 0)0(=f , 当10<<x 时, 0)(>x f , 证明: 存在()1,0∈ξ,使得)1()1()()(2ξξξξ--'='f f f f .[3] (陕西师范大学2002年,武汉大学2004年) 设)(x f ,)(x g 是[]b a ,上的可导函数, 且0)(≠'x g . 证明: 存在()b a c ,∈使得)()()()()()(c g c f b g c g c f a f ''=--.[4] (西南师范大学2005年)设函数)(x f 在()+∞∞-,内可导,)(2)(x f x x f -=', 0)0(=f .证明: 42)(xex f -=,()+∞∞-∈,x .[5] (北京工业大学2004年)设函数)(x f 在0x 的某邻域)(0x N 内连续, 除0x 外可导,若l x f x x ='→)(lim 0,则)(x f 在0x 可导且l x f =')(0.[6] (辽宁大学2004年) 设函数)(x f 在()+∞∞-,内可导, 且0)0(>f ,1)(<≤'k x f ,证明: 方程x x f =)(有实根.[7] (厦门大学2004年) 设函数)(x f 在),[+∞a 上二阶可微, 且0)(>a f ,0)(<'a f , 当a x >时, 0)(<''x f . 证明: 方程0)(=x f 在),[+∞a 上有惟一的实根.[8] (北京化工大学2004年) 设函数)(x f 在]1,0[上连续, 在()1,0内可导,0)0(=f , 1)1(=f . 证明: 对于∀的正数a 和b , 存在()1,0,21∈ξξ, 使得()()b a f b f a +='+'21ξξ.[9] (中科院武汉物理与数学研究所2003年) 设函数)(x f 在闭区间[]b a ,上连续, 在开区间()b a ,内可微, 并且)()(b f a f =. 证明: 若函数)(x f 在闭区间[]b a ,上不等于一个常数, 则必有两点()b a ,,∈ηξ, 使得()0>'ξf , ()0<'ηf .[10] (中山大学2006年) 证明: 当0≥x 时, 存在()1,0)(∈x θ, 使得)(211x x x x θ+=-+, 并且)(lim 0x x θ+→和)(lim x x θ+∞→(答案:41)(lim 0=+→x x θ,21)(lim =+∞→x x θ ).2、积分中值定理例1(上海大学2005年)已知)(),(x g x f 在[]b a ,上连续,0>)(x f ,)(x g 不变号,求⎰∞→bann dx x g x f )()(lim.解 因为)(),(x g x f 在[]b a ,上连续, )(x g 在[]b a ,上不变号,所以由积分第一中值定理得⎰⎰=banb andx x g f dx x g x f )()()()(ξ,其中[]b a ,∈ξ. 又因为()0>ξf , 所以1=∞→nn f )(li m ξ,进而⎰⎰⎰=⎥⎦⎤⎢⎣⎡=∞→∞→baba n n bann dx x g dx x g f dx x g x f )()()(lim )()(limξ.例2(河北大学2005年)证明:dx xx dx xx ⎰⎰+≤+222211ππcos sin .分析0111222222≤+-⇐+≤+⎰⎰⎰dx xx x dx xx dx xx πππcos sin cos sin .证明 当⎥⎦⎤⎢⎣⎡∈4,0πx 时, 0≤-x x cos sin 在⎥⎦⎤⎢⎣⎡4,0π上不变号,当⎥⎦⎤⎢⎣⎡∈2,4ππx 时, 0≥-x x cos sin 在⎥⎦⎤⎢⎣⎡2,4ππ上不变号. 由推广的积分第一中值定理得:dx xx x dx xx x dx x x x ⎰⎰⎰+-++-=+-24242221cos sin 1cos sin 1cos sin ππππ()()dx x x dx x x ⎰⎰-++-+=242402cos sin11cos sin11πππηξ01121121121212222≤+--+-=+-++-=ξηηξ,其中⎥⎦⎤⎢⎣⎡∈40πξ,, ⎥⎦⎤⎢⎣⎡∈24ππη,, 进而dx xx dx x x ⎰⎰+≤+2220211ππcos sin .例3(电子科技大学2005年)设)(x f 在[]10,上可导,且⎰-=211221dx ex f f x)()(,证明: 存在()10,∈ξ,使得())(ξξξf f 2='.证明 令2)()(x e x f x F -=, []10,∈x . 由积分中值定理知, 存在⎪⎭⎫ ⎝⎛∈210,η,使得()⎰--=⎪⎭⎫ ⎝⎛-211122021dx ex f ef x)(ηη即()⎰--=211122)(2dx ex f ef xηη. 因为⎰-=2101221dx ex f f x)()(, 所以())(121f ef =-ηη, 进而()112--=ef ef )(ηη. 又因为112--==e f e f F )()()(ηηη, 111-=ef F )()(, 所以, 在区间[]1,η上由微分中值定理(罗尔)得:()0='ξF , 其中()1,ηξ∈. 因为222ξξξξξξ---'='ef ef F )()()(,所以())(ξξξf f 2='.例4(山东科技大学2004年)设()x f 在[]π,0上连续, 在()π,0内可导, 且()⎰-=ππππ1dx x f ef x)(,证明: 至少存在一点()πξ,0∈, 使得()()ξξf f ='.证明:令)()(x f e x F x -=,由()⎰-=ππππ1)(dx x f ef x和)()(πππf eF -=,得:()()⎰⎰⎰====----πππππππππππ111)()()(dx x F dx x f edx x f eef eF xx.由积分中值定理: ()()11()0()F F x dx F F ππππηηπ⎛⎫==-= ⎪⎝⎭⎰,其中⎥⎦⎤⎢⎣⎡∈πξ10,.在()πη,内应用微分中值定理(罗尔)得: 0=')(ξF ,其中()πηξ,∈.由)()(x f e x F x -=得: )()()(ξξξξξf e f e F '+-='--,所以()()ξξf f ='.例5(西安电子科技大学2003年)设()x f 在[]b a ,上二阶连续可导, 证明:存在()b a ,∈ξ使得()()()32412a b f b a f a b dx x f ba -''+⎪⎭⎫⎝⎛+-=⎰ξ)(. 证明: 由分部积分公式得⎰⎰⎰+++=baba ab b a dx x f dx x f dx x f 22)()()(()()⎰⎰++-+-=22)()(ba ab b a b x d x f a x d x f()[]()()[]()⎰⎰++++'---+'---=bb a b ba ba ab a adxx f b x x f b x dx x f a x x f a x 2222)()()()(()()()⎰⎰++-'--'-⎪⎭⎫⎝⎛+-=b b a ba ab x d x f a x d x f b a f a b 22222)(2)(2()()()⎰++''-+⎥⎦⎤⎢⎣⎡'--⎪⎭⎫ ⎝⎛+-=2222)(22)(2ba aba adx x f a x x f a x b a f a b()()⎰++''-+⎥⎦⎤⎢⎣⎡'--bba bb a dx x f b x x f b x 2222)(22)(()()()⎰⎰++''-+''-+⎪⎭⎫ ⎝⎛+-=b b a ba adx x f b x dx x f a x b a f a b 2222)(2)(22()()())(2)(2)(2222221积分中值定理⎰⎰++-''+-''+⎪⎭⎫⎝⎛+-=bba b a a dx b x c f dx a x c f ba f a b()()[]312()()()248b a a bb a f fc f c -+⎛⎫''''=-++⎪⎝⎭介值性定理()()3()224b a a bb a f fc -+⎛⎫''=-+⎪⎝⎭,其中c 介于21c c ,之间. 即()b a c ,∈. 3、泰劳公式(微分中值定理的推广)例1(西安电子科技大学2004年) 设)(x f 在[]1,0上有二阶导数,且满足条件a x f ≤)(,b x f ≤'')(,a 和b 为非负常数,证明不等式22)(b a x f +≤', )1,0(∈x .分析:要熟练运用Taylor 展开. 证明:在)1,0(∈x 处做Taylor 展开有21)1(2)()1)(()()1(x f x x f x f f -''+-'+=ξ,222)()()()0(x f x x f x f f ξ''+'-=上面两式相减有 22212)()1(2)()0()1()(x f x f f f x f ξξ''+-''--=',所以[]22)1(22)(22b a xx b a x f +≤+-+≤'.例2(陕西师范大学2003年,中国地质大学2004年)设函数f 在区间[]b a ,上有二阶导数且,0)()(='='-+b f a f 则必存在一点),(b a ∈ξ使得)()()(4)(2a fb f a b f --≥''ξ.分析:关键是做Taylor 展开. 证明:应用Taylor 公式,将)2(b a f +分别在b a 、点展开,注意0)()(='='-+b f a f ,故存在1ξ和2ξ,b b a a <<+<<212ξξ,使得212)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f a f b a f ξ,222)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f b f b a f ξ.两式相减得: []0)()()(81)()(221=-''-''+-a b f f a f b f ξξ, 故[])()()(21)()()(4212ξξξf f f a f b f a b ''≤''+''≤--.其中 ⎩⎨⎧''<''''≥''=)()(,)()(,212211ξξξξξξξf f f f .例3(北京交通大学2005年)设函数)(x f 在区间),0(+∞内有二阶函数,0)(lim =+∞→x f x ,并当),0(+∞∈x 时,有1)(≤''x f . 证明:0)(lim ='+∞→x f x .分析:关键是做Taylor 展开.证明:要证明0)(lim ='+∞→x f x ,即要证明对任意的0>ε,存在0>A ,当A x >时有ε<')(x f . 利用Taylor 公式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+, ()h ,0∈ξ,即[]h f x f h x f hx f )(21)()(1)(ξ''--+='. 从而[]hx f h x f hhf x f h x f hh f x f h x f hx f 21)()(1)(21)()(1)(21)()(1)(+-+≤''+-+≤''--+='ξξ, 取ε<h , 因为0)(li m =+∞→x f x , 所以021)()(1lim )(lim0=⎭⎬⎫⎩⎨⎧+-+≤'≤+∞→+∞→h x f h x f hx f x x , 其中2)()(ε<-+x f h x f . 即0)(lim ='+∞→x f x .例4(上海大学2005年、中国科学院2007年)设函数)(x f 在[]20,上有1)(≤x f ,1)(≤''x f . 证明:2)(≤'x f .分析:关键是做Taylor 展开. 证明:在)2,0(∈x 处做Taylor 展开有212)()()()0(xf x x f x f f ξ''+'-=,22)2(2)()2)(()()2(x f x x f x f f -''+-'+=ξ,将上面两式相减有[]21224)()2(4)()0()2(21)(x f x f f f x f ξξ''+-''--=',所以[][][].21)1(211)2(411)(4)2()(4)0()2(21)(22222212≤+-+≤+-+≤''-+''++≤'x xx f x f x f f x f ξξ.例5(江苏大学2004年)已知函数)(x f 在区间()1,1-内有二阶导数,且0)0()0(='=f f , )()()(x f x f x f '+≤'', 证明:存在0>δ,使得在()δδ,-内0)(≡x f .分析:关键是做Taylor 展开.证明:将)()()(x f x f x f '+≤''右端的)(x f ,)(x f '在0=x 处按Taylor 公式展开. 注意到0)0()0(='=f f ,有222)(2)()0()0()(x f x f x f f x f ξξ''=''+'+=, x f f x f )()0()(η''+'=',其中ηξ,是属于0与x 之间的某个值.从而x f x f x f x f )(2)()()(2ηξ''+''='+.现令⎥⎦⎤⎢⎣⎡-∈41,41x ,则由)()(x f x f '+在⎥⎦⎤⎢⎣⎡-41,41上连续知,存在⎥⎦⎤⎢⎣⎡-∈41,410x ,使得{}M x f x f x f x f xx ='+='+≤≤-)()(max )()(14100.下面只要证明0=M 即可. 事实上⎥⎦⎤⎢⎣⎡''+''≤''+''='+=)(2)(41)(2)()()(000020000ηξηξf f x f x f x f x f M ()()()()[]000041ηηξξf f f f +'++'≤(由()()x f x f x f x f ηξ''+''='+22)()()11242M M ≤⋅=,即M M 20≤≤, 所以0=M . 在⎥⎦⎤⎢⎣⎡-41,41上0)(≡x f . 例6(辽宁大学2005年)求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→x x x x 1sin1lim 2. 分析:利用Taylor 展开式计算函数极限. 解: 将x1sin展开成带Peano 余项的二阶Taylor 公式⎪⎭⎫ ⎝⎛+-=3316111s i n x o x x x ,则 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→→∞→332216111lim 1sin 1lim x o x x x x x x x x x x ()61161lim 16111lim 322=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅-+-=∞→∞→o x o x x x x x . 例7(山东师范大学2006年)求422cos limxex xx -→-.分析:利用Taylor 展开式计算函数极限. 解 进行带Peano 余项的Taylor 展开()5422421cos xo xxx ++-=, )(82154222x o xxex++-=-,所以)(12cos 5422x o xex x+-=--, 进而121cos lim422-=--→xex xx .例8(浙江大学2005年、华南理工大学2005年)设)(x f 在),[+∞a 上有连续的二阶导数,且已知(){}+∞∈=,0)(sup 0x x f M 和(){}+∞∈''=,0)(sup 2x x f M 均为有限数. 证明:(1)2022)(M t tM t f +≤' ,对任意的0>t ,),0(+∞∈x 成立;(2){}),0()(sup 1+∞∈'=x x f M 也是有限数,且满足不等式2012M M M ≤ .分析:Taylor 展开式.证明(1)考虑)(t x f + 在t 处的Taylor 展开式,,2)()()()(2>''+'+=+t t f t t t t f t t f ξ,则t f tt f t f t f 2)()()2()(ξ''--=',所以++≤'tt f t f t f )()2()(2)(ξf ''t ,有题设条件可得t M tM t f 22)(2+≤' .(2)同理由Taylor 展开式知,t M tM t f 22)(2+≤'成立,从而t M tM M 2221+≤,取202M M t = 即得证.例9(哈尔滨工业大学2006年)设)(x f 在[)+∞,0内二阶可微,0)(lim =+∞→x f x ,但)(lim x f x '+∞→不存在.证明:存在00>x ,使1)(0>''x f .分析 Taylor 展开式.证明 反证法,设对任意的),0(+∞∈x ,均有1)(≤''x f .利用Taylor 展开式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+,因此有2)()(1)(h x f h x f hx f +-+≤' ,取ε=h ,由0)(lim =+∞→x f x 知,存在0>A ,当A x > 时,有4)(2ε≤'x f ,于是ε<')(x f ,A x > ,即0)(lim ='+∞→x f x ,矛盾.例10 (华中科技大学2007年)设 )(x f 在(0,1) 上二阶可导且满足1)(≤''x f ,10(≤≤x ,又设)(x f 在()1.0 内取到极值41 .证明:1)1()0(≤+f f .分析 极值点,Taylor 展开式.证明 因为)(x f 在)1,0(上二阶可导,假设ξ在极值点,则41)(=ξf 、0)(='ξf .对)(x f 关于0=x 、1=x 在ξ点Taylor 展开有21)(2)())(()()0(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.又有2)1(2)()1)(()()1(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.所以有2221)1(2)(0)(2)(0)()1()0(ξηξξηξ-''+++''++=+f f f f f f[]2221)1()()(21)(2ξηξηξ-''+''+≤f f f[]22)1(121ξξ-++≤12121=+≤.这里另22)1()(x x x g -=,)1,0(∈x ,则最大值1)1(=g . 练习[1](华中科技大学2005年)设)(x f 在[]1,0上有二阶连续导数,0)1()0(==f f ,58)(≤''x f ,58)(≤'x f ,给出)10()(≤≤x x f 的一个估计.[2](华中科技大学2004年)设)10(,2)(,0)1()0(≤≤≤''==x x f f f ,证明:1)(≤'x f .[3](北京航空航天大学2005年)证明:对任意的n ,有)!1(1!)1(!31211+<⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+---n n en. [4](华南理工大学2004年)设)(x f 在[]1,1-上三次可微,1)1(,0)0()0()1(=='==-f f f f .证明:存在)1,1(-∈x ,使得3)()3(≥x f.[5](大连理工大学2006年) 将2)1(1)(x x f += 在0=x 展开成Taylor 级数.[6](同济大学1999年)求⎥⎦⎤⎢⎣⎡+-→)11ln(lim 20x x x x (答案:21).[7](大连理工大学2004年)设)(x f 在[]1,0上二阶可导,且有,0)1()0(==f f []21)(m i n 1,0-=∈x f x ,证明:存在)1,0(∈ξ,使得4)(≥''ξf .[8] (东南大学2004年)(1)设)(x f 在[]2.0上二阶可导,0)2()0(='='f f .证明:存在)2,0(∈ξ使得[])(4)2()0(3)(320ξf f f dx x f ''++=⎰.(2)若在(1)中只假定)(x f 在[]2,0上存在二阶导数而不要求二阶导数连续,那么(1)的结论是否成立?[9](东南大学2003年) 求42cos lim2xx exx --→(答案:81-).[10](同济大学1999年)求xx x x x x x arcsin )1ln(cos sin lim2220+-→(答案:61).§8.2 函数的极值和最值 函数的凸性与拐点一、知识结构 1、函数的极值和最值函数)(x f y =的极值是一个局部概念,而函数)(x f y =的最值是一个整体概念. 如函数)(x f y =在区间[]b a ,上有定义, 如果[]b a x ,0∈的某个邻域),(0δx U 内有)()(0x f x f ≤()()(0x f x f ≥), 则我们称函数)(x f y =在点0x 取得极大值(极小值). 函数)(x f y =在区间[]b a ,上的最大值)(0x f 满足)()(0x f x f ≥, 其中[]b a x ,∈.函数)(x f y =在区间[]b a ,上的最小值)(0x f 满足)()(0x f x f ≤, 其中[]b a x ,∈.(1) 一元函数)(x f y =的极值和最值定理1(必要条件) 设函数)(x f 在点0x 处可导,且在0x 处取得极值,那未这函数在0x 处的导数为零,即0)(0='x f .定理2(第一种充分条件) 设函数)(x f 在点0x 的一个邻域内可导且0)(0='x f .(1)如果当x 取0x 左侧邻近的值时,)(x f '恒为正;当x 取0x 右侧邻近的值时,)(x f '恒为负,那未函数)(x f 在0x 处取极大值;(2)如果当x 取0x 左侧邻近的值时,)(x f '恒为负;当x 取0x 右侧邻近的值时,)(x f '恒为正,那未函数)(x f 在0x 处取极小值;(3)如果当x 取0x 左右两侧邻近的值时,)(x f '恒为正或恒为负;那未函数)(x f 在0x 处没有极值.定理3 (第二种充分条件)设函数)(x f 在点0x 处具有二阶导数且0)(0='x f 0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在点0x 处取极大值; (2)当0)(0>''x f 时,函数)(x f 在点0x 处取极小值. 一元函数)(x f y =在闭区间[]b a ,上的最值:(1)一元函数)(x f y =在()b a ,内的极大值与)(),(b f a f 中最大的为一元函数)(x f y =在闭区间[]b a ,上的最大值;(2)一元函数)(x f y =在()b a ,内的极小值与)(),(b f a f 中最小的为一元函数)(x f y =在闭区间[]b a ,上的最小值.(2) 二元函数()y x f z ,=的极值和最值定理1(必要条件) 设函数),(y x f 在点()00,y x 处可导,且在()00,y x 处取得极值,那未这函数在()00,y x 处的偏导数为零,即0),(00=y x f x ,0),(00=y x f y .定理2 (充分条件)设函数),(y x f 在点()00,y x 某邻域内连续且有一阶、二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则函数),(y x f 在点()00,y x 是否取得极值的条件如下:(1)02>-B AC 时具有极值, 且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论. 利用拉格朗日函数求极值和最值(条件极值)求函数),(y x f z =的极值,其中()y x ,满足条件0),(=y x F . 构造拉格朗日函数),(),(),,(y x F y x f y x L λλ+=, 解方程⎪⎩⎪⎨⎧===0),,(0),,(0),,(λλλλy x L y x L y x L y x 得⎪⎩⎪⎨⎧===000λλy y x x ,则()00,y x 为函数),(y x f z =的极值点(根据实际问题确定),进而求得函数),(y x f z =的极值),(00y x f z =.2、函数的凸性与拐点定义1 若曲线)(x f y =在某区间内位于其切线的上方, 则称该曲线在此区间内是凸的, 此区间称为凸区间. 若曲线位于其切线的下方, 则称该曲线在此区间内是凹的, 此区间称为凹区间.定义 2 设函数)(x f y =在区间I 上连续,如果对区间I 上任意两点21,x x ,恒有2)()(22121x f x f x x f +<⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凹(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凸(或凸弧).定理1 设函数)(x f y =在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么(1) 若在()b a ,内0)(>''x f ,则)(x f y =在区间[]b a ,的图形是凹的; (2) 若在()b a ,内0)(<''x f ,则)(x f y =在区间[]b a ,的图形是凸的. 3、函数)(x f y =图像的描绘主要用函数)(x f y =的一阶导数)(x f y '='和二阶导数)(x f y ''=''的性质和曲线)(x f y =的渐进线描绘函数)(x f y =图像.如果0)(>''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向下凸. 如果0)(<''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向上凸. 如果0)(0=''x f , 且)(x f ''在()0,x a ,()b x ,0上异号, 则0x 为函数)(x f y =图像的拐点.如果0)(>'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递增. 如果0)(<'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递减.二、解证题方法 1、函数的极值和最值例1(南京大学2003年)对任意00>y , 求)1()(00x x y x y -=ϕ在()1,0中的最大值, 并证明该最大值对任意00>y , 均小于1-e .解 由于000120)1()(y y xy x xy x --='-ϕ ,令0)1()(000120=--='-y y xy x xy x ϕ得函数)(x ϕ的稳定点100+=y y x , 所以函数)(x ϕ的最大值为10000111)1(+⎪⎪⎭⎫⎝⎛+-=+y y y y ϕ.因为()x x -<-1ln , 10<<x , 所以()11111000000111)1(-⎪⎪⎭⎫⎝⎛+-++<=⎪⎪⎭⎫⎝⎛+-=+eey y y y y y ϕ .例2(复旦大学2000年, 北京理工大学2003年)在下列数,,,4,3,2,143n n 中,求出最大的一个数.解 构造辅助函数xx x f =)(, 1≥x , 则222ln 1ln 1ln 1ln 1)(xxx x x x x e e x f xxx x x x -=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xx x f =)(, 1≥x 的稳定点e x =. 当e x <≤1, 0)(>x f ,当e x ≥,0)(<x f , 所以函数)(x f 在点e x =取得最大值ee . 从而下列数,,,4,3,2,143n n 中最大的一个数只可能是33,2中的一个, 又因332<, 所以下列数 ,,,4,3,2,143n n 中最大的一个数是33.例3(北京化工大学2004年)在下列数,2004,,4,3,2,12004242322中,求出最大的一个数.解 构造辅助函数xxx f 2)(=, 1≥x , 则22222ln 2ln 1ln 222ln 2)(x x x x x x x e e x f x x x x x x ⋅-⋅=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xxx f 2)(=, 1≥x 的稳定点e x =. 当e x <≤1,0)(>x f ,当e x ≥, 0)(<x f , 所以函数)(x f 在点e x =取得最大值ee 2.从而下列数 ,2004,,4,3,2,12004242322中最大的一个数只可能是3223,2中的一个,又因32232<,所以下列数,2004,,4,3,2,12004242322中最大的一个数是323.例4(中山大学2006年)设S 为由两条抛物线12-=x y 与12+-=x y 所围成的闭区域,椭圆12222=+by ax 在S 内, 确定b a ,(0>b a 、), 使椭圆的面积最大.解 两条抛物线12-=x y 与12+-=x y 的交点为()0,1-,()0,1,()1,0-,()1,0.S 为1122+-≤≤-x y x ,因为椭圆12222=+by ax 在S 内, 所以1,0≤<b a . 椭圆的参数方程为⎩⎨⎧==t b y ta x s i n c o s ,π20≤≤t ,由椭圆12222=+by ax 和区域S 的对称性知,椭圆12222=+by ax 的面积最大时, 必须有ta tb 22cos 1sin -= ,20π≤≤t 有惟一解. 即0cos 1sin 22=+-t a t b ,20π≤≤t 有惟一解.令01sin sin cos 1sin )(22222=-++-=+-=a t b t a t a t b t f ,20π≤≤t .则01)0(2≤-=a f , 012≤-=⎪⎭⎫⎝⎛b f π ,0)1(4222=-+=∆a a b ,()122sin 22≤=--=ab ab t . 于是212a a b -=,122≤≤a . 椭圆12222=+by ax 的面积2221212)(aaa a a ab a f -=-==πππ,122≤≤a . 即01214)(232=---='aaa a a f ππ, 得36=a , 322=b , 故最大面积为934π.例5(湖南师范大学2005年)设q p b a ,,,都是正数,(1)求()q px xx f -=1)(在区间[]1,0上最大值;(2)证明:qp qpq p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.解(1)因为()qpx xx f -=1)(, 所以()()1111)(-----='q pq p x qxx pxx f ,令()()011)(11=---='--q pqp x qxx pxx f 得稳定点qp p x +=. 又0)1()0(==f f , ()qp q p q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+, 进而函数()qp x x x f -=1)(在区间[]1,0上最大值为()qp qp q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+.(2)因为()1,qppqp q p qa a a ab p p qf f a b a b a b a b a b p q p q +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=≤= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎝⎭⎝⎭所以qp q p q p b a q b p a +⎪⎪⎭⎫⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.例6(南京农业大学2004年)试问方程033=+-q px x 在实数域内有几个实根.解 由于()+∞=+-+∞→q px x x 3lim 3, ()-∞=+--∞→q px x x 3lim 3, 所以方程033=+-q px x 在实数域内至少有一个实根. 令q px x x f +-=3)(3, 则()p x p x x f -=-='22333)(.(1)当0<p 时, 有0)(>'x f , 进而)(x f 单调递增, 方程033=+-q px x 在实数域内只有一个实根.(2) 当0>p 时, 得q px x x f +-=3)(3的稳定点p x =, p x -=. 上述稳定点将()+∞∞-,分成三个区间()p -∞-,, ()p p ,-, ()+∞,p . 当()p x -∞-∈,时, )(x f 严格单调递增, 当()pp x ,-∈时, )(x f 严格单调递减, 当()+∞∈,p x 时, )(x f 严格单调递增. 进而,在p x -=时, )(x f 取得极大值q p p +2.在p x =时, )(x f 取得极小值q p p +-2. 所以, 当()()042232>-=+-+p q q p pq p p时,方程33=+-q px x 只有一个实根, 当()()042232=-=+-+p q q p pq p p时, 方程033=+-q px x 有两个实根, 当()()042232<-=+-+p q q p pq p p时, 方程033=+-q px x 有三个实根.综上所述, 当0<p 时, 方程033=+-q px x 在实数域内有一个实根, 当0>p , 且0432>-p q 时, 方程033=+-q px x 只有一个实根, 当0>p , 且0432=-p q 时, 方程033=+-q px x 有两个实根, 当0>p ,且0432<-p q 时, 方程033=+-q px x 有三个实根.例7(上海交通大学2005年)求函数444),,(z y x z y x f ++=在条件1=xyz 下的极值.分析 用Lagrange 乘数法求函数444),,(z y x z y x f ++=在条件1=x y z 下的极值.解 构造Lagrange 函数()1),,,(444-+++=xyz z y x z y x L λλ, 由⎪⎪⎩⎪⎪⎨⎧=-==+==+==+=01),,,(04),,,(04),,,(04),,,(333xyz z y x L xy z z y x L zx y z y x L yz x z y x L zy x λλλλλλλλ得1===z y x , 所以极值为3)1,1,1(=f .。

第十七章多元函数的微分学

第十七章多元函数的微分学

第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。

全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。

多元函数极值判定及应用

多元函数极值判定及应用

多元函数极值判定及应用多元函数的极值判定是求解多元函数在给定约束条件下的最大值或最小值的问题。

在数学分析中,通常利用求导和二阶导数的方法来判定多元函数的极值。

下面将详细介绍多元函数极值判定以及其应用。

一、多元函数的极值判定方法:1. 首先,对于多元函数f(x1, x2, ..., xn),我们需要找到其取得极值的条件。

由于计算多元函数的极值需要对每个自变量求偏导,所以要求多元函数在定义域内函数有定义并且可偏导。

2. 其次,求取多元函数的一阶偏导数并令其等于零,得到方程组。

设f 的极值点为(x1*, x2*, ..., xn*),则方程组为:∂f/∂x1 = 0, ∂f/∂x2 = 0, ..., ∂f/∂xn = 0。

3. 解方程组,求得极值点(x1*, x2*, ..., xn*)。

4. 接下来,根据二阶求导的结果来判定极值类型:(1)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素大于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极小值;(2)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素小于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极大值;(3)若二阶偏导数的行列式小于零,则多元函数在该点处不存在极值。

二、多元函数极值的应用:多元函数的极值判定在经济学、物理学、工程学等各个领域都有重要的应用。

下面以几个具体例子来介绍多元函数极值的应用。

1. 最小二乘法:在统计学中,我们常用最小二乘法来拟合数据,即通过拟合直线或曲线来描述数据的趋势。

最小二乘法的基本思想是选择一个合适的函数模型,使得模型与实际数据之间的残差平方和最小。

这就可以看作是一个多元函数极值的问题,利用极值点来确定最佳拟合曲线。

2. 生产优化问题:在工程学中,我们常遇到生产优化的问题,即如何在有限的资源条件下获得最大的产出。

这个问题可以用多元函数的极值来解决。

我们设生产函数为f(x1, x2, ..., xn),表示产出与各个生产因素之间的关系,然后根据生产约束条件求函数的最大值或最小值,得到生产过程中的最优方案。

高数多元函数微分学-多元函数的极值

高数多元函数微分学-多元函数的极值
必有 f x ( x0 , y0 ) 0;
类似地可证 f y ( x0 , y0 ) 0.
推广 如果三元函数u f ( x, y, z)在点P( x0 , y0 , z0 ) 具有偏导数,则它在P( x0 , y0 , z0 )有极值的必要条
件为
f x ( x0 , y0 , z0 ) 0, f y ( x0 , y0 , z0 ) 0, fz ( x0 , y0 , z0 ) 0.
y y2
1
0
y
即边界上的值为零.
z( 1 , 1 ) 1 , z( 1 , 1 ) 1 ,
22 2
22
2
所以最大值为 1 ,最小值为 1 .
2
2
无条件极值:对自变量除了限制在定义域内外,并无其他条件.
15
三、条件极值拉格朗日乘数法
实例: 小王有200元钱,他决定用来购买两种急需物品:计算机磁盘
令 u ln x0 ln y0 ln z0 ,
G( x0 , y0 , z0 )
ln
x0
ln
y0
ln
z0
(
x02 a2
y02 b2
z02 c2
1) ,

Gx0
x02 a2
0,
y02 b2
Gy0
y02 c2
0, 1
Gz0 0
0
,
22
1
x0
2x0
a2
0

1 y0
2y0
b2
0
可得
13
例3
求z
x2
x y y2
的最大值和最小值.
1


( x2 y2 1) 2x( x y)

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用1. 引言1.1 简介微分中值定理是微积分中的重要定理之一,它可以帮助我们理解函数在某个区间内的平均变化率及其与函数在这个区间内的某一点处的切线斜率之间的关系。

多介值的微分中值定理是对单变量函数微分中值定理的推广,它考虑了多个函数在多个介值点的情况,更加贴近实际问题的需求。

本文将首先介绍拉格朗日中值定理和柯西中值定理,这两个定理是微分中值定理的两个重要特例。

然后我们将探讨多个函数的微分中值定理以及多介值的微分中值定理,解释其在实际问题中的应用。

最后通过具体的例子,我们将展示这些定理是如何帮助我们求解问题,并验证其在实际中的可靠性和有效性。

通过本文的介绍,读者将更加深入地了解微分中值定理的理论基础和应用价值,同时也能够对多个函数多介值的微分中值定理有一个全面的认识。

在未来的研究中,我们可以进一步探讨多介值的微分中值定理在更加复杂情况下的应用,为实际问题的解决提供更加有力的理论支持。

1.2 中值定理概述中值定理是微积分中的重要定理之一,它主要用于描述函数在某个区间内平均变化率与瞬时变化率之间的关系。

中值定理的提出为我们研究函数的性质和行为提供了有力的工具。

在微积分中,主要有拉格朗日中值定理、柯西中值定理以及多个函数的微分中值定理等多种形式。

拉格朗日中值定理是最为基础的中值定理之一,它描述了在一个区间内可导函数的平均变化率等于某一点的瞬时变化率。

柯西中值定理则是在更一般的条件下得到的结果,描述了在一个区间内两个函数的平均变化率之间存在一点使得两个函数的导数之比等于这两个函数的值之比。

当涉及到多个函数和多介值时,我们可以推广中值定理为多个函数多介值的微分中值定理。

这一定理提供了多个函数在多个点上的平均变化率与瞬时变化率之间的关系。

在实际应用中,可以通过这一定理求解一些复杂函数的性质,进而帮助我们更好地理解和分析问题。

中值定理为我们研究函数的性质提供了重要的理论支持,同时也为我们解决实际问题提供了有力的工具。

多元函数微分学

多元函数微分学
d
面,点P为切点.
定理3 曲面z f (x, y)在点P(x0, y0, f (x0, y0))存在 不平行于z轴的切平面的充要条件是函数 f 在点 P0(x0, y0)可微. 定理3说明若函数 f 在(x0, y0)可微, 则曲面z f (x, y) 在点P(x0, y0, z0)处的切平面方程为 z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ). 过切点P与切平面垂直的直线称为曲面在点P的 法线. 由切平面方程知道, 法线的方向数是
1
z f ( x, y )
S
S1
R2
P1
1
1
y y0 曲线P0 N z f ( x, y) x x0 曲线P0 R z f ( x, y)
P1 S1 P1 R2 R2 S1 z P1 R2 Q1 R1 dy y M 0
0
M ( x0 dx, y0 dy)
f x
x
tan
M0
偏导与连续的关系.
例 讨论函数
x 2 y 2 , xy 0 f ( x, y) , xy 0 1,
在(0,0)点的偏导数及连续性.
二、 可微性与全微分
定义 设函数 z = f (x, y)在点P0(x0, y0)的某邻域U (P0) 内有定义, 对于U (P0)中的点P(x, y) (x0 x, y0 y), 若函数 f 在P0处的全增量z可表示为: z f (x0 x, y0 y) f (x0, y0) Ax By o(), 其中A, B是仅与点P0有关的常数, (1)
d f |(x0, y0) fx(x0, y0)· fy(x0, y0)· dx dy.

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用

多个函数多介值的微分中值定理及其应用函数的微分中值定理是微积分中非常重要且被广泛应用的一类基本定理。

它是指在一定条件下,函数f(x)在某些点上的斜率等于函数在某两点之间的平均斜率,这里所说的斜率指的是函数的导数。

微分中值定理包括单个函数单介值的微分中值定理和多个函数多介值的微分中值定理。

为了方便阐述,这里对于多个函数多介值的微分中值定理,本文将以含有两个自变量的函数为例。

设函数f(x,y)和g(x,y)在封闭矩形R内连续,在R内的某一点P(x0,y0)处存在于这两个函数的不同连续偏导数。

则:在R内至少存在一点Q(x1,y1),满足:f(x0,y0)-f(x1,y1)=\frac{\partial f}{\partial x}\Delta x+\frac{\partialf}{\partial y}\Delta y其中:\Delta x=x0-x1注意:这里的f(x,y)和g(x,y)可以不要求是连续可微分的函数。

1、证明复合函数的导数存在设函数f(x)在点x0处可导,函数g(u)在点u0处可导且g(u0)=x0,则复合函数h(x)=f(g(x))在点x0处可导,且有h'(x0)=f'(u0)g'(x0)证明:回顾一元函数微积分中的链式法则:因此,我们可以把复合函数h(x)拆成在点x0处,由于f(x)和g(u)在各自的点可导,因此f'(u0)和g'(x0)都存在,则2、证明存在局部极小值和极大值设函数f(x,y)在点P(x0,y0)处处可微,则P(x0,y0)为f(x,y)的一个局部极值的充要条件为:若二阶偏导数存在,则对于f(x,y)在点P(x0,y0)处的Taylor展开式为根据微分中值定理,可以得到其中,(x1,y1)和(x2,y2)是满足x1在x0和x之间,y1在y0和y之间则有当x和y都趋近于x0和y0时,等式左边趋近于0,对于极小值或极大值而言,右边的两项都需要趋近于0。

08-多元函数的极值及其求法课件

08-多元函数的极值及其求法课件

多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。

多元函数的极值及其判定

多元函数的极值及其判定

多元函数的极值及其判定多元函数是指含有多个自变量的函数。

求多元函数的极值,是数学中重要的研究内容,因为极值是判断函数的最大值和最小值的基础。

在本文中,我们将探讨多元函数的极值及其判定方法。

一、多元函数的极值多元函数的极值有两种:最大值和最小值。

如果函数在某一点上的取值比在该点周围的任何一点上的取值都大(或小),那么这个点就是函数的极大值点(或极小值点)。

若存在一个函数的局部最值,那么它必定是极值点,而其中相邻的局部极值点的函数值之间的最大值或最小值则是函数的全局最值。

因此判定函数的极值时,要先找出它的局部极值点,再进一步确定其全局最值。

二、多元函数的极值判定方法1. 梯度法梯度法是求函数极值常用的方法之一。

在二元函数中,函数的梯度为:$\operatorname{grad}f=\left(\frac {\partial f}{\partial x},\frac{\partial f}{\partial y}\right)$如果在某一点处,函数梯度的模长为零,即$\left|\operatorname{grad}f\right|=0$,那么该点便是函数的极值点。

这是因为在该点处,函数的导数为零,故函数在该点处有可能取得极值。

在高维空间中,函数的梯度可以写为:$\operatorname{grad}f=\left(\frac {\partial f}{\partial x_1},\frac {\partial f}{\partial x_2},\cdots,\frac {\partial f}{\partial x_n}\right)$如果在某一点处,函数梯度的所有分量都为零,即 $\frac{\partial f}{\partial x_1}=\frac {\partial f}{\partial x_2}=\cdots=\frac {\partial f}{\partial x_n}=0$,那么该点便是函数的极值点。

多元函数的拉格朗日中值定理

多元函数的拉格朗日中值定理

多元函数的拉格朗日中值定理多元函数的拉格朗日中值定理是微积分中的一个重要定理,它在多元函数的求极值、优化问题等方面有着广泛的应用。

本文将详细介绍多元函数的拉格朗日中值定理,并探讨其证明方法和实际应用。

一、多元函数的拉格朗日中值定理的概念考虑一个定义在闭区间[a, b]上的多元函数f(x1, x2, ..., xn),其中x1, x2, ..., xn为实数变量。

若在该闭区间上,函数f(x1,x2, ..., xn)连续,且其一阶偏导数∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn均存在,则其中必定存在一点η(η1, η2, ..., ηn),其中a ≤ηi ≤ b,使得f(b) - f(a) = ∂f/∂x1(η1, η2, ..., ηn)(b - a) +∂f/∂x2(η1, η2, ..., ηn)(b - a) + ... + ∂f/∂xn(η1, η2, ..., ηn)(b - a)这个定理称为多元函数的拉格朗日中值定理。

二、多元函数的拉格朗日中值定理的证明要证明多元函数的拉格朗日中值定理,可以借助于一元函数的拉格朗日中值定理的思想,将多元函数在[a,b]上的变化量拆分为各个偏导数分量的贡献,并找到一个合适的点η来完成证明。

具体证明如下:由于函数f(x1, x2, ..., xn)在闭区间[a, b]上连续,且∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn均存在,所以对于任意的固定的k = 1, 2, ..., n,都可以应用一元函数的拉格朗日中值定理在[xk(a), xk(b)](其中xk(a)表示函数f在变量xk上在[a, b]上取得的最小值,xk(b)表示函数f在变量xk上在[a, b]上取得的最大值)上找到一个点ηk,其中a ≤ ηk ≤ b,使得∂f/∂xk(η1, η2, ..., ηn) = (f(xk(b)) - f(xk(a)))/(b - a) 将上述等式全部加和,可以得到:∂f/∂x1(η1, η2, ..., ηn) + ∂f/∂x2(η1, η2, ..., ηn)+ ... + ∂f/∂xn(η1, η2, ..., ηn) = (f(x1(b)) - f(x1(a)))/(b - a) + (f(x2(b)) - f(x2(a)))/(b - a) + ... + (f(xn(b)) -f(xn(a)))/(b - a)而根据多元函数的中间值定理,可以知道对于每一个加和的项,都存在一个点η使得其等于相应的差分商。

第一节微分学中值定理-文档资料43页

第一节微分学中值定理-文档资料43页
类似地可定义三元函数 u = f ( x , y , z ) 以及三元以上函
数;二元及二元以上的函数称为多元函数.
例3 求二元函数 z = 1x2 y2 的定义域. 解 由根式函数的要求容易知道 x,y 必须满足不等式 x2 y2 1, 所以定义域为 D {x ,(y)|x2y2 1 }.
例3 设 zsix n 2 (y2),求 z,z. xy
解 z[coxs2 (y2)]2x2xcoxs2(y2), x z[coxs2 (y2)](2y)2ycoxs2(y2). y
例4 设 u x 2 y 2 z 2 ,求 u x 2 u y 2 u z 2 .
D 内的每一点都连续,则称 f(x, y)在区域 D上连续.
设自变量 x, y 各取得增量 x,y , 函数 z = f(x, y)取得增量
z f x 0 x , y 0 y ) f x 0 , y 0 ) ,
称 z 为函数 z = f(x, y) 在点 P0(x0,y0) 处的全增量. 设函数 z = f(x, y) 在点 P0(x0,y0) 的某一邻域内有定义,则函
x
存在,则称此极限值为函数 z = f (x,y)在点 P0(x0,y0) 处对 x 的
偏导数,记作
) x zx0 , y0),或 fxx0 , y0), 或 fx x0 , y0.
类似地,函数 z = f (x,y)在点 P0(x0,y0) 处对 y 的偏导数定义
为 lim fx0,y0 y)-fx0,y0),
是一元函数;(2)求二元函数的偏导数,不需引进新的方法,只需
利用一元函数的求导公式和求导法则.
例1 设 f ( x , y ) x 2 y 2 x y 3 ,求 f x ( 1 , 1 ) f y ( , 1 , 1 ). 解 把 y 看作常量,对 x 求导,得

高中数学(人教版)第6章微分中值定理及其应用函数的极值与最大(小)值课件

高中数学(人教版)第6章微分中值定理及其应用函数的极值与最大(小)值课件

极值判别
费马定理告诉我们,可微函数的极值点一定是稳
定点. 也就是说, 在曲线上相应的点处的切线一 定是水平的. 我们在这里再次强调:费马定理是在函数可微的 条件下建立的. 换句话说,若没有可微这个前提 条件,费马定理的结论 f ( x ) 0 就无从说起.
后退 前进 目录 退出
极值判别
当然,费马定理的逆命题亦不真. 例如对于任意 的可微函数 ( x ) , (0) 0,
极值判别
( 2) a 0
2a x ( , ) 5 2a 5 0
3 2 5 a3 5 5
2 3
y

2a 0 ( , 0) 5 不存在

极小值
2 3
(0, )


y

a 2a 2 5 2 3 是极大值点, f a 3 即 x 5 5 5 5
证 根据导函数的符号判别函数单调性的方法, 可以 知道该定理的几何意义十分明显. 在这里仅给出 (i) 的证明.
极值判别
因为 f ( x ) 0 , x ( x0 , x0 ) , f ( x ) 在 ( x0 , x0 ]
上连续, 故 所以 f ( x ) 在 ( x0 , x0 ] 上递减,
f ( x ) f ( x0 ) , x ( x0 , x0 ) .
同理可证 f ( x ) 在 [ x0 , x0 ) 上递增,故
f ( x ) f ( x0 ) , x ( x0 , x0 ) .
于是
ቤተ መጻሕፍቲ ባይዱ
f ( x0 ) f ( x ) , x U ( x0 ; ) ,
f ( x ) 2 x 432 . 2 x 令 f ( x ) 0, 得x 6 . 又因为

多元函数的微分中值定理

多元函数的微分中值定理

多元函数的微分中值定理微分中值定理是微积分中的一项重要定理,用于研究函数在某一区间内的性质。

在单变量函数中,我们已经学习了单变量函数的微分中值定理。

而在多元函数中,微分中值定理有一些不同的特性和应用。

多元函数的微分中值定理是基于多元函数的连续性和可微性的。

它表明在某个区间内,存在一点使得多元函数在该点的微分等于函数在整个区间的平均变化率。

首先,我们来看一下多元函数的连续性。

如果一个多元函数在某个闭区间内的每个点上都连续,即函数在该区间内无间断的突变,那么我们说该函数在这个区间内是连续的。

而多元函数的可微性表示函数在某个点上的偏导数存在且连续。

如果一个多元函数在某个点上的偏导数存在且连续,那么我们可以说该函数在该点是可微的。

对于一个满足上述条件的多元函数,微分中值定理告诉我们,在某个区间内,函数在两个点之间的平均变化率等于函数在某一点的偏导数。

这个点取决于具体的情况,它并不一定是区间的端点或者中点。

多元函数的微分中值定理有以下形式:设函数f(x, y)在闭区间[a, b] × [c, d] 上连续,在开区间(a, b) × (c, d)上可微。

则存在ξ∈(a,b)×(c,d),使得f(b,d)-f(a,d)-f(b,c)+f(a,c)=∂f/∂x(ξ)(b-a)+∂f/∂y(ξ)(d-c)其中∂f/∂x(ξ)和∂f/∂y(ξ)分别表示函数f(x, y)在点ξ处对x和y的偏导数。

此外,多元函数的微分中值定理还可以推广到多元向量值函数上。

在这种情况下,函数的微分是一个向量,而偏导数则是对应的分量导数。

多元函数的微分中值定理在实际问题中有广泛的应用。

例如,在经济学中,它可以用于研究市场需求和供应的关系;在物理学中,它可以用于描述物体的运动和变化。

利用微分中值定理,我们可以定量地分析函数在某个区间内的特性,从而更好地理解和解决实际问题。

总结而言,多元函数的微分中值定理是微积分中的重要定理,它利用函数的连续性和可微性来研究函数在某个区间内的性质。

微分中值定理的作用

微分中值定理的作用

微分中值定理的作用
微分中值定理是微积分学里很重要的一个定理。

它是一种在定线段上研究多元函数极值的工具。

它可以证明此函数在此定线段上为极值的充分必要条件,用它的准确的表达式来表示极大值和极小值的位置,并以此求出此多元函数的极值。

微分中值定理的具体表达式为:假定f(x)为一定线段[a,b]上定义、连续、关于x次数可导多元函数,若在此线段内存在一个点c,使得f'(c)=0,即在线段[a,b]上存在一个使f'(x)=0的点c,那么f(x)在线段[a,b]上必存在极大值或极小值。

微分中值定理可用来求解最小化或最大化问题,在经济、投资、政治等各个领域都有它的应用。

比如,假设一个公司想最大化收益,考虑其生产成本舍弃一些低收入的项目,可以运用微分中值定理求出最优解决方案。

总之,微分中值定理在微积分学中具有重要意义,它可以提供有用的支持和帮助来求解最大最小值问题,帮助我们避免类似问题的繁琐的数值统计计算。

多元函数微分法应用-极值与最值

多元函数微分法应用-极值与最值

△ABC 面积 S△最大.
yA
解答提示: 设 C 点坐标为 (x , y), D
B

C

OExi 3j1k 0 1 (0, 0, x 3y 10)
x 1 y 3 0 2
1 x 3y 10 2
目录 上页 下页 返回 结束
设拉格朗日函数 F (x 3y 10)2 (1 x2 y2 )
z x2 y2 解此方程组得唯一驻点 x 1 , y 1 , z 1.
4 48 由实际意义最小值存在 , 故
7 46
目录 上页 下页 返回 结束
例5.
已知平面上两定点 A( 1 , 3 ), B( 4 , 2 ),
试在椭圆 x2 y2 1 (x 0, y 0)圆周上求一点 C, 使 94
解方程组
求驻点 .
3. 函数的最值问题 第一步 找目标函数, 确定定义域 ( 及约束条件) 第二步 判别 • 比较驻点及边界点上函数值的大小 • 根据问题的实际意义确定最值
目录 上页 下页 返回 结束
例2. 求函数 解: 第一步 求驻点.
的极值.
解方程组
得驻点: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) .
94
2(x 3y 10) 2 x 0
9
解方程组 6(x 3y 10) 2 y 0
4
1 x2 y2 0 94
点击图中任意点
动画开始或暂停
得驻点 x
3 ,y 5
4 , 对应面积 5
S 1.646
而SD 2, SE 3.5,比较可知, 点 C 与 E 重合时, 三角形
如对二元函数 z f (x, y), 即解方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数的微分中值定理与极值判定多元函数的微分中值定理和极值判定是微积分中重要的理论基础,
也是应用广泛的数学工具。

它们是研究函数性质和优化问题的重要工具。

本文将介绍多元函数的微分中值定理和极值判定的概念、原理和
应用。

一、多元函数的微分中值定理
多元函数的微分中值定理是微积分的基本定理之一,它是单变量函
数中值定理在多元函数中的推广。

多元函数的微分中值定理分为拉格
朗日中值定理和柯西中值定理两种形式。

1.1 拉格朗日中值定理
拉格朗日中值定理是多元函数微分中值定理的一种形式。

设函数
$f(x,y)$在闭区间$[a,b]\times[c,d]$上连续且在开区间$(a,b)\times(c,d)$上
具有一阶偏导数,则存在一点$(x_0,y_0)$属于开区间$(a,b)\times(c,d)$,使得
$$f(b,d) - f(a,c) = f_x(x_0,y_0)(b-a) + f_y(x_0,y_0)(d-c)$$
其中,$f_x(x_0,y_0)$和$f_y(x_0,y_0)$分别表示函数在点
$(x_0,y_0)$的偏导数。

1.2 柯西中值定理
柯西中值定理是多元函数微分中值定理的另一种形式。

设函数
$f(x,y)$和$g(x,y)$在闭区间$[a,b]\times[c,d]$上连续且在开区间
$(a,b)\times(c,d)$上具有一阶偏导数,并且$g_x(x,y)$和$g_y(x,y)$在闭区间$[a,b]\times[c,d]$上不同时为零,则存在一点$(x_0,y_0)$属于开区间$(a,b)\times(c,d)$,使得
$$\frac{f(b,d)-f(a,c)}{g(b,d)-g(a,c)} =
\frac{f_x(x_0,y_0)}{g_x(x_0,y_0)} =
\frac{f_y(x_0,y_0)}{g_y(x_0,y_0)}$$
二、多元函数的极值判定
多元函数的极值判定是通过求函数的偏导数和判定二次型的正负来确定函数的极值点。

2.1 极值的必要条件
设函数$f(x,y)$在点$(x_0,y_0)$处可偏导且存在极值,如果在点$(x_0,y_0)$处偏导数存在,则有
$$f_x(x_0,y_0) = 0$$
$$f_y(x_0,y_0) = 0$$
2.2 极值的充分条件
设函数$f(x,y)$在点$(x_0,y_0)$处可二阶偏导且存在极值,如果在点$(x_0,y_0)$处偏导数存在且二阶偏导数满足以下条件,则有$$f_x(x_0,y_0) = 0$$
$$f_y(x_0,y_0) = 0$$
$$f_{xx}(x_0,y_0) > 0 \text{或} f_{yy}(x_0,y_0) > 0$$
$$f_{xx}(x_0,y_0)f_{yy}(x_0,y_0) - f_{xy}^2(x_0,y_0) > 0$$
三、多元函数满足的条件
多元函数的微分中值定理和极值判定都需要满足一定的条件。

3.1 拉格朗日中值定理的条件
拉格朗日中值定理需要满足以下条件:
- 函数$f(x,y)$在闭区间$[a,b]\times[c,d]$上连续;
- 函数$f(x,y)$在开区间$(a,b)\times(c,d)$上具有一阶偏导数。

3.2 柯西中值定理的条件
柯西中值定理需要满足以下条件:
- 函数$f(x,y)$和$g(x,y)$在闭区间$[a,b]\times[c,d]$上连续;
- 函数$f(x,y)$和$g(x,y)$在开区间$(a,b)\times(c,d)$上具有一阶偏导数;
- $g_x(x,y)$和$g_y(x,y)$在闭区间$[a,b]\times[c,d]$上不同时为零。

3.3 极值判定的条件
极值判定需要满足以下条件:
- 函数$f(x,y)$在点$(x_0,y_0)$处可偏导;
- 函数$f(x,y)$在点$(x_0,y_0)$处可二阶偏导。

四、多元函数微分中值定理与极值判定的应用
多元函数微分中值定理和极值判定广泛应用于经济学、物理学、工程学等领域。

4.1 应用举例:最速上升问题
最速上升问题是经济学中一个重要的问题,可以利用多元函数的微分中值定理解决。

通过求解边际产出与边际成本的最大比值,可以确定效率最大的生产要素组合。

4.2 应用举例:空间曲线的拟合
空间曲线的拟合问题可以利用多元函数的极值判定解决。

通过求解距离函数的最小值点,可以确定空间曲线与给定点之间的最佳拟合曲线。

总结:
本文介绍了多元函数的微分中值定理和极值判定的概念、原理和应用。

多元函数的微分中值定理是拉格朗日中值定理和柯西中值定理的推广,可以用于解决多元函数的中值问题。

多元函数的极值判定通过求函数的偏导数和判定二次型的正负来确定函数的极值点。

这些理论在实际问题中有着广泛的应用,能够为经济学、物理学、工程学等领域中的问题求解提供参考和指导。

相关文档
最新文档