氧化沟计算书
氧化沟计算
![氧化沟计算](https://img.taocdn.com/s3/m/d9bdf3e7b8f67c1cfad6b863.png)
氧化沟设计参数混合液悬浮固体浓度(MLSS )X=4000mg/L混合液挥发性悬浮固体浓度(MLVSS )X V =3000mg/L污泥龄θC =30d污泥产率系数Y=0.55内源代谢系数K d =0.05520°C 时脱氮率q da =0.035kg (还原的3NO N --)/(kgMLSS·d) VSS/TSS=0.75设置两组氧化沟:总设计平均流量47714.4m 3/d ,每组氧化沟的流量为23857.2 m 3/d 。
去除BOD氧化沟出水溶解性BOD 浓度为S 。
为了保证沉淀池出水BOD 浓度Se ≤10mg/L,必须控制所含溶解性BOD 浓度S 2,因为沉淀池出水中的VSS也是构成BOD 浓度的一个组成部分。
S=Se-S 1S 1为沉淀池出水中的VSS 所构成的BOD 浓度。
S 1=1.42×(VSS TSS)×TSS ×(1−e −0.23×5) =1.42×0.75×10×(1−e −0.23×5)=7.28 mg/LS=Se-S 1=10-7.28=2.72mg/L好氧区容积V1:V1=Yθc Q(S0−S) X V(1+K dθc)=0.55×30×23857.2×(0.25−0.00272)3×(1+0.055×30)=12244.06 m3好氧区停留时间:t1=V1Q=12244.06×2423857.2≈12.3h剩余污泥量:∆X=Q(S0−S)(Y1+K dθc)+Q(X0−X1)−QX e=23857.2×(0.25−0.00272)×0.551+0.055×30+23857.2×(0.25−0.175)−23857.2×0.01=2775.12 kg/d去除每1kgBOD5所产生的干污泥量为:∆XQ(S0−S e)=2775.1223857.2×(0.25−0.01)=0.485 (kgDs/kgBOD5)设计的出水BOD5为10mg/L,处理水中非溶解性BOD5的值为: BOD5f=0 .7×Se×1.42×(1-e-0.23×5)=0.7×10×1.42×(1-e-0.23×5)=6.79mg/L因此处理水中的溶解性BOD5为:(30-15)-6.79=8.21 mg/L, 每组氧化沟日产污泥量:∆X1=aQLr1000(1+bθc)=0.6×23857.2×(250−8.21)1000×(1+0.05×30)=1384.42 kg/d(污泥增长系数:a=0.6,污泥自身氧化率:b=0.05,Lr为去除的BOD5浓度。
氧化沟工艺设计计算及说明
![氧化沟工艺设计计算及说明](https://img.taocdn.com/s3/m/bc8703371a37f111f0855b7c.png)
氧化沟工艺设计计算书1.项目概况处理水量Q=5万m 3/d ;进水水质BOD 为150mg/L ;COD 为300 mg/L ;SS 为250mg/L ;L mg TN L mg N NH /30,/304==-+。
处理要求出水达到国家一级(B)排放标准即 COD≤60 mg/L ,BOD 5≤20 mg/L ,SS ≤20mg/L ,L mg TN L mg N NH /20,/84≤≤-+。
2. 方案对比三种方案优缺点比较如下表:本方案设计采用氧化沟,氧化沟分两座,每座处理水量Q=2.5万m3/d 。
下面是氧化沟工艺流程图。
氧化沟工艺流程图3. 设计计算3.1设计参数总污泥龄:20d MLSS=4000mg/L MLVSS/MLSS=0.7 MLVSS=2800mg/L污泥产率系数(VSS/BOD 5)Y=0.6kg /(kg.d ) 3.2 工艺计算 (1)好氧区容积计算出水中VSS=0.7SS=0.7×20=14mg/LVSS 所需BOD=1.42×14(排放污泥中VSS 所需得BOD 通常为VSS 的1.42倍) 出水悬浮固体BOD 5=0.7×20×1.42×(1-e -0.23×5)=13.6 mg/ L 出水中溶解性Se=BOD 5=20-13.6 mg/ L=6.4mg/L%.795%100150.461505=⨯-=去除率BOD好氧区容积:内源代谢系数Kd=0.0535.77467.04000)2005.01()4.6150(25000206.0)1()(m X c Kd c Se So YQ V V =⨯⨯⨯+-⨯⨯⨯=+-=θθ好氧停留时间 h h Q V t 7.4424250007746.5=⨯==好氧 校核:)/(17.05.77467.0400025000)4.6150()(5d kgMLVSS kgBOD V X Se So Q M F V ⋅=⨯⨯⨯--=好氧 满足脱氮除磷的要求。
(完整版)卡鲁塞尔氧化沟设计计算
![(完整版)卡鲁塞尔氧化沟设计计算](https://img.taocdn.com/s3/m/f749c2cb561252d381eb6e44.png)
卡罗塞尔氧化沟.1设计参数1) 氧化沟座数:1座2) 氧化沟设计流量:max Q =183 L/s3) 进水水质:5BOD =220 mg/LCOD=300 mg/LSS=300 mg/L3NH -N ≤35 mg/LT-P=4 mg/LT-N=30 mg/L4) 出水水质:5BOD ≤20 mg/LCOD ≤60 mg/LSS ≤20 mg/L3NH -N ≤8 mg/LT-P ≤1 mg/LT-N ≤20 mg/L5) 最不利温度:T= 100C6) 污泥停留时间:d Q c =7) MLSS=8) f=9) 反应池中的溶解氧浓度:10) 氧的半速常数:11) 污泥负荷:12) 水流速:.2计算.2.1碱度平衡计算(1)由于设计的出水BOD ,为20mg/L ,处理水中非溶解性5BOD ,值可用下列公式求得,此公式仅适用于氧化沟。
f BOD 5 = 0.7)e 1(42.15-0.23e ⨯-⨯⨯⨯C= 0.7 ⨯ 20 ⨯1.42 (5-0.23e 1⨯-)=13.6 m g / L式中 e C —出水中5BOD 的浓度 mg/L因此,处理水中溶解性 5BOD 为: 20-13.6=6.4 mg/L(2)采用污泥龄20d ,则日产泥量据公式/921kg = d式中 Q —氧化沟设计流量 m ³/s ;a---污泥增长系数,一般为0.5~0.7,这里取0.6;b---污泥自身氧化率,一般为0.04~0.1,这里取0.06;t L ---)(e 0L L -去除的5BOD 浓度 mg/L ;m t --污泥龄 d ;0L ---进水5BOD 浓度 mg/L ;e L ---出水溶解性5BOD 浓度 mg/L ;一般情况下,设其中有12.4%为氮,近似等于TKN 中用于合成部分为: 0.124⨯921=114.22 kg/d即:TKN 中有2.72.158********.114=⨯mg/L 用于合成。
氧化沟工艺设计计算书
![氧化沟工艺设计计算书](https://img.taocdn.com/s3/m/2707df2e48d7c1c708a145ae.png)
设计处理水量Q=300m3/d=12.50m3/h进水COD Cr=1620mg/L COD Cr=324mg/LBOD5=S0=840mg/L BOD5=S z=126mg/LTN=250mg/L TN=30mg/LNH4+-N=180mg/L NH4+-N=18mg/L碱度S ALK=280mg/L pH=7.2SS=180mg/L SS=C e=20mg/Lf=MLVSS/MLSS=0.74000mgMLSS/L采用最小污泥龄30d 曝气池出水溶解氧浓度2mg/L衰减系数Kd=0.05d-1活性污泥产率系数Y=0.5mgMLSS/mgBOD5夏季平均温度T1=25℃20℃时反硝化速率常数q dn,20=0.07冬季平均温度T2=15℃反硝化温度校正系数= 1.09剩余碱度100mg/L 硝化反应安全系数K= 2.5所需碱度7.14mg碱度/mgNH4-N氧化硝化所需氧= 4.6mgO2/mgNH4-N产出碱度 3.57mg碱度/mgNO3+-N还原反硝化可得到氧= 2.6mgO2/mgNO3+-N反硝化时溶解氧浓度0.2mg/L若生物污泥中约含12.40%的氮用于细胞合成459m3 1.53d =36.72h氧化沟工艺设计计算书(一)设计参数:进水水质:出水水质:混合液浓度X=kgNO3--N/kgMLVSS(二)设计计算1 好氧区容积计算好氧池水力停留时间t1=5.31kg/d 即TKN中有TKN×1000/300=17.71mg/L 故需氧化的[NH 4-N]=144.29mg/L 需还原的[NO 3+-N]=43.29mg/L1.42d=33.98h 设计取V=900m 3设计有效水深h= 3.5m 5.5m 则所需沟的总长度L=46.75m 22.5m 实际有效容积=1198.87m 3 4.00d (1)硝化消耗碱度=1030.25mg/L(2)反硝化产生碱度=154.54mg/L(3)去除BOD 5产生碱度=71.4mg/L(4)剩余碱度=175.69mg/L0.85β=0.95CS(20)=9.17θ= 1.024C S(25)=8.382 缺氧区容积计算(2)用于细胞合成的TKN=缺氧池水力停留时间t 2=3 氧化沟总池容积425m 3254.17设计宽度b=取直线沟段长=实际停留时间t'=4 碱度平衡计算5 实际需氧计算6 标准需氧量计算V=V 1+V 2=88442.84按设定条件 α=d kg/dkg/(kg.d)m 3kg/d 2.95总水力停留时间t=(2)硝化需氧量218.7kg/d (3)反硝化产氧量33.76kg/d 250mg/L Xr=10000mg/L(4)硝化剩余污泥NH 4-N需氧量16.79kg/d (5)总氧量422.31kg/d 27.54m 3/d 99.20%D3=2.6×Q×N T =按设定条件 X 0=由QX+Qr=(Q+Qr)X 得254.17W=W V +X 1Q-XeQ=取污泥含水率P=D 2=4.5×Q(N 0-Ne)=7 污泥回流量计算678.83m 3/d m3/d kg/d kg/d 3.44187.5D4=0.56×W V ×f=D=D1+D2-D3-D4=8 剩余污泥量。
氧化沟计算
![氧化沟计算](https://img.taocdn.com/s3/m/9dd85ac955270722182ef7b9.png)
3.3.3 carrousel 氧化沟假设沉砂池出水BOD =200mg/L ,氧化沟出水BOD =20mg/L 。
图6 氧化沟计算图(1)氧化沟所需容积V设污泥负荷N S =0.06kgBOD 5/(kgMLSS·d)污泥回流比R =100%,污泥回流浓度X R =6000mg/L (6kg/m 3)混合液污泥浓度()2006000100%3100/11100%R ss X R X mg l R +⨯+⨯===++氧化沟所需容积 30()60000(20020)58065()0.063100e s Q L L V m N X -⨯-===⨯ (2)氧化沟平面尺寸的确定设池数为两个,则每个池子的容积V 0为:V=V/2=0.5×58065=29032(m 3)设池宽w =13m ,池深h =4.5m ,超高h 1=0.5m (采用曝气转碟曝气),则池长为220329032313 4.53313132()4413 4.5V w h l w m wh ππ--⨯⨯=+=+⨯=⨯⨯所以氧化沟的工艺尺寸为:132m (长)×52m (宽)×5m (高)×2(池数)(3)校核氧化沟有效容积:()'23643328926()V l w wh w h m π⎡⎤=-+=⎣⎦BOD-SS 负荷:05()600001800.06kgBOD /(kgMLSS?d)580653100e s Q L L N VX -⨯===⨯=0.06kgBOD 5/(kgMLSS·d)(在0.03~0.15范围之间)容积负荷:330560000200100.21/()58065V QL N kgBOD m d V -⨯⨯===(在0.2~0.4范围之间)水力停留时间:24245806523.2()60000V T h Q ⨯===(在10~48小时之间)污泥回流比:3100200 1.060003100R X ss R X X --===--(在50%~100%之间)污泥龄:58065310015()20060000C VX t d ss Q ⨯===⨯⨯(在10~20天去除BOD 并消化)(4)曝气设备必要需氧量(SOR )设去除1kgBOD 需氧2kg ,则每天实际需氧量AOR=L r ×Q ×2=(200-20)×10-3×60000×2=21600kg/d标准条件下必须的供氧量(SOR ) ()2076011.024()24swt S A AOR C SOR C C p αβ-=⨯⨯-2020216008.8476011210(/)1.0240.93(0.978.84 1.5)76024kg h -⨯=⨯⨯=⨯⨯⨯-C SW =8.84mg/L ,C S =8.84mg/L (假设水温为20℃),C A =1.5mg/L ;α、β—修正系数,利用延时曝气法α=0.93,β=0.97;P —当地大气压强,P =760mmHg 。
氧化沟说明计算书2
![氧化沟说明计算书2](https://img.taocdn.com/s3/m/9301d57f27284b73f242502e.png)
水控设计说明书班级:姓名:学号:日期:目录1 粗格栅 (1)2 泵站 (3)3 细格栅 (3)4 沉砂池 (5)5 计量设备 (7)6 氧化沟 (8)7 二沉池的设计和计算 (11)8 回流污泥泵房 (12)9 接触消毒 (13)10剩余污泥泵房 (14)11污泥浓缩池 (15)12贮泥池 (16)13浓缩污泥提升泵房 (17)14污泥脱水间 (17)15污水厂总体布置 (18)16工程技术经济分析 (19)参考文献 (21)污水处理系统设计计算1 粗格栅设计说明:栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s ,槽内流速0.5m/s 左右。
如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。
此外,在选择格栅断面尺寸时,应注意设计过流能力只为格栅生产厂商提供的最大过流能力的80%,以留有余地。
如前面所述,选用平面矩形格栅(三座) 计算草图3-1图3-1 格栅示意图1.1 格栅的间隙数量n取过栅流速0.9m/s, 格栅倾角α=60°,,栅条间距b=30 mm ,栅前水深0.6m120.46360)0.030.9max ×n=2(bhv)×(sin =×0.6 =26.6Q取n=27式中: Q max -最大设计流量,m 3/sa-格栅倾角 b-栅条间隙.m h-栅前水深,mv-污水流经格栅的速度,m/s1.2格栅的建筑宽度 B设计采用圆钢为栅条,即s = 0.01mB=S n-1+bn=0.01(27-1)+0.037=1.07m ()××21.3 过栅水头损失 栅条断面形状为圆形 21 h =(v /2g)s i na K 0.188m =ξ×式中:ξ-阻力系数,其值与栅条断面形状有关,圆形取1.79 k-格栅受污物堵塞时水头损失增大倍数,一般取3 1.4 栅后槽的总高度12h =h+h +h 总式中: h 2-栅前管道超高,取0.3米h =0.6+0.188+0.3=1.088m 总1.5 格栅的总建筑长度121L=L +L +1.0+0.5+H /t ga111-b L ==1.22m 2b t g a 式中: L 1—进水渐宽部位长度,mb 1—进水渠渠宽,取0.8米;a 1—进水渠渐宽部分展开角,20° L 2—出水管道渐窄部位长度,L 2= 0.5L 1=0.61m121L=L +L +1.0+0.5+H /t ga = 7.53m 1.5 每日栅渣量的计算工程格栅间隙为30mm ,取W 1=0.02m 3/103m 33max 13W=(m /d )0.463 =1.2 =1.6m /dv z q w k ×××××· 8640010000.05864001000式中:K Z —生活污水流量总变化系数,取1.2 因为每日栅渣量>0.2m3/d,宜采用机械清渣 1.6 清渣设备亚太环保公司的FH 型旋转式格栅除污机,2台,N=1.5KW 。
卡罗塞尔氧化沟计算
![卡罗塞尔氧化沟计算](https://img.taocdn.com/s3/m/b1c43cfdba0d4a7302763a30.png)
卡罗塞尔氧化沟:设计参数:其中污泥负荷Ls=0.05--0.15一、已知条件:1、设计流量:Q h /m 2125d /m 101.5334=⨯= 2、设计进水水质:BOD 浓度L /mg 300S a =,SS 浓度L /mg 280X =,(则)污水水温变化范围C 25~120,平均水温C 25o 3、设计出水水质:BOD 浓度L /mg 20S e =,SS 浓度L /mg 20X e =;考虑污泥稳定化:污泥产率系数60.0Y =,内源代谢系数040.0K d =,70.0XX f v ==二、设计计算:1、去除BOD : L /mg 28020-300S -S S e a r ===L /mg 26020280X X X e r =-=-=2、总容积:33s e 0m 42000m 417558.309.0100020300212524X L 1000S S Q 24V ≈=⨯⨯-⨯⨯=-=)()( 校核污泥龄:)()(c d v e 0c K 11000X S S QY 24V Φ+-Φ=解得:d 27c =Φ3、尺寸计算:取廊道的宽度为6m ,共6个廊道,即总宽度为B=36m 有效水深为h1=6m , 超高取h2=0.5m ,中间分隔墙厚度为0.25m ;3个小半圆32211*1m 5426632r h 3V 3V ∏=⨯∏⨯⨯=∏== 1个大半圆3222m 1622182R V ∏=⨯∏=∏= 即:321m 4070V V =+ 其中矩形长度为m 6.1752164070-42000Bh V V V L 121==--=4、每组沟需氧量确定:(1)去除BOD 需氧量:VX b S -S Q a R 101+=)( d /kgO 111714200066.21.0101020300101.55.02364=⨯⨯+⨯-⨯⨯=-- (2)采用表面机械曝气机时,所需的充氧量)()(20T T sb )20(0024.1]C [R --=C RC S βα[])(2025024.124.8195.085.017.911171--⨯⨯⨯= h /kg 17900=5、进水管和出水管计算:污泥回流比:R=40%进出水管流量:()()s m d m Q R Q /1377.0/119006101.54.0141334===⨯⨯+=⨯+= 进水水流速控制:V s m /1≤进出水管直径:m V Q d 51.0114.31377.066=⨯⨯==π 取0.60m 校核进出水管流速:s m A Q V /149.03.01377.02〈≈==π (合格)。
毕业设计氧化沟工艺设计计算说明书
![毕业设计氧化沟工艺设计计算说明书](https://img.taocdn.com/s3/m/5e616c57a88271fe910ef12d2af90242a895abfa.png)
毕业设计氧化沟工艺设计计算说明书氧化沟是一种常见的废水处理工艺,用于处理生活污水和工业废水。
本文将介绍毕业设计中氧化沟工艺设计计算的相关内容。
首先,进行氧化沟工艺设计计算前,需要明确设计的目标和要求,包括处理能力、出水水质要求和设计寿命等。
然后根据这些要求,进行工艺参数的选取和计算。
设计计算中需要确定的参数包括氧化沟池体积、进水总量、曝气量和池体长度等。
其中,氧化沟池体积的计算可以根据污水进水总量和停留时间计算得出,停留时间一般可根据污水处理工艺的要求确定。
进水总量的计算可以根据日均流量和水质参数计算得出。
曝气量的计算可以根据氧化池的BOD负荷和曝气气泡尺寸计算得出,BOD负荷可以根据进水水质和处理要求确定,曝气气泡尺寸一般经验值为3-5mm。
池体长度的计算可以根据池体宽度和流速计算得出,流速可以根据氧化池污水处理工艺的要求确定。
在进行氧化沟工艺设计计算时,还需要考虑到氧化沟的氧化能力。
氧化能力是指氧化沟对有机物负荷的去除能力,可以通过氧化力指数(DO)和曝气时间计算得出。
DO的计算可以通过污水进水DO浓度和活性生物池DO浓度的差值计算得出,曝气时间则可根据池体长度和流速计算得出。
同时,在氧化沟工艺设计计算中,还需要进行混合液混合度的计算。
混合度一般可根据混合液曝气器的排水高度和曝气器排气量计算得出,排水高度可以根据氧化沟污水处理工艺的要求确定。
最后,在完成氧化沟工艺设计计算后,还需要进行系统的优化和改进。
可以通过计算结果的分析和对比,调整工艺参数,提高氧化沟的处理效果。
总之,氧化沟工艺设计计算是毕业设计中的重要部分,设计计算的结果将直接影响氧化沟的处理能力和效果。
因此,需要认真进行参数选取和计算,不断优化和改进设计,以实现对废水的高效处理。
氧化沟工艺工程设计计算书(包含碳泥龄和污泥指数取值)
![氧化沟工艺工程设计计算书(包含碳泥龄和污泥指数取值)](https://img.taocdn.com/s3/m/dc4937bdf8c75fbfc77db2ac.png)
ΔSNO3=TNj-TNch-XNV-SNO3 ΔSNO3-d=ΔSNO3*Q/1000 V'=ΔSNO3/(X*r'DN) V总=V+V'
L=V总/(B*H)
TNo=TNj-TNch-Xnv Al=Aj+3.57*ΔSNO3+0.1*(BODj-BODch)-7.14*TNo
氧化沟工艺反应池的工程设计计算
m3/d
mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mL/g mL/g
℃ mg/L
~
设计规模1 20000 1.17 1.38 200
240 200 35 250 30
30
2 10 15 2 7.2
1.19
污泥指数
外部条件 设计规模 日变化系数 总变化系数 进水BOD5 进水CODCr 进水SS 进水VSS 进水TN 进水碱度 出水BOD5 出水CODCr 出水SS 出水TN 出水氨氮 出水硝酸盐 设计最低水温 溶解氧浓度 pH值
Q Kd KT Lj Cj Sj VSj TNj Aj Lch Cch Sch TNch Nch SNO3 T DO pH
基本知识: 混合液在沟 内的循环速 污泥回流比60~
200%,污泥浓度 沟内氧转移效率为 1.5~2.1kg/(KW·h) 泥龄:通常10~ 30d,与温度、脱 有机负荷:通常 0水.0力3~停0留.1时0B间OD:对 于城市污水,采用 数值6~30h。
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18
DE型氧化沟毕业设计_设计计算书
![DE型氧化沟毕业设计_设计计算书](https://img.taocdn.com/s3/m/f6b007e8524de518964b7d71.png)
2 设计计算书2.1 设计基础数据的确定本设计中污水处理厂的设计流量为8万m 3/d ,即平均日流量。
平均日流量一般用来表示污水处理厂的规模,用来计算污水厂的栅渣量、污泥量、耗药量及年抽升电量;最大设计流量用于污水处理厂中管渠计算及各处理构筑物计算。
污水的平均处理量为: /sm 9259.0/h m 33.3333/d m 80000333===平Q (2-1)污水的最大处理量为:max Q =平Q f K ⨯; (2-2) f K =3.17.21259.90.727.21.101.10<==平Q ;取f K =1.3;max Q =0.9259×1.3=1.204m 3/s ;2.2 粗格栅格栅是格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。
本设计采用中细两道格栅。
本设计采用平面粗格栅。
2.2.1 设计参数(1) 格栅本设计单独设置格栅井,采用机械除渣。
(2) 格栅宽度格栅的总宽度不宜小于进水管渠宽度的2倍,格栅空隙总有效面积应大于进水管渠有效断面积的1.2倍。
(3) 过栅流速过栅流速一般采用0.6~1.0m/s 。
雨水泵站格栅前进水管内的流速应控制在1.0~1.2m/s ;当流速大于1.2m/s 时,应将临近段的入流管渠断面放大或改建成双管渠进水。
污水泵站格栅前进水管内的流速一般为0.6~0.9m/s 。
(4) 格栅倾角本设计采用机械除渣,所以倾角应该在60°~90°之间,由于90°的倾角不利于渣的悬挂,可采用60°倾角,格栅上端应设置一个平台,便于放清渣机械,格栅下端应低于进水管底部0.5m ,距池壁0.5~0.7m 。
(5) 格栅工作平台工作平台应等于或稍高于格栅井的地面标高。
平台宽度到污水泵站不应小于2m ;雨水泵站不应小于2m 。
两侧过道宽度采用1.0m ,安置除渣机减速箱,皮带输送机等辅助设施的位置。
毕业设计氧化沟工艺设计计算说明书
![毕业设计氧化沟工艺设计计算说明书](https://img.taocdn.com/s3/m/a51ca849591b6bd97f192279168884868662b866.png)
毕业设计氧化沟工艺设计计算说明书一、设计目标和要求本设计旨在设计一套高效可行的氧化沟工艺系统,以实现废水处理工艺的目标:高效去除废水中的有机物和氮磷物质,达到国家废水排放标准要求。
二、工艺流程设计本设计采用了传统的氧化沟工艺,包括进水、曝气、沉淀等步骤,具体工艺流程如下:1.进水:将废水通过输送管道引入氧化沟系统,并在进水池进行调节和预处理。
2.曝气:将废水均匀分配到氧化沟中,并通过曝气装置进行气液交换,促进微生物的生长和有机物的氧化分解。
3.沉淀:废水经过氧化沟的氧化分解后,通过曝气时的气泡上升及沉淀作用,使污泥与水分离,废水的悬浮物质沉淀至污泥池底部。
4.出水:沉淀过程完成后,清水从上部流出,并通过澄清池进一步净化,最终达到国家排放标准后可直接排放。
三、计算参数和公式1.曝气量计算曝气量和废水流量成正比,可以通过以下公式计算:Qa=a*Qw其中,Qa为曝气量,a为曝气量系数,Qw为废水流量。
2.沉淀时间计算沉淀时间与氧化沟尺寸和废水泥量有关,可以通过以下公式计算:Tc=V/(Qw-Qd)其中,Tc为沉淀时间,V为氧化沟体积,Qd为污泥排出量。
3.澄清池尺寸计算澄清池尺寸可以通过以下公式计算:Vc=Qw*Tc其中,Vc为澄清池体积。
四、实际计算案例根据实际情况,假设废水处理量为100m³/d,假设曝气量系数a为0.6,污泥排出量Qd为5m³/d,则可进行如下计算:1.曝气量计算:Qa=0.6*100=60m³/h2.沉淀时间计算:假设氧化沟尺寸为10m*5m*2m,氧化沟体积V为100m³,代入公式计算:Tc=100/(100-5)=1.05h3.澄清池尺寸计算:Vc=100*1.05=105m³五、结论通过上述计算,可以得出氧化沟系统的设计参数:曝气量为60m³/h,沉淀时间为1.05小时,澄清池体积为105m³。
根据这些参数进行实际工程设计和操作,可以达到设计目标和要求,实现废水处理工艺的高效性和可行性。
DE氧化沟设计计算
![DE氧化沟设计计算](https://img.taocdn.com/s3/m/12003c8ba300a6c30c229ffa.png)
第五节 DE 氧化沟一、设计参数1.污泥浓度:X=2500-4500mg/L ;2.污泥负荷:0.05-0.1kgBOD 5/kgMLSS ;3.污泥龄:15-30d 。
4.每千克BOD 需氧量:1.6-2.5kgO2/kgBOD 。
5.设计流量Q=100000m 3/d ,设四组,单组设计流量Q 单=0.289m 3/s 。
二、设计计算1.出水中溶解性BOD 5( 设为0.7)mg/L76.668.0107.042.1)1()()(42.1523.01=⨯⨯⨯=-⨯⨯⨯=⨯-e T T V S ss ssssmg/L 24.376.610=-=S式中: S ——出水溶解性5BOD 浓度,mg/L 。
e S ——出水5BOD 浓度,mg/L 。
1S ——出水中SS 产生的5BOD ,mg/L 。
ss T ——剩余SS 浓度,mg/L 。
2.好氧区容积v X =ssssT V ×X=0.7×3500=2450mg/L 301m 45.33384)2005.01(45.2100000100024.31852045.0)1()(=⨯+⨯⨯⎪⎭⎫⎝⎛-⨯⨯=+-=c d v e c k X Q S S Y V θθ 式中: Y ——污泥产率系数,取0.45。
c θ——污泥龄,取20d 。
ssssT V 1S S S e -=S0——进水BOD 浓度。
v X ——挥发性污泥浓度。
d k ——内源代谢系数,取0.05。
X ——污泥浓度,取3500mg/L 。
3.好氧区停留时间h 92.711==QV t 4.剩余污泥量kg/d5.7082100041405.393701.0100000)77.018.018.0(100000)2005.0145.0)(01.0185.0(100000)1(1=-+=⨯-⨯-⨯+⨯+-⨯=-++∆=∆ecd QX QX k YS Q x θ 5.湿污泥量:设污泥含水率为99.3%P =/d m 5.56210000%)3.991(5.37371000)1(3=⨯-=⋅-∆=p x Q s每降解51kgBOD 所产生的干泥量5s 0/kgBOD kgD 42.0)100010185(1000005.7082)(=-⨯=-∆e S S Q x6.脱氮(1)需要氧化的N NH -3量N 1氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的氮N 0=12.4%×用于生物合成的剩余污泥量=12.4%×3937.5×1000001000=4.88mg/L031N N NH TN N 生物合成的氮出水进水---= =40-5-4.88 =30.12mg/L(2)需要脱氮量0N TN TN N r 生物合成的氮出水进水--= =40-15-4.88 =20.12mg/L(3)碱度平衡一般认为剩余碱度>100mg/L 时即可保持pH>7.2,生物反应能够进行,每氧化N mgNH -31消耗mg/L 14.7碱度, 每氧化1mg 5BOD 产0.1mg/L 碱度, 每还1mg N NO -3产生3.57mg/L 碱度, 原水碱度一般在280mg/L 。
奥贝尔氧化沟计算说明书
![奥贝尔氧化沟计算说明书](https://img.taocdn.com/s3/m/c92897664028915f804dc2b3.png)
氧化沟奥贝尔氧化沟是延时曝气法的一种特殊形式,一般采用圆形或椭圆形廊道,池体狭长,池深较浅,在沟槽中设有机械曝气和推进装置,近年来也有采用局部区域鼓风曝气外加水下推进器的运行方式。
池体的布置和曝气、搅拌装置都有利于廊道内的混合液单向流动。
通过曝气或搅拌作用在廊道中形成0.25—0.30m/s 的流速,使活性污泥呈悬浮状态,在这样的廊道流速下,混合液在5—15min内完成一次循环,而廊道中大量的混合液可以稀释进水20—30倍,廊道中水流虽呈推流式,但过程动力学接近完全混合反应池。
当污水离开曝气区后,溶解氧浓度降低,有可能发生反硝化反应。
大多数情况下,氧化沟系统需要二沉池,但有些场合可以在廊道内进行沉淀以完成泥水分离过程。
1、氧化沟类型选择本工艺所采用的Orbal氧化沟具有如下工艺特点:1)采用转碟曝气,混合效率较高,水流在沟内的速度最高可达0.6~0.7m/s,水流快速地在外沟道进行有氧、无氧交换,同时进行有机物的氧化降解和氮的硝化、反硝化,并可有效的去除污水中的磷。
中沟与内沟中污水的有机物进一步得到去除降解。
出水水质好。
2)供氧量的调节,可以通过改变转碟的旋转方向、转速、浸水深度和转碟安装个数等多种手段来调节工艺系统的供氧能力,使沟内溶解氧值保持在最佳值,使系统稳定、经济、可靠地运行。
3)污水进入氧化沟。
具有推流式和完全混合式两种流态的优点,出水水质稳定。
对于每个沟道来讲,混合液的流态基本上为完全混合式,由于池容较大,缓冲稀释能力强,耐高流量。
高浓度的冲击负荷能力强;对于3个沟道来讲,沟道与沟道之间的流态为推流式。
有着不同的溶解浓度和污泥负荷,兼有多沟道串联的特征,难降解有机物去除率高。
并可减少污泥膨胀现象的发生。
4)椭圆形沟平面布置有利于利用水流惯性,节约推动水流的能耗。
在曝气过程中。
串联的沟道水流形成典型的溶解氧浓度变化O~1~2(mg/L),因而自动控制了系统的生物脱氮过程。
外沟溶解氧平均值很低。
奥贝儿氧化沟设计计算书 (2)
![奥贝儿氧化沟设计计算书 (2)](https://img.taocdn.com/s3/m/7775c4f3f61fb7360b4c65bc.png)
奥贝尔氧化沟工艺设计计算1.已知条件(1)设计水量Q=100000d /m 3 =4166.7h m /3 =1.157s m /3=1157L/s(2)设计进水水质BOD 5浓度m g /L 150S 0=;TSS 浓度m g /L 250X 0=,VSS mg/L 175=(VSS/TSS=0.7);mg/L 45T KN =(进水中认为不含硝态氮);NH 3-N=35mg/L ;mg/L 45T KN =;最低水温14℃;最高水温25℃。
(3)设计出水水质BOD 5浓度S e =20mg/L ;TSS 浓度mg/L 20X 0=;mg/L 20TKN 1=;NH 3-N=15mg/L2.设计计算(1) 基本设计参数污泥产率系数 Y=0.55混合液悬浮固体浓度(MLSS )X=4000mg/L,混合液挥发性悬浮固体浓度(MLVSS ) X V =3000mg/L (MLVSS/MLSS=0.75);通常的泥龄取值为10~30d 。
本设计污泥龄d c 30=θ。
污泥自身氧化率(1/d ),对于城市污水,一般采用0.05~0.1。
设计中取d K =0.05, 20℃时脱氮率kg 035.0q dn =(还原的NO 3—N/(kgMLXSS ·d ) 去除BOD 5计算① 氧化沟出水溶解性BOD 5浓度S 。
为了保证二级出水BOD 5浓度S e ≤20mg/L ,必须控制氧化沟出水所含溶解性BOD 5浓度。
)523.0e 1()(42.1⨯--⨯⨯⨯-=TSS TSSVSS S S C )523.0e 1(207.042.120⨯--⨯⨯⨯-= )(L /mg 41.6=② 好氧区容积V 1,m 3()()c d c e K X S S YQ V θθ+-=1v 01式中 1V ——好氧区有效容积(3m );Y ——污泥净产率系数(kgMLSS/kg 5BOD ),一般采用0.5~0.65之间;0S 、e S ——分别为进、出水5BOD 浓度(mg/L );X ——污泥浓度(mg/L );c θ——污泥龄(d );d K ——污泥自身氧化率(1/d ),对于城市污水,一般采用0.05~0.1。
氧化沟计算书(施工图)
![氧化沟计算书(施工图)](https://img.taocdn.com/s3/m/c784cb1190c69ec3d5bb7548.png)
*剩余污泥计算
x YQ(So Se) KdVXv fQ(SSo SSe)
污泥产率系数Y 污泥内源呼吸系数Kd15 污泥转换率f 单组 其中产生代谢污泥: 两组(2万吨)干污泥 99.2%污泥体积 ΔXv kg/d m3/h 规范值0.3-0.6 规范值0.04-0.075 0.5-0.7 0.6 0.05 0.6 1688.414693 798.7935722 3376.829387 17.58765306
表曝机选型 台数 每台功率 合计功率 每台充氧量 合计充氧量
3.000 45.000 135.000 115.500 346.500
台 KW kgO2/h kgO2/h
6
充氧安全系数 叶轮直径 整机重量 沟宽比直径 沟深比沟宽 功率系数 推流器选型 预缺氧池台数 功率 直径 功率系数 厌氧池台数 功率 直径 功率系数 缺氧池台数 功率 直径 功率系数 氧化沟台数 功率 直径 功率系数 水头损失计算 正负0.00 泥水分离预缺氧 厌氧 厌氧至缺氧 厌氧池内过流断面 h 厌氧池至缺氧池管道 缺氧池/氧化沟 出水堰 m b H 取为 氧化沟出水水位
1、建设规模 近期Q= = = 15000.000 625.000 0.174 m³ /d m³ /h m³ /s
2、初设进出水水质调整: 进水水质 项目 (mg/l) BOD5 CODcr SS NH3-N TN TP PH=7.0~7.4 设计水温:8~30℃ 消毒指标:粪大肠菌群小于10000个/L 出水溶解氧浓度 硝
系数 7.140 3.000 0.100
>70
化学除磷计算 污泥中磷的比例 出泥含磷率 Pe 生物除磷率 化学除磷量 投加系数 FeCL3•6H2O投加量 0.02 P=Q(Po-Pe)/ΔXv 2.434941904 0.304302313 1.934941904 4.4 127.70脱氮要求BOD/TKN 除磷要求BOD/TP DO=2mg/L SF=3 0.433333333 4.333333333 37.14285714 2 3 规范值大于等于0.3 规范值宜大于4 规范值宜大于17 130 300 200 30 40 3.5 (mg/l) 10 50 10 5 15 0.5 出水水质
氧化沟工艺污水厂设计计算书
![氧化沟工艺污水厂设计计算书](https://img.taocdn.com/s3/m/1972141cf78a6529647d53a5.png)
设计计算书第一章 构筑物设计计算第一节污水处理系统 1 格栅与提升泵 1.1 格栅设计计算 1.1.1 主要设计参数日均污水量:Q d 为15万m 3/d总变化系数K Z :1.3(平均日流量大于1000L/s 的K Z 为1.3) 设计流量Q max =K z Q d =1.3*15万m 3/d =2.26m 3/s 栅条宽度 S=10mm=0.01m (矩形断面) 栅条间隙宽度b=20mm=0.02m 过栅流速 v=0.8m/s 栅前水深 h=1.2m格栅倾角α=60。
(α∈(45。
~75。
) 超高h=0.3m 1.1.2 设计计算由水力最优断面公式Q=(B1^2*v )/2得到B1=2.38,h=B1/2=1.19实际中取1.2计算(1)栅条的间隙数(分两组):49 实际数目为n-1=48个考虑格栅倾角的经验系数 (2)栅槽宽度栅槽宽度B 一般比格栅宽0.2~0.3m 也可以不加,此取加0.2 每组栅槽宽 B’=()10.2S n bn -++=0.01*(49-1)+49*0.05+0.2=1.66m 设每组栅槽间隔0.10m ,总长度栅槽宽度:B=2B’+0.10=3.42m 进水渠道渐宽部分的长度L1设进水渠宽B 1=2.1m ,其渐宽部分展开角度1α=20o (进水渠道内的流速为2.26/(2.38*1.2)=0.791m/s ,在0.4~0.9范围内,符合要求)L1=(B1-B2)/2tan 1α =1.43m栅槽与出水渠道连接处的渐窄部分长度L2=L1/2=0.715mh 损=0.0815m (3)栅后槽总高度H因粗格栅间隙较大,水利损失很少,可忽略不计设栅前渠道超高h 2=0.3m H=h 损+h 1+h 2=1.2+0.3=1.58(m) (4)格栅总长度(L ) L=L1+L2+0.5+1.0+1.30/tanα=1.43+0.715+0.5+1.0+(1.2+0.30)/tan60° =4.51m(5)每日栅渣量(W )污水流量总变化系数为1.3,则每日栅渣量W=(Q max *W1*86400)/(K z *1000)=3m 3/d >0.2m 3/d 式中:Kz --总变化系数,取1.3; W ——每日栅渣量, m 3/d ;1 W ——栅渣量333m /10m 污水一般为每 3 1000m 污水产3.31m 3; W>0.2m 3/d 所以采用机械清渣。
氧化沟计算书
![氧化沟计算书](https://img.taocdn.com/s3/m/f2936102844769eae009ed4a.png)
名义水力停留时间 t1=4745.94÷1042=4.55h
3.2 好氧区容积
好氧区容积从 1 号曝气机轴线起计算至 5 号曝气机轴线下游 10m, 则好氧区 容积为:
V2 7 (55 4 10) 3.14 7.125 7.125 / 2 5) 4.2 8435.74 m 3
氧化沟计算书 1 基础资料
规模 5×104 m3/d,分两组
单组流量:Q=25000m3/d=1042m3/h=0.289m3/s,水质见表 1 表 1 污水处理程度表
污染物名称 CODcr BOD5 SS 总氮 氨氮 总磷(以 P 计) 进水水质(mg/l) 500 120 250 35 25 2.5 出水水质(mg/l) ≤60 ≤20 ≤20 ≤15 ≤5(8) ≤0.5 去除率(%) ≥88.0 ≥83.3 ≥92.0 ≥42.9 ≥68.0 (40.0) ≥60.0
2.3.3 硝态氮反硝化产生的氧当量
O2.3 0.62 b 0.001 Q ( N ti N ke N oe ) 0.12 W m 0.62 4.57 0.001 25000 (35 5 10) 0.12 878 1118 kgO 2 / d
2.2.2 排出系统的微生物量
Wm Q (Si Se ) 0.9 bh Yh f t f (Yh ) 1 1000 bh f t
d
25000 (120 20) 0.9 0.08 0.6 1.072 (10 15 ) 0.85 (0.6 ) 1 1000 (10 15 ) 0.08 1.072 9.38 878 kg / d
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5氧化沟
1、氧化沟分两组,远近期各建一组。
日变化系数:K d =1.3
单组最大日平均时污水量:Q=13000m 3/d=542 m 3/h=0.15 m 3/s
2、设计说明:选择循环曝气氧化沟。
氧化沟中的循环流量很大,进入沟中的原污水立即被大量的循环水所混合稀释,因此具有承受冲击负荷的能力,对不易降解的有机物也有较好的处理效果,不仅可满足BOD 、COD 、SS 的处理要求,还能实现除磷、脱氮的目的。
氧化沟内设底部管式曝气装置,曝气装置气源有鼓风机房内罗茨鼓风机供给。
每座池内设6台潜水搅拌推进器。
3、氧化沟设计规程(CECS112:2000)主要参数:
含硝化和生物脱氮氧化沟的主要技术参数
4、设计计算(根据城市污水生物脱氮除磷处理设计规程)
a 、厌氧池容积:
V p =
24
tpQ =2413000
2x ==1083m 3
式中:Vp —压氧池容积(m 3);
tp —压氧池水力停留时间(h ),宜为1~2h ,取中值2h ; Q —最高日设计污水量(m 3/d )
b 、缺氧池容积:(根据城市污水生物脱氮除磷处理设计规程)
V n =
X
K Xv
)N N Q de te k ∆--12.0(001.0
式中:10℃(最冷月平均水温)的脱氮速率:
K de(10)=K de(20)1.08(t-20)
式中:K de(20)—20℃的脱氮速率,0.03~0.06(kgNO 3/kgMLSS •d),
取中值0.045; =0.045x1.08(10-20) =0.045x0.463=0.02
式中:排出生物反应池的微生物量:
Xv ∆=
)19.0(1000
(0t
h d
t
h h h e f b f Y b Y f )S S Q +--θ
式中:f —污泥产率修正系数,取0.8~0.9,取0.9,
Y h —异养菌产率系数,取为0.6; b h —异养菌内源衰减系数,取为0.08; f t —温度修正系数,取为1.072(t-15);
d θ—反应池设计泥龄,25d ,
=
)072.108.025
1072.16.008.09.06.0(9.01000)20180(13000)
1510()
1510(--+--x x x x x =1872(0.6-
057
.004.00305
.0+)=1872(0.6-0.32)
=524kgMLSS/d
缺氧池容积V n =
X
K Xv
)N N Q de te k ∆--12.0(001.0
式中:N k —反应池进水总凯氏氮浓度(mg/L ),
N te —反应池出水总氮浓度(mg/L ),
X —-反应池内混合液悬浮固体平均浓度(gMLSS/L ),
=
5
.402.0524
12.0)2040(13000001.0x x x --
=2190 m 3
则缺氧池水力停留时间:
T=2190x24/13000=4.04(h )
c 、好氧池容积:(根据城市污水生物脱氮除磷处理设计规程)
V o =
X
Y
)S S Q d e 1000(0θ-
污泥净产率系数: Y =)19.0(i
i t
h d
t h h h S X
f b f Y b Y f ψθ++-
式中:ψ—反应池进水悬浮物固体中不可水解/降解的
悬浮固体比例,取0.6,
X i —-反应池进水中悬浮固体浓度(mg/L ),
=)180220
6.0072.108.025
1072.16.008.09.06.0(9.0)1510()1510(++-
--x x x x =)73.0097
.00305
.06.0(9.0+- =0.91
∴好氧池容积V n =
X
Y
)S S Q d e 1000(0θ-
=
5
.4100091
.02520180(13000x x )-
=10516 m 3
则好氧池水力停留时间:
T=10516x24/13000=19.4(h )
d 、反应池总容积:
V=V A +V D +V O =1083+2190+10516=13789 m 3
总停留时间:
T=V/Q=2+4+19.4=25.4h
e 、混合液回流量:(根据城市污水生物脱氮除磷处理设计规程)
Q Ri =
R ke
te de n Q N N X
K V --1000
式中:Vn--缺氧池容积(m 3), K de —脱氮速率,根据计算为0.02,
X —-反应池内混合液悬浮固体平均浓度(gMLSS/L ), N te —反应池出水总氮浓度(mg/L ),
N ke —反应池出水总凯氏氮浓度(mg/L ),其中有机氮 约为2mg/L ,氨氮约为8mg/L ,故总凯氏氮浓度,为10mg/L ,
Q-—回流污泥量(m 3/d ), =
13000%10010
205
.402.021901000x x x x --
=19710-13000 =6710 m 3/d
f 、好氧池需氧量:(根据城市污水生物脱氮除磷处理设计规程)
Q 2=0.001aQ(S i -S e )+b[0.001Q(N ki -N ke )-0.12W m ]-cW m -0.62b[0.001Q(N t
i
-N ke -N oe )-0.12W m ]
=0.001x1.47x13000(180-20)+4.57x[0.001x13000x(40-20)-0.12x5
24]
-1.42x524-0.62x4.57x[0.001x13000x(40-10-10)-0.12x524] =3057.6+900.8-744-558.5 =2656kgO 2/d
根据室外排水规范P56,需氧量为1.1~1.8kgO 2/kgBOD 5,进行需氧量
核算:
(1.1~1.8)x10000x(0.18-0.02)=1760~2880 kgO 2/d
符合要求。
g 、剩余污泥量:(根据城市污水生物脱氮除磷处理设计规程)
Y =
)19.0(1000(0i
i t
h d
t h h h e S X
f b f Y b Y f )S S Q ψθ++--
=
)180220
6.0072.108.025
1072.16.008.09.06.0(9.01000)20180(10000)1510()1510(++----x x x x x =1872(73.0097
.00305
.06.0+-
) =1900 kgSS/d。