《中心对称》课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省赤壁市新店中学
乔玉军
观察
(1)把其中一个图案绕点O旋转180°,你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?
重合
重合
C
A B A
E
像这样把一个图形绕 着某一点旋转180度,如 果它能够和 另一个图 形重合,那么,我们就说 这两个图关于这个点 D 对称或中心对称,这 个点就叫对称中心,这 两个图形中的对应点, 叫做关于中心的对
(1)点O是线段AA的中点 (2)△ABC≌△A′B′C′
下图中△A′B′C′与△ABC 关于点O是成中心对称的, 你能从图中找到哪些等量 关系?
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
归纳:
(1)在成中心对称的两个图形中,连接对 称点的线段都经过对称中心,并且被对称中 心平分. 反过来,如果两个图形的对应点连成的线段 都经过某一点,并且都被该点平分,那么这两 个图形一定关于这一点成中心对称. (2)关于中心对称的两个图形是全等形。
想一想
中心对称与轴对称有什
中心对称 有一个对称中心---点 图形绕对称中心旋转 1800后重合 对称点连线经过对称中 心,且被对称中心平分
么区别?又有什么联系?
轴对称 有一条对称轴---直线 图形沿对称轴对折(翻 折1800)后重合 对称点的连线被对称轴 垂直平分
灵活运用,体会内涵 1、点的中心对称点的作法 以点O为对称中心,作出点A的对称点A′;
A O A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
A O B A′ B′
例1 (2)如图23.2-5,选择点O为对称中心,画出与
△ABC关于点O对称的△A′B′C′.
B′ A′
C′
△A′B′C′即为所求的三角形。
例1(3) 已知四边形ABCD和点O,画四边 形A′B′C′D′,使它与已知四边形关于这一点 对称。
组对应点,连结BB’、CC’,BB’、CC’相交 于点O,则点O即为所求(如图)。
C A’
O B’
B
A
C’
相关链接 如图,是一个6×6的棋盘,
两人各持若干张1×2的卡片轮流在棋 盘上盖卡片,每人每次用一张卡片盖 住相邻的两 个空格,谁找不 出相邻的两个空 格放卡片就算谁 输,你用什么办 法战胜对手呢?
称点.
观察:C.A.E三点的位置关系怎样?线
段AC.AE的大小关系呢?
探究 旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板. 画出的△ABC与△A′B′C′ 关于点O对称.分别连接对称点 AA′、BB′、CC′。点O 在线段AA′上吗?如果在, 在什么位置? △ABC与△A′B′C′ 有什么关系?
B’ C’ O D’ D A’
C
A
四边形A1B1C1D1即为所求的图形。
Bຫໍສະໝຸດ Baidu
提高练习
画一个与已知四边形ABCD中心对称图形。 (1)以顶点A为对称中心; N (2)以BC边的中点为对称中心。
F A G C A B B
.
O C D
M
E
D
[例2] 如图,已知等边三角形ABC和点O, 画△A’B’C’,使△A’B’C’和△ABC关于点O
成中心对称。
A C’ O B A’ C B’
如图,已知△ABC与△A’B’C’中心对称, 求出它们的对称中心O。
C A’ B’ B A
C’
解法一:根据观察,B、B’应是对应点,连 结BB’,用刻度尺找出BB’的中点O,则点
O即为所求(如图)
C O B A C’ B’
A’
解法二:根据观察,B、B’及C、C’应是两
练习P70. 1. 2 P74. 1
乔玉军
观察
(1)把其中一个图案绕点O旋转180°,你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?
重合
重合
C
A B A
E
像这样把一个图形绕 着某一点旋转180度,如 果它能够和 另一个图 形重合,那么,我们就说 这两个图关于这个点 D 对称或中心对称,这 个点就叫对称中心,这 两个图形中的对应点, 叫做关于中心的对
(1)点O是线段AA的中点 (2)△ABC≌△A′B′C′
下图中△A′B′C′与△ABC 关于点O是成中心对称的, 你能从图中找到哪些等量 关系?
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
归纳:
(1)在成中心对称的两个图形中,连接对 称点的线段都经过对称中心,并且被对称中 心平分. 反过来,如果两个图形的对应点连成的线段 都经过某一点,并且都被该点平分,那么这两 个图形一定关于这一点成中心对称. (2)关于中心对称的两个图形是全等形。
想一想
中心对称与轴对称有什
中心对称 有一个对称中心---点 图形绕对称中心旋转 1800后重合 对称点连线经过对称中 心,且被对称中心平分
么区别?又有什么联系?
轴对称 有一条对称轴---直线 图形沿对称轴对折(翻 折1800)后重合 对称点的连线被对称轴 垂直平分
灵活运用,体会内涵 1、点的中心对称点的作法 以点O为对称中心,作出点A的对称点A′;
A O A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
A O B A′ B′
例1 (2)如图23.2-5,选择点O为对称中心,画出与
△ABC关于点O对称的△A′B′C′.
B′ A′
C′
△A′B′C′即为所求的三角形。
例1(3) 已知四边形ABCD和点O,画四边 形A′B′C′D′,使它与已知四边形关于这一点 对称。
组对应点,连结BB’、CC’,BB’、CC’相交 于点O,则点O即为所求(如图)。
C A’
O B’
B
A
C’
相关链接 如图,是一个6×6的棋盘,
两人各持若干张1×2的卡片轮流在棋 盘上盖卡片,每人每次用一张卡片盖 住相邻的两 个空格,谁找不 出相邻的两个空 格放卡片就算谁 输,你用什么办 法战胜对手呢?
称点.
观察:C.A.E三点的位置关系怎样?线
段AC.AE的大小关系呢?
探究 旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板. 画出的△ABC与△A′B′C′ 关于点O对称.分别连接对称点 AA′、BB′、CC′。点O 在线段AA′上吗?如果在, 在什么位置? △ABC与△A′B′C′ 有什么关系?
B’ C’ O D’ D A’
C
A
四边形A1B1C1D1即为所求的图形。
Bຫໍສະໝຸດ Baidu
提高练习
画一个与已知四边形ABCD中心对称图形。 (1)以顶点A为对称中心; N (2)以BC边的中点为对称中心。
F A G C A B B
.
O C D
M
E
D
[例2] 如图,已知等边三角形ABC和点O, 画△A’B’C’,使△A’B’C’和△ABC关于点O
成中心对称。
A C’ O B A’ C B’
如图,已知△ABC与△A’B’C’中心对称, 求出它们的对称中心O。
C A’ B’ B A
C’
解法一:根据观察,B、B’应是对应点,连 结BB’,用刻度尺找出BB’的中点O,则点
O即为所求(如图)
C O B A C’ B’
A’
解法二:根据观察,B、B’及C、C’应是两
练习P70. 1. 2 P74. 1