高二数学(人教A版)《圆锥曲线的方程小结(一)》【教案匹配版】最新国家级中小学精品课程
高中数学 第二章 圆锥曲线与方程小结与复习教案 1数学教案

解:设椭圆的标准方程为 ,
由F1(0, )得
把直线方程 代入椭圆方程整理得:
设弦的两个端点为 ,则由根与系数的关系得:
,
又AB的中点横坐标为 ,
故当 或 时,A、B两点在同一支上;当 时,A、B两点在双曲线的两支上
例6已知双曲线的中心在原点,过右焦点F(2,0)作斜率为 的直线,交双曲线于M、N 两点,且 =4,求双曲线方程
解:设所求双曲线方程为 ,由右焦点为(2,0)知C=2,b2=4-a2
则双曲线方程为 ,设直线MN的方程为: ,代入双曲线方程整理得:(20-8a2)x2+12a2x+5a4-32a2=0
解 可用待定系数法求解
∵b=c,a= c,可设椭圆方程为
∵PQ⊥AB,∴kPQ=- ,则PQ的方程为y= (x-c),
代入椭圆方程整理得5x2-8cx+2c2=0,
根据弦长公式,得 ,
又点F1到PQ的距离d= c
∴ ,由
故所求椭圆方程为
例3已知椭圆: ,过左焦点F作倾斜角为 的直线交椭圆于A、B两点,求弦AB的长
⑵ 和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);
⑶ 中心在原点,焦点在x轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是
分析: 求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程
解 ⑴ 焦点位置可在x轴上,也可在y轴上,
3.椭圆的性质:由椭圆方程 ( )
高二数学(人教A版)《圆锥曲线的方程小结(1)》【教案匹配版】最新国家中小学课程

3. 用坐标表示几何特征,列出方程;
高中数学
高中数学高二上册
追问2:用坐标法研究圆锥曲线的方程的过程是什么?
1. 建立适当的坐标系,设曲线上任意一点的坐标(, );
2. 写出点满足的几何特征;
3. 用坐标表示几何特征,列出方程;
4. 化简方程;
高中数学
高中数学高二上册
代数方法研究这些几何性质?
范围
高中数学
对称性
顶点
高中数学高二上册
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用
代数方法研究这些几何性质?
范围
高中数学
对称性
顶点
离心率
高中数学高二上册
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用
代数方法研究这些几何性质?
范围
高中数学
对称性
顶点
离心率
高中数学高二上册
代数方法研究这些几何性质?
范围
对称性
顶点
离心率
研究方法:用−代,或用−代,或用−与−分别
代与,观察方程形式是否变化;
椭
高中数学
圆:关于轴、轴、原点对称;
高中数学高二上册
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用
于非零常数(小于|1 2 |)的动点的轨迹.
抛物线:平面上,与定点的距离和一条不经过点的定直
线的距离相等的动点的轨迹.
高中数学
高中数学高二上册
追问2:用坐标法研究圆锥曲线的方程的过程是什么?
高中数学
高中数学高二上册
追问2:用坐标法研究圆锥曲线的方程的过程是什么?
1. 建立适当的坐标系,设曲线上任意一点的坐标(, );
人教A版选修2-1第二章 圆锥曲线与方程全章教案

第二章圆锥曲线与方程课题:2.1曲线与方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=16b4-4a4b2=0,即a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果.练习题用一小黑板给出.1.△ABC一边的两个端点是B(0,6)和C(0,-6),另两边斜率的2.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?3.求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程.答案:义法)由中点坐标公式得:(四)、教学反思求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1.两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2.动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹.3.已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1.以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=42.∵|PF2|-|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线六、板书设计课题:椭圆及其标准方程教学目标:1.知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.2.过程与方法目标:培养学生观察、实验、探究、验证与交流等数学活动能力。
高二数学圆锥曲线方程教案 人教版

高二数学圆锥曲线方程教案 人教版一、知识框架二、重点难点重点:椭圆的定义及相关概念,椭圆的标准方程,椭圆的几何性质;双曲线的定义及相关概念,双曲线的标准方程,双曲线的几何性质,等轴双曲线与共轭双曲线的定义;抛物线的定义及圆锥曲线的统一定义,抛物线的标准方程,抛物线的几何性质;难点: 利用椭圆的第一定义和第二定义解题,椭圆的几何性质及其应用,求椭圆的方程;对与渐近线有关的问题的讨论,对定义、方程、几何性质中的隐形条件向显性结论转化;抛物线的几何性质。
三、知识点解析1、椭圆及其标准方程 (1)定义: 1)文字定义:第一定义:平面内与两个定点12,F F 的距离的和等于常数(大于12||F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距;注意:12|2|||a F F >非常重要。
因为当12|2|||a F F =时,其轨迹为线段12F F ;当12|2|||a F F <时,其轨迹不存在;第二定义:平面内到定点的距离和它到定直线的距离的比是常数(01)e e <<的点的轨迹;定义中定点不在定直线上是前提,定点为椭圆的一个焦点,定直线是此焦点的相应的准线,e 为椭圆的离心率;2)符号定义:(2)方程:1)标准方程:①焦点在x 轴上:22222221(0,)x y a b b a c a b+=>>=-;②焦点在y 轴上:22222221(0,)y x a b b a c a b+=>>=-; 2)参数方程:cos sin x a y b θθ=⎛=⎝,θ是参数;3)注意:①标准方程中的常数b 源于222b ac =-,常数a 和b 决定椭圆的大小和扁平程度,是椭圆的定形条件;②焦点12(,0),(,0)F c F c -的位置,是椭圆的定位条件,它决定椭圆标准方程的类型;也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有多种类型;③任何一个椭圆,只需选择适当的坐标系,其方程均可写成标准形式.当且仅当椭圆的中心在原点,焦点在坐标轴上时,椭圆的方程才具有上述的标准形式。
人教A版高中数学选修1-1《二章 圆锥曲线与方程 小结》优质课教案_6

4.1.1 椭圆小结 第1课时教学设计学情分析:本节课的学生已经对曲线和方程的概念有了一些了解与运用的经验,对用坐标法研究几何问题也有了初步的认识。
但从对求轨迹方程的方法上,学生思维上会存在障碍。
教材分析:本节课是椭圆小结第2节的内容。
承接上一节椭圆的定义与标准方程,学生已经理解整个圆锥曲线,但在运用上经验不足。
本节在对前面所学的内容的巩固的基础上通过求动点轨迹进一步研究椭圆,同时进一步巩固求轨迹方程的另三种方法:相关点法,直接法,定义法。
也为进一步研究双曲线、抛物线提供了一些探求模式。
教学目标:教学重点:掌握用直接法、相关点带入法求动点轨迹过程。
教学难点:理解直接法、相关点法求动点轨迹的运用环境,掌握几何关系坐标化的过程。
教 学 过 程:一、 知识回顾:教师利用基础题目检测了解学生对椭圆定义及其标准方程的掌握情况,对学生的回答作作必要的补充、纠正。
1、 “-3<m<5”是“方程x25-m +y2m +3=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2、到两定点F 1(-2,0)F 2(2,0)的距离之和为4的点M 的轨迹是 ( )A. 椭圆B. 线段C. 圆D. 以上都不对3、椭圆221925x y +=的焦点坐标分别为F 1、F 2,AB 是过焦点F 1的弦,则△ABF 2的周长是 ( ) A. 20 B. 12 C.10 D. 6二、 新课讲解:(一)§师:上节课我们利用“待定系数法”求解椭圆的标准方程,引出例2。
[例2] (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,求椭圆的标准方程.(2) 已知中心在原点,以坐标轴为对称轴,椭圆过点Q(2,1)且与椭圆x29+y24=1有公共的焦点,求椭圆的标准方程.(二)我们现在了解了“待定系数法”的运用环境,但是并不是所有的求轨迹方程的题目都适合用“待定系数法”来解决。
第3章圆锥曲线的方程(复习课件)高二数学(人教A版选择性必修第一册)

x=ty+a,
由 2
y =2x,
消去 x,得 y2-2ty-2a=0.
设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-2a.
y21y22
因为 OA⊥OB,所以 x1x2+y1y2=0,即 4 +y1y2=0,
解得y1y2=0(舍去)或y1y2=-4.
所以-2a=-4,解得a=2.
我们把平面内与两个定点F1,F2的距离之和(2a)等于常数
(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的
焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦
距。
对椭圆定义的理解
①当2a=|F1F2|时,其轨迹为线段;
②当2a<|F1F2|时,其轨迹不存在.
椭圆的简单几何性质:
焦点位置
x2 y2
∴椭圆的方程为 4 + 3 =1.
1
(2)若直线 l:y=-2x+m 与椭圆交于 A,B 两点,与以 F1F2 为直径的圆交于 C,
|AB| 5 3
D 两点,且满足|CD|= 4 ,求直线 l 的方程.
解
由(1)知,以F1F2为直径的圆的方程为x2+y2=1,
2|m|
∴圆心到直线 l 的距离 d=
焦点坐标
y 2 2 px ( p 0)
p
F ( ,0)
2
y 2 2 px ( p 0)
F (
x 2 py( p 0)
p
F (0, )
2
y
p
F (0, )
2
y
2
x 2 2 py( p 0)
p
,0)
2
准线方程
x
x
p
高中数学2.4《圆锥曲线与方程全章小结》课件1

=4-12+4=-4
kOA
• kOB
y1 x1
•
y2 x2
y1 y2 x1 x2
4 4
1
∴OA⊥OB
例3.一圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0 内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线,y), 半径为R,两已知圆圆心为O1、O2。
即
( x 3)2 y2 ( x 3)2 y2 12
化简并整理,得
3x2+4y2-108=0
即可得
x2 y2 1
36 27
所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别
为 12、6 3. 解法2:同解法1得方程 ( x 3)2 y2 ( x 3)2 y2 12
即,动圆圆心P(x,y)到点O1(-3,0)和点O2(3,0)距离的和 是常数12,所以点P的轨迹是焦点为(-3,0)、(3,0),
曲
线 抛物线
标准方程 标准方程 标准方程
几何性质
第二定义
几何性质 第二定义
综合应用 统一定义
几何性质
椭圆、双曲线、抛物线的标准方程和图形性质
几何条件 标准方程
椭圆
双曲线
抛物线
与两个定点
与两个定点的 与一个定点和
的距离的和等于 距离的差的绝对 一条定直线的距
常数
值等于常数
离相等
x2 y2 1(a b 0) x2 y2 1(a 0,b 0) y2 2 px( p 0)
离之差等于2,则点P 的轨迹是 ( D )
A.直线 B.椭圆 C.双曲线 D.抛物线
2.P是双曲线 x2/4-y2=1 上任意一点,O为原点,则OP
数学:24《圆锥曲线与方程全章小结》PPT课件(新人教A版选修1-1)

(±a,0)
(0,0)
椭圆、双曲线、抛物线的标准方程和图形性质
椭圆
双曲线
抛物线
对称性
焦点坐标
离心率 e= c/a 准线方程
X轴,长轴长2a, Y轴,短轴长2b
(±c,0)
c2=a2-b2
0<e<1
X轴,实轴长2a, Y轴,虚轴长2b
(±c,0)
c2=a2+b2
e>1
X轴 (p/2,0)
e=1 x=-p/2
五、布置作业:
P80 A组 1 10
B组 2 5
补充:在△ABC中,BC固定,顶点A移动.设 |BC|=m,当三个角A,B,C有满足条件 |sinC-sinB|=sinA时,求顶点A的轨迹方 程.
2.4《圆锥曲线 与方程全章小结》
复习目标
1)掌握椭圆的定义,标准方程和椭圆的 几何性质
2)掌握双曲线的定义,标准方程和双曲 线的几何性质
3)掌握抛物线的定义,标准方程和抛物 线的几何性质
4)能够根据条件利用工具画圆锥曲线的 图形,并了解圆锥曲线的初步应用。
课前热身
(1) 求长轴与短轴之和为20,焦距为4 5 的 椭圆的标准方程_________________
(1) x2 y2 1 和
x2 y2 1
36 16
16 36
(2)求与双曲线
x2
y2Leabharlann 9 161有共同渐近线,且过
点(-3,2 3)的双曲线方程;
4x2 (2)
y2
1
94
(3)一动圆M和直线l:x=-2相切,并且经过点
F(2,0),则圆心M的轨迹方程是 y2 8 x.
一、知识回顾
高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案

第2章圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax2+By2=1(A>0,B>0,A≠B);②双曲线方程为Ax2+By2=1(AB<0);③抛物线方程为x2=2py(p≠0)或y2=2px(p≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.曲线方程的求法[例1] 过原点作圆的弦OA,求OA中点B的轨迹方程.[解] 法一(直接法):设B点坐标为(x,y),由题意,得|OB|2+|BC|2=|OC|2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1, 即OA 中点B 的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为: y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝⎛⎭⎪⎫x -122+y 2=14,故⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程.解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0),由题意得AP ―→=2PB―→,即(x -4,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y 2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝⎛⎭⎪⎫x -432+y 2=169.圆锥曲线的定义及性质问题[例2] F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a>0,b >0).∵e =ca=2,∴c =2a .由双曲线的定义,得||PF1|-|PF2||=2a=c,在△PF1F2中,由余弦定理,得:|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°),即4c2=c2+|PF1||PF2|.①又S△PF1F2=123,∴12|PF1||PF2|sin 60°=123,即|PF1||PF2|=48.②由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,∴所求的双曲线方程为x24-y212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1解析:根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|.∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A直线与圆锥曲线的位置关系[例3] x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2,由②得k 2=2m -13>0,解得m >12,故所求m的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标.解:(1)设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即51-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39,∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).圆锥曲线中的定点、定值、最值问题[例4] (2017·全国卷Ⅲ)已知椭圆C :2a 2+2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B的坐标分别为⎝⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a 25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a 25=1.解得a =152.因为152>53,所以a 不存在.(2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0, ∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53.答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE―→=12(OF ―→+OP ―→),则双曲线的离心率为( ) A.102B.105C.10D.2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102.答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.17C.59117D.1113解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去)又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C 的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎪⎫62,2 B .(2,+∞)C.⎝ ⎛⎭⎪⎪⎫62,+∞ D.⎝⎛⎭⎪⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎪⎪⎫62,2∪(2,+∞).答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|+|PF 2|2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2, ∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1.由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1.∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点.又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6.故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝⎛⎭⎪⎫2t 2p,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由.解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0).由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ),O Q ―→·PF―→=3+3m -tn , OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .。
高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。
2. 学习圆锥曲线的标准方程及其求法。
3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。
二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。
2. 难点:圆锥曲线标准方程的推导与应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。
2. 利用图形演示,让学生直观理解圆锥曲线的特点。
3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。
4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。
五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。
2. 教学素材:圆锥曲线的实例问题。
3. 学生用书:《高中数学》圆锥曲线相关章节。
教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。
请随时查阅。
六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。
2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。
3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。
4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。
2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。
3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。
八、课后作业1. 完成学生用书上的课后练习题。
2. 选取一个实际问题,运用圆锥曲线方程进行解答。
九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。
高二数学人教A版选择性必修第一册第三章圆锥曲线的方程小结1ppt课件

追问3:圆锥曲线的几何性质主要包括哪些方面?如何用 代数方法研究这些几何性质?
范围
对称性
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用 代数方法研究这些几何性质?
范围
对称性
顶点
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用 代数方法研究这些几何性质?
范围
对称性
顶点
离心率
追问3:圆锥曲线的几何性质主要包括哪些方面?如何用 代数方法研究这些几何ቤተ መጻሕፍቲ ባይዱ质?
圆锥曲线的方程小结(1)
问题1:用坐标法研究圆锥曲线的具体过程是什么?
问题1:用坐标法研究圆锥曲线的具体过程是什么? 圆锥曲线的定义
问题1:用坐标法研究圆锥曲线的具体过程是什么? 圆锥曲线的定义
建立圆锥曲线的标准方程
问题1:用坐标法研究圆锥曲线的具体过程是什么? 圆锥曲线的定义
建立圆锥曲线的标准方程 通过方程研究圆锥曲线的几何性质
问题2:在椭圆、双曲线、抛物线三类圆锥曲线的研究中, 椭圆是研究的第一类圆锥曲线,对双曲线、抛物线的研究, 我们采用的是类比的方法,你能说说具体的类比内容吗?
内
定义
容
几何性质
定义→标准方程→几何性质→应用
方 法
方程的推导过程
几何性质的研究方法
问题2:在椭圆、双曲线、抛物线三类圆锥曲线的研究中, 椭圆是研究的第一类圆锥曲线,对双曲线、抛物线的研究, 我们采用的是类比的方法,你能说说具体的类比内容吗?
定义
几何性质
定义→标准方程→几何性质→应用
问题2:在椭圆、双曲线、抛物线三类圆锥曲线的研究中, 椭圆是研究的第一类圆锥曲线,对双曲线、抛物线的研究, 我们采用的是类比的方法,你能说说具体的类比内容吗?
第三章圆锥曲线的方程(章末小结)高二数学(人教A版2019选择性)

F)
标准 方程
ax22+by22=1 或ay22+bx22=1 (a>b>0)
ax22-by22=1 或ay22-bx22=1 (a>0,b>0)
y2=2px 或 y2=-2px 或 x2=2py 或 x2=-2py
(p>0)
关系式
a2-b2=c2
a2+b2=c2
—
圆锥曲线 图形
变量 范围 对称性 顶点 离心率 决定形状 的因素
知识梳理——5.求双曲线的焦点三角形的面积
求双曲线中焦点三角形面积的方法:
(1)方法一:①根据双曲线的定义求出||PF1|-|PF2||=2a; ②利用余弦定理表示出|PF1|,|PF2|,|F1F2|之间满足的关系式;
③通过配方,利用整体的思想求出|PF1|·|PF2|的值;
④利用公式 S△PF1F2=12×|PF1|·|PF2|sin∠F1PF2=tan
方法归纳——9.圆锥曲线的弦长
直线被椭圆、双曲线截得的弦长的求法: (1)距离公式法:当弦的两端点坐标易求时,可直接求出交点坐标,再利用两点间 距离公式求弦长. (2)弦长公式法:当弦的两端点坐标不易求时,可利用弦长公式求解,即若直线 l:y=kx+b(k≠0),直线与椭圆或双曲线的两交点为 A(x1,y1),B(x2,y2), 则|AB|= 1+k2|x1-x2|= 1+k12|y1-y2|,其中 x1+x2(y1+y2)与 x1x2(y1y2)均可由根与系数的关 系得到.
方法归纳——8.圆锥曲线的中点弦问题
解决椭圆或双曲线的中点弦问题的两种方法 (1)根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一 个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决. (2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入 椭圆方程,然后作差,构造出中点坐标和斜率的关系.