MOSFET单相全桥无源逆变电路要点
单相全桥无源逆变电路
无源逆变器的应用: 无源逆变器的应用 目前几乎所有的电力电子变换电路都包含有无源逆变电 路,是电力电子技术中的最核心部分。 1. 变频调速(交流电机驱动) 2. 感应加热 3. 隔离型开关电源 4. 高频直流焊机 5. 脉冲电源 6. 节能照明
4.2 无源逆变器的分类
电压型和电流型逆变器 单相和三相 半桥、全桥、推挽式 换流方式: 换流方式:在电力电子变换电路中,电流从一 个支路向另一个支路转移的过程称为换流。 1. 器件换流(全控型器件); 2. 电网换流(有源逆变,晶闸管构成的AC-AC); 3. 负载换流(谐振电路--串联谐振和并联谐振); 4. 强迫换流(半控器件+辅助换流电路)。
调节不方便、谐波含量大,开关器件损耗小。 应用较少。
2. 脉冲移相(单脉冲方波逆变器)
调节方便、谐波含量大,开关器件损耗小。 应用较多。
3. PWM(pulse width modulation)调制
调节方便、谐波含量小,开关器件损耗较大。 应用领域最广泛(整流,逆变,直流变换,APF等)
逆变器输出频率的调节 改变逆变器开关器件的触发频率。
电压型单相全桥无源逆变电路
课件4
4.1 无源逆变电路
无源逆变电路: 无源逆变电路: 将直流电转换为频率、幅值可调的交流电,并直接供 给负载的逆变电路。 有源逆变电路: 有源逆变电路: 将直流电转换为交流电并馈送到交流电网的逆变电路。 区别和联系: 区别和联系:
1. 二者都是DC-AC电路; 2. 有源逆变电路的输出和电网的交流电有直接关系,即逆变器 的输出和电网电压同频同相;无源逆变的输出直接联接负载,和电 网电压无关。
4.3 电压型单相全桥无源逆变电路
电路结构
图1 电压型单相全桥无源逆变电路
MOSFET单相桥式无源逆变电路设计
MOSFET单相桥式无源逆变电路设计首先,我们来了解一下MOSFET的基本工作原理。
MOSFET是一种场效应晶体管,其工作原理是通过外加电压来控制电流的流动。
MOSFET有三个主要的电极:栅极、漏极和源极。
当栅极施加正向电压时,电流将流过MOSFET;当栅极施加反向电压时,MOSFET将关闭。
MOSFET单相桥式无源逆变电路由四个MOSFET组成,分别连接在桥式变换电路的四个支路上。
这四个支路中的两个支路的MOSFET开关状态是互补的,即一个导通,另一个关闭。
通过控制四个MOSFET的开关状态,就可以控制电流的流动方向,从而实现直流到交流的转换。
在设计MOSFET单相桥式无源逆变电路时,需要考虑以下因素:1.MOSFET的选型:选择合适的MOSFET是设计成功的关键。
需要考虑MOSFET的额定电压、最大电流和导通电阻,以满足设计需求。
2.电源电压和输出电压:根据需求确定输入电压和输出电压的范围,确定电路的电源设计和输出滤波电路。
3.充电和放电电路:桥式变换电路需要充电和放电,需要设计合适的充电和放电电路以确保稳定的电流流动。
4.保护电路:考虑到MOSFET的额定电压和最大电流,需要设计合适的保护电路来避免过电流和过压。
5.控制电路:需要一个合适的控制电路来控制MOSFET的开关状态。
可以使用微控制器、门电路或其他逻辑电路来实现。
设计完成后,需要进行仿真和测试来验证设计的可行性和性能。
通过仿真和测试可以评估电路的效率、稳定性和可靠性,并对其进行优化。
总结起来,设计一个MOSFET单相桥式无源逆变电路需要综合考虑MOSFET的选型、电路的电源和输出电压、充电和放电电路、保护电路以及控制电路等因素。
通过详细的设计和实验验证,可以得到一个高效可靠的MOSFET单相桥式无源逆变电路。
IGBT单相桥式无源逆变电路设计
IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。
在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。
一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。
单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。
桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。
通过合理的波形控制,可以实现直流到交流的转换。
二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。
2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。
3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。
4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。
三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。
根据所需的载波频率、输入电压和输出功率等参数进行计算。
2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。
3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。
四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。
本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。
单相全桥逆变电路讲解
基础知识介绍 (电容)
常用电容器 铝电解电容器 、钽电解电容器 、薄膜电容器 、 瓷介电容器 、独石电容器 、纸质电容器、微 调电容器 、陶瓷电容器 、玻璃釉电容器 电容极性:引脚长的为正,引脚短的为负。或 标有“+”“—”
基础知识介绍 (电容)
电容器主要特性参数 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电容器实际电容量与标称电容量的偏差称误差,在允 许的偏差范围称精度。 精度等级与允许误差对应关系:00(01)-±1%、0 (02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、 Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、 Ⅵ级,根据用途选取。
主电路工作原理及设计
VSIN
50Hz
220V
Fuse
1
5
A
Bridge1
220u/450v
主电路工作原理及设计
Cin1
讲解原理时的单相全桥逆变电路图
MOSFET-N
VT2
MOSFET-N
VT1
MOSFET-N
VT4
MOSFET-N
VT3
10mH
Inductor
L
?
1
Res3
R
K
?
Jin
1
2
主电路工作原理及设计(滤波电容选择 )
无极性电容Cin2 的确定:为了供给逆变平滑 的直流电压,必须在输入整流电路和逆变器之 间加入滤波电容,以减小整流输出后直流电的 交流成分。滤波电容一般采用电解电容器,因 其滤波电解电容器自身串联等效电阻(Res)和 串联等效电感(Les)的存在直接影响滤波效果, 所以在电解电容Cin1两端并联高频无极性电容 Cin2,使高频交流分量从Cin2中通过。
MOSFET单相桥式无源逆变电路设计要点
目录MOSFET和电压型无源逆变电路简介 (1)1.MOSFET简介 (1)2.电压型无源逆变电路简介 (1)主电路图设计和参数计算 (2)1.主电路图设计 (2)2.相关参数计算 (2)驱动电路的设计和选型 (4)1.驱动电路简介 (4)2.驱动电路的选用 (4)电路的过电压保护和过电流保护设计 (5)1.过电压保护 (5)2.过电流保护 (7)3.保护电路的选择以与参数计算 (8)MATLAB仿真 (10)1.主电路图以与参数设定 (10)2.仿真结果 (14)总结与体会 (15)附录:电路图 (16)一、MOSFET和电压型无源逆变电路的介绍1.MOSFET简介金属-氧化层半导体场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。
MOSFET依照其“通道”的极性不同,可分为“N型”与“P型”的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。
其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。
2.电压型无源逆变电路简介把直流电变成交流电称为逆变。
逆变电路分为三相和单相两大类。
其中,单相逆变电路主要采用桥式接法。
主要有:单相半桥和单相全桥逆变电路。
而三相电压型逆变电路则是由三个单相逆变电路组成。
如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去,称为有源逆变。
无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。
单相全桥逆变电路讲解.
首先介绍学习硬件电路的重要性和必要性
重要性:找工作面试、考研面试和在以后工作 中都是很好的基础,起到良好的作用。 以此为基点,展开,引用李泽元老师的话: “现在知识面很宽很大,不可能面面具到,且 搞的人很多,要找一个自已感兴趣的点,深入 研究,动手实践做实验,在实验中发现问题和 解决问题,然后再扩展。”
整体安排
一、基础知识讲解(计划两至三个半天)
开关管(MOSFET和IGBT)知识、电阻 电
容等基本知识、芯片 管脚功能(IR2110 、 SG3525、LM339、 MUR8100 、IRFP450 )
主电路、控制电路的工作原理、参数的 确定
整体安排
二、PROTEL介绍 、原理图绘制(计划三个半天) 两个图,主电路和控制电路(各1.5个半天) 初步认识元器件封装,画原理图尽量选正确的封 装 三、 生成PCB、手动布线(计划两个半天) 两个PCB图,主电路和控制电路(各一个半天) 认真核对元器件封装,检查PCB的各种规则
基础知识介绍 (MOSFET)
MOSFET:可控开,可控关 什么是MOSFET “MOSFET”是英文MetalOxide Semicoductor Field Effect Transistor的缩写,译成中文是“金属 氧化物半导体场效应管”。它是由金属、氧化物 (SiO2或SiN)及半导体三种材料制成的器件。所谓功 率MOSFET(Power MOSFET)是指它能输出较大的工 作电流(几安到几十安),用于功率输出级的器件。
电阻:导电体对电流的阻碍作用称为电阻,用 符号R 表示,单位为欧姆、千欧、兆欧,分别 用Ω、kΩ、MΩ表示。 电阻器的分类 一种分类:固定电阻器(R)、电位器(W)、 敏感电阻器、贴片电阻器
单相全桥逆变电路的工作原理
单相全桥逆变电路的工作原理1. 引言嘿,大家好!今天咱们来聊聊一个非常有趣的电路——单相全桥逆变电路。
听起来很高大上对吧?其实它在我们的生活中无处不在,比如说咱们的太阳能发电系统,还有一些小家电。
没错,这玩意儿可是个“神奇小子”,能把直流电(DC)转化为交流电(AC),就像变魔术一样,咱们快来看看它的工作原理吧!2. 基本原理2.1 单相全桥逆变电路的构成首先,单相全桥逆变电路的名字可能让你觉得复杂,但它的构成其实挺简单的。
这个电路主要有四个开关元件,通常是功率晶体管,比如MOSFET或者IGBT,就像四个小兄弟站在舞台上。
它们的工作就像跳舞一样,轮流开关,控制电流的方向。
然后呢,还有一个输出滤波器,负责把电流变得更平滑,别让它吵吵闹闹的,影响我们的家居生活。
2.2 工作过程接下来,咱们来聊聊它的工作过程。
这个电路的工作可以分为几个阶段。
在一个周期内,两个开关会交替打开,比如说第一个和第二个开关先一起打开,然后再换成第三个和第四个。
这个过程就像打乒乓球,电流在两个方向之间快速转换,从而实现了直流电向交流电的转变。
大家可能会想,这样转变的电流到底有什么用?其实啊,这样产生的交流电可以驱动各种电器,让它们欢快地工作。
3. 应用场景3.1 太阳能发电好啦,讲完了工作原理,咱们来看看单相全桥逆变电路的应用场景。
首先,太阳能发电是个大热门,大家都知道,太阳能电池板产生的电流是直流的,而我们日常使用的电器大多需要交流电。
这时候,逆变电路就派上用场了!它把太阳能转化的直流电变成交流电,让我们的家里满是阳光的味道,真是太赞了。
3.2 小家电其次,咱们的许多小家电,比如说电饭煲、微波炉等,都需要交流电来工作。
这个时候,逆变电路就像一位隐形的助手,默默地把直流电转化为交流电,保障了咱们的美好生活。
想象一下,如果没有它,咱们的饭可能就没法煮了,生活可就没那么方便了。
4. 小结总的来说,单相全桥逆变电路可真是个不可或缺的好帮手。
单相全桥逆变电路设计
单相全桥逆变电路设计1. 确定电路拓扑结构:单相全桥逆变电路是一种常见的电路拓扑结构,它具有简单、可靠、高效等优点。
因此,我们选择这种电路拓扑结构来进行设计。
2. 选择合适的开关器件:为了实现逆变功能,我们需要选择合适的开关器件。
常用的开关器件包括晶体管、场效应管、晶闸管等。
考虑到逆变电路的工作频率和开关速度等因素,我们选择MOSFET作为开关器件。
3. 设计电路参数:接下来,我们需要根据逆变电路的具体要求来设计电路参数。
这些参数包括输入电压、输出电压、输出频率、开关频率等。
同时,我们还需要考虑电路的损耗和散热等问题,以确保电路能够正常工作。
4. 选择合适的滤波器:为了使输出电压更加稳定,我们需要在输出端添加合适的滤波器。
常用的滤波器包括LC滤波器和RC滤波器等。
根据输出电压的要求和负载性质等因素,我们选择LC滤波器作为输出滤波器。
5. 确定控制策略:为了实现逆变电路的稳定运行,我们需要确定合适的控制策略。
常用的控制策略包括PID控制、PWM控制等。
考虑到逆变电路的复杂性和动态性能要求等因素,我们选择PID控制作为逆变电路的控制策略。
6. 搭建电路模型:在确定了上述设计步骤之后,我们就可以开始搭建单相全桥逆变电路的电路模型了。
在电路模型中,我们需要考虑每个开关器件的驱动电路、保护电路等辅助电路的设计,以确保整个电路的稳定性和可靠性。
7. 进行仿真测试:在搭建完电路模型之后,我们需要进行仿真测试来验证设计的正确性和可靠性。
通过仿真测试,我们可以观察输出电压的波形、电流的波形等参数,并对电路的性能进行评估和分析。
8. 制作样机:最后,我们需要根据仿真测试的结果来制作样机并进行实际测试。
在样机制作过程中,我们需要考虑电路板的布局、元件的选择等问题,以确保样机的性能和稳定性能够满足要求。
9. 进行实际测试:在制作完样机之后,我们需要进行实际测试来验证样机的性能和可靠性。
在实际测试中,我们需要对样机的输出电压、电流等参数进行测量和分析,并对样机的性能进行评估。
IGBT单相桥式无源逆变电路设计资料
IGBT单相桥式无源逆变电路设计资料1.设计原理2.工作过程当输入电压正半周时,IGBT1和IGBT3导通,IGBT2和IGBT4截至,使得直流电源电压施加在纯电阻负载上,电流从A点流向B点。
当输入电压负半周时,IGBT2和IGBT4导通,IGBT1和IGBT3截至,电流从B点流向A点。
通过周期性地控制IGBT管的导通和截至,可以实现对输入电压的逆变转换。
3.性能分析在纯电阻负载情况下,IGBT单相桥式无源逆变电路具有以下特点:1)输出电压波形基本近似正弦波,谐波含量较低,可以满足很多电器设备对电源质量的要求。
2)输出电压最大值等于输入电压的峰值,输出电压最小值为0,可以满足正负半周的电压需求。
3)输出电压频率与输入电压频率相同,可以匹配大多数电器设备的工作频率。
4)可以通过改变IGBT管的导通时间和导通频率来调节输出电压的大小和频率。
5)由于使用了无源逆变,电路效率较高,损耗较小。
4.应用领域1)智能电网中的逆变器装置,用于将电网交流电转换为直流电,以供给电动汽车等设备使用。
2)变频空调、变频电机等设备的电源模块,用于将输入电源转换为合适的频率和电压,以满足设备的工作要求。
3)太阳能光伏逆变器,将太阳能电池板产生的直流电转换为交流电,以供给电网使用或给其他设备充电。
4)离网系统中的逆变器,用于将微型风力发电机或小型水力发电机产生的直流电转换为交流电,以供给独立的电力系统使用。
总结:IGBT单相桥式无源逆变电路是一种常用的电力转换器,适用于各种领域的电源转换应用。
在纯电阻负载情况下,该电路具有输出电压近似正弦波、频率可调、效率高等特点,因此被广泛应用于智能电网、变频设备、太阳能光伏逆变器和离网系统等领域。
学位论文-—单相桥式逆变电路
电力电子技术课程设计说明书单相桥式逆变电路的设计院、部学生姓名:指导教师:职称专业:班级:学号:完成时间:摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及IGBT的工作原理、全桥的工作特性和无源逆变的性能。
本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud 逆变为波形电压,并将它加到纯电阻负载两端。
首先分析了单项桥式逆变电路的设计要求。
确定了单项桥式逆变电路的总体方案,对主电路、保护电路、驱动电路等单元电路进行了设计和参数的计算,其中保护电路有过电压、过电流、电压上升率、电流上升率等,选择和校验了IGBT、SG3525等元器件,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
最后利用MATLAB仿真软件建立了SIMULINK仿真模型,并进行了波形仿真,仿真的结果证明了完成设计任务要求,满足设计的技术参数要求。
关键词:单相;逆变;设计ABSTRACTWith the rapid development of power electronics technology, the inverter circuit is widely used, batteries, dry batteries, solar cells are DC power supply, when we use these power supply power to the AC load, you need to use the inverter circuit. This time based on MOSFET single phase bridge inverter circuit design, mainly related to the work principle of IGBT, the full bridge of the working characteristics and the performance of passive inverter. The single-phase full bridge inverter circuit designed by IGBT as the switching device, the DC voltage Ud inverter as the waveform voltage, and will be added to the pure resistance load at both ends.Firstly, the design requirements of the single bridge inverter circuit are analyzed. To determine the overall scheme of single bridge inverter circuit, of the main circuit, protection circuit, driving circuit unit circuit design and parameter calculation, the protection circuit have voltage, current and voltage rate of rise, the current rate of rise, selection and validation of the IGBT and SG3525 components, IGBT is by BJT (bipolar transistor) and MOS (insulated gate field effect transistor) composed of full control type voltage driven type power semiconductor devices, both MOSFET's high input impedance and GTR low conductance through the advantages of pressure drop. At last, the MATLAB simulation software is used to build the SIMULINK model, and the simulation results are carried out. The results prove that the design task is required to meet the design requirements.Keywords: single phase; inverter; design目录1 绪论 (1)1.1 逆变电路的背景与意义 (1)1.2 逆变器技术的发展现状 (2)1.3 本设计主要内容 (2)2 单相桥式逆变电路主电路设计 (3)2.1 方案设计 (3)2.1.1 系统框图 (3)2.1.2 主电路框图 (3)2.2 逆变电路分类及特点 (3)2.2.1 电压型逆变电路的特点 (3)2.2.2 单项全桥逆变电路的移相调压方式 (4)2.3 主电路的设计 (4)2.4 相关参数的计算 (5)3 辅助电路设计 (7)3.1 保护电路的设计 (7)3.1.1 保护电路的种类 (7)3.1.2 保护电路的作用 (7)3.1.3 过电流保护电路 (8)3.2 驱动电路的设计 (8)3.2.1 驱动电路的种类及作用 (8)3.2.2 驱动电路的设计 (8)3.2.3 驱动电路的原理 (9)3.3 控制电路的设计 (9)3.3.1 控制电路的作用 (9)3.3.2 控制电路原理分析 (9)4 仿真分析 (11)4.1 仿真软件MATLAB介绍 (11)4.2 主电路仿真图及参数计算 (13)4.3 仿真所得波形 (16)4.4 波形分析 (17)结束语 (18)参考文献 (19)附录 (21)1 绪论1.1 逆变电路的背景与意义随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
MOSFET单相桥式无源逆变电路设计
MOSFET单相桥式无源逆变电路设计引言无源逆变电路是一种将直流电能转换为交流电能的电路。
其中,MOSFET单相桥式无源逆变电路是一种常用的设计方案。
本文将详细介绍MOSFET单相桥式无源逆变电路的设计。
设计思路MOSFET单相桥式无源逆变电路的设计需要考虑很多因素。
首先,要确定输出交流电的频率和电压,以及所需的输出功率。
其次,要选择合适的MOSFET管件,以确保其能够承受所需的输出功率。
最后,要设计出合适的电路结构和控制策略,以确保电路的稳定运行。
电路结构控制策略为了实现无源逆变电路的正常工作,需要设计合适的控制策略。
一种常用的控制策略是基于PWM(脉冲宽度调制)技术的控制方法。
通过控制上下桥的MOSFET管件的开关频率和占空比,可以实现对输出交流电的频率和电压的调节。
具体的控制策略是,通过对上下桥的交叉触发,控制上下MOSFET管件的开关。
当上半桥导通时,下半桥断开,输出交流电为正半周期;当下半桥导通时,上半桥断开,输出交流电为负半周期。
通过不断交替地进行上下桥的导通和断开,可以实现输出交流电的正常工作。
主要参数的设计在设计MOSFET单相桥式无源逆变电路时,需要确定一些重要的参数。
首先是输入端的直流电压。
根据所需的输出交流电压,可以确定输入端的直流电压。
其次是输出的频率和电压。
根据应用需求,可以指定输出交流电的频率和电压。
最后是输出功率。
根据所需的输出功率,可以选取合适的MOSFET管件。
结果与分析通过对MOSFET单相桥式无源逆变电路的设计,可以得到所需的输出交流电。
通过控制上下桥的MOSFET管件的开关,可以实现对输出交流电的频率和电压的调节。
结论1.唐凤鸣,张仕锁.电力电子器件与电源技术.北京:中国电力出版社,20242.鄂柯.光伏系统无源逆变与控制策略研究.浙江:浙江大学。
单相全桥逆变电路和单相半桥逆变电路
单相全桥逆变电路和单相半桥逆变电路在这个科技飞速发展的时代,逆变器就像是电路里的小精灵,把直流电变成交流电,真是让人眼前一亮!你有没有想过,为什么我们家的电器能那么“聪明”?这全靠那些逆变电路啦!今天咱们就来聊聊单相全桥逆变电路和单相半桥逆变电路。
哎呀,名字听上去有点复杂,不过别担心,我会让你轻松搞定这些“名词”。
单相全桥逆变电路,这可真是个“大玩家”!想象一下,它就像一位全能的舞者,四个开关器件在舞台上翩翩起舞。
每一个开关都能开能关,组合起来,就能把直流电源的电流换成漂亮的交流电。
这种电路的好处就像是买了一张VIP通行证,功率大、效率高,真是个小猛兽。
电流的波形美得就像是艺术品,咱们说这是一种“正弦波”。
这种电路还能实现更好的电压控制,哇,简直是电气工程师的梦想啊!你知道吗?这个全桥逆变电路就像是在你的家里举办了一场大型派对,四个开关器件像朋友一样互相配合,搞得热闹非凡。
这样一来,逆变器的性能就像是在喝了红牛,瞬间变得强大。
可是,有好就有坏,使用这个电路的时候,元件的损耗也会比较大。
你想啊,开关频繁地开关,那电流的热量可得要控制得当,不然可就“烧成灰”了,哈哈。
再说说单相半桥逆变电路。
听上去是不是没那么复杂?它其实就像是全桥的“小弟弟”。
这个电路只有两个开关器件,所以运行起来简单很多。
就像是你和好友一起去游乐场,少了几个伙伴,但乐趣依旧不少。
这种电路的好处是它对电源的要求相对简单,适合家庭用电,轻松搞定小家电的需求。
虽然功率没全桥那么大,但在日常生活中,这已经绰绰有余了。
半桥逆变电路的波形虽然没有全桥的那样完美,但也是相当不错。
想想你喝的饮料,虽然不是特别高档,但足够解渴就行,对吧?这个电路在成本上也更亲民,尤其是对于那些不想花大钱但又想体验“逆变生活”的家庭,真是个理想的选择。
别以为电路的运行就只有这些,实际上,它们的工作状态可是能让你大吃一惊!你知道电流在电路中流动的感觉吗?就像是一场音乐会,节奏起伏,气氛热烈。
IGBT单相桥式无源逆变电路设计
IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种将直流电能转换为交流电能的电路,广泛应用于电力电子领域中。
无源逆变电路由于不需要任何外部能源,使得其工作更加简单和可靠。
本文将介绍IGBT单相桥式无源逆变电路的设计原理、主要组成部分以及其工作原理等内容。
在设计IGBT单相桥式无源逆变电路时,需要考虑以下几个关键因素:1.选择合适的IGBT管:IGBT管是无源逆变电路的关键部件,应选择具有适当的功率、电压和电流特性的IGBT管。
同时需要考虑其导通和关断速度,以确保电路的稳定性和工作效率。
2.设计适当的驱动电路:由于IGBT管需要在高频环境下工作,需要设计适当的驱动电路,以提供恰当的电压和电流波形,确保IGBT的正常工作。
3.控制策略设计:无源逆变电路的控制策略是确保电路能够实现所需输出的重要因素。
可以采用脉宽调制(PWM)控制策略,通过控制开关的导通和关断时间,来实现电压和频率的调节。
4.滤波电路设计:逆变电路产生的输出电压可能存在较高的谐波成分,需要设计适当的滤波电路来消除这些谐波,从而获得稳定的交流输出。
1.当输入直流电源施加在桥式电路的直流侧时,根据控制策略,对四个IGBT管进行相应的开通和关断操作。
2.当Q1和Q4管开通,Q2和Q3管关断时,输入直流电源通过Q1管和Q4管流入负载电阻RL,形成正向电压。
3.反之,当Q1和Q4管关断,Q2和Q3管开通时,输入直流电源通过Q2管和Q3管流入负载电阻RL,形成反向电压。
通过适当控制IGBT管的导通和关断时间,可以调节输出的电压和频率,从而实现不同的应用需求。
在设计IGBT单相桥式无源逆变电路时,需要进行合理的元件选择、电路设计和控制策略设计,以确保电路的性能和稳定性。
此外,还需要考虑保护电路的设计,以确保电路和负载的安全性。
电压型单相全桥逆变电路
电压型单相全桥逆变电路(1) 介绍单相全桥逆变电路,也称为半桥逆变电路,是一种基于一个正弦波源和一种特定的桥接结构,以及装有晶体管或管器的电路,用来将电动机或机器的交流电源驱动至输出。
该电路通过控制其中的电流,可以改变功率、频率、电压这些特征。
(2) 电路原理单相全桥逆变电路具有一个正弦波源和一种特定的桥接结构。
该桥接结构是由4 个MOSFET晶体管或管器组成的,它们可以在30°的激励周期内在正常工作时交替开启,这将会使输出的单相桥路上的电压发生切换,因此可以得到一个正弦波脉冲输出,从而能够驱动负载的电机。
(3) 优点1. 单相全桥逆变电路具有低成本、易于维护以及精度高的优点,能够根据需要快速调节输出电压,可以超调电压使功率达到最高;2. 此类电路可以存储有限的能量,在整个操作中基本没有损失;3. 其具有灵敏控制功能,可以有效控制输入电压频率和电压;4. 它可以允许电压和电流在负载范围内自由切换,可以在有限的时间内进行快速调整;5. 此类电路结构简单,对交叉导体的影响小,能够有效抗干扰。
1. 单相全桥逆变电路的控制精度不是很高,受到电源供应和负载的影响较大;2. 结构复杂,由于其中使用的介质晶体管的开关特性,在工作过程中有时会发生失控现象;3. 高压噪声也会影响电路性能;4. 高压及电压脉宽比较窄,且控制精度不如高压直流调节电路高。
(5) 结论单相全桥逆变电路相对于传统单相变换电路,友好的结构,低成本,易于维护以及高能量转换效率的优点在很多应用中备受青睐。
但其较窄的脉冲宽度和较低的控制精度也被忽视不计。
因此,对于不同的应用,要充分考虑单相全桥逆变电路的优点和缺点,以便选择最合适的解决方案。
单相全桥逆变电路工作原理
单相全桥逆变电路工作原理单相全桥逆变电路是一种常用的电力变换装置,其主要用途是将直流电转换为交流电。
其工作原理是通过四个开关管将直流电进行切割和逆向变换,最终得到一定电压和频率的交流输出。
下面将从工作原理、电路构成、优缺点和应用领域等方面详细阐述单相全桥逆变电路。
一、工作原理单相全桥逆变电路由四个开关管(晶闸管或MOSFET)组成,与一台变压器一起工作。
当1、2交流电源正负极向变压器输入直流电压时,S1和S4开启,S2和S3关闭。
这时,直流电源会通过变压器的一端进入,而另一端则会输出负电压,这样输出端就获得了一种交流电压。
然后,当1、2交流电源正负极的电压变为相反时,S2和S3打开,S1和S4关闭,这样直流电压就会反向通过变压器,输出端就依然能够获得一种交流电压。
两次的输出发生的相位差为180度,即输出的正弦波形左右当中的各一半,从而实现了逆变电路的工作。
二、电路构成单相全桥逆变电路的电路构成简单,主要由直流电源、四个开关管和变压器组成。
其中直流电源的电压和电流都需要进行选定和计算,开关管的类型和参数也需要进行选择和配合,变压器的参数也需要充分考虑和计算。
其中,开关管就是单向导电的器件,分为输入端和输出端,控制端与两个端口相连,当接收到控制信号时,控制端就开启器件,这样开关管就导通了。
在单相全桥逆变电路中,由于一次侧变压器中心点与输出端相连,所以开关管的控制信号需要进行相互协调,以保证逆变电路的正常工作。
三、优缺点单相全桥逆变电路也有其自身的优缺点。
其优点在于逆变电路稳定性高、输出电压频率可控、输出精度较高、效率高等,还能够实现交流电的变换、整流、调节及保护等多种功能。
而缺点在于电路构造较为复杂、噪声等环境干扰较大、器件选配精度较高等。
四、应用领域单相全桥逆变电路在现代工业生产中得到广泛应用,如电子、电力、通讯、光学、机械、石油化工等行业。
其中在工业控制领域,逆变电路可被应用于电机启动、转速控制、液压泵站控制、机床等方面。
IGBT单相电压型全桥无源逆变电路设计
IGBT单相电压型全桥无源逆变电路设计无源逆变器是一种将直流电能转换为交流电能的装置。
在无源逆变器中,使用单相电压型全桥拓扑结构,其中IGBT是指绝缘栅双极型晶体管,具有高电压和高电流开关特性。
本文将详细设计IGBT单相电压型全桥无源逆变电路。
设计要求:1. 输入电压:直流电压为Vin。
2. 输出电压:交流电压为Vout,频率为f。
3.负载:纯电阻性负载。
电路原理:1. 在每个IGBT导通期间的2/3时间内,两个IGBT之一导通,直流电压Vin流过负载。
2.在导通的另外1/3时间内,两个IGBT同时导通,负载两端电压降为零。
电路结构:1.两个开关电路串联:IGBT1和IGBT4、IGBT3和IGBT22.两个共享电压元件:一个直流电源和一个电感。
电路设计:1.选择IGBT:根据输入电压和负载电流选择IGBT,确保IGBT的电流和电压额定值工作在安全范围内。
2.选择电感:根据电压和电流需求选取合适的电感,它能平滑电路的工作并提供稳定的电流输出。
3.选择电容:选取合适的电容来平滑输出电压。
4.选择二极管:选择合适的二极管防止反向电流损坏电路。
参数计算:1. 选择输入电压Vin。
2. 根据输出电压Vout和负载电流计算负载电阻Rload。
3. 根据输出电压Vout和负载电流计算功率P。
4.根据频率f和功率P计算电感L和电容C的值。
原理图设计:根据电路设计和参数计算结果,绘制原理图。
确保各个组件的连接正确并保证整个电路的工作稳定。
电路实现:将电路原理图转换为实际的电路板。
在实际实施中,要注意电路的布局合理性、组件之间的联接可靠性,以确保电路能够正常工作。
性能测试:测试电路的性能,包括输出电压和电流的波形、频率和效率。
如果有必要,可以进行调整和改进。
总结:。
单相桥式无源逆变电路
黄石理工学院课程设计绪论电力电子技术是一门新兴的应用于电力领域的电子技术,是建立在电子学、电工原理和自动控制三大学科上的新兴学科,就是使用电力电子器件(如晶闸管,GTO,IGBT 等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW 甚至GW,也可以小到数W 甚至1W 以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
此技术的应用已深入到国家经济建设,交通运输,空间技术,国防现代化,医疗,环保和人们日常生活的各个领域。
进入新世纪后电力电子技术的应用更加广泛。
以计算机为核心的信息科学将是21 世纪起主导作用的科学技术之一,有人预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学的两大支柱。
电力电子技术是应用于电力领域的电子技术。
具体地说,就是使用电力电子器件对电能进行变换和控制的技术。
通常把电力电子技术分为电力电子制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。
其中,变流技术也称为电力电子器件的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以及由这些电路构成电路电子装置和电力电子系统的技术。
“变流”不仅指交直流之间的交换,也包括直流变直流和交流变交流的变换。
将直流电转换为交流电的电路称为逆变电路,本课程设计主要介绍单相桥式无源逆变电路。
1 逆变器的性能指标与分类1.1 有源逆变的基本定义及其应用如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去。
它用于直流电机的可逆调速、绕线型异步电机的串级调速、高压直流输电和太阳能发电等方面。
1.2 无源逆变电路的基本定义及应用无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。
它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。
1.3 逆变器的性能指标1.3.1 谐波系数HF谐波系数HF 定义为谐波分量有效值同基波分量有致值之比,即U HF =nU1(1-1)式中n=1、2、3…,表示谐波次数,n=1 时为基波。
单相全桥逆变电路原理
单相全桥逆变电路原理单相全桥逆变电路的原理基于桥式整流电路的基本结构,它由四个开关管和一组负载组成。
其中两个开关管位于直流电源的正负极之间,分别称为上桥臂和下桥臂;另外两个开关管位于负载的正负两端,分别称为左桥臂和右桥臂。
根据控制开关管的导通和断开状态,可以确定电流的流向,从而实现逆变功能。
在正半周期中,上桥臂的开关管(Q1)闭合,下桥臂的开关管(Q2)断开。
此时,电流从正极流向负极,经过左桥臂、负载和右桥臂,形成一个回路。
由于右桥臂的开关管(Q4)闭合,左桥臂的开关管(Q3)断开,电流只能通过负载。
因此,负载上的电压为正。
在负半周期中,上桥臂的开关管(Q1)断开,下桥臂的开关管(Q2)闭合。
此时,电流从负极流向正极,经过右桥臂、负载和左桥臂,形成一个回路。
由于左桥臂的开关管(Q3)闭合,右桥臂的开关管(Q4)断开,电流只能通过负载。
因此,负载上的电压为负。
通过改变开关管的导通和断开状态,可以控制上述两个半周期的开关时间比例,从而改变输出的交流电压的幅值和频率。
具体来说,如果正半周期的开关时间比例较大,负半周期的开关时间比例较小,那么输出的交流电压的幅值将较大;反之,则输出的交流电压的幅值将较小。
同样地,通过改变开关时间比例,可以改变输出的交流电压的频率。
1.在正半周期中,上桥臂的开关管(Q1)闭合,下桥臂的开关管(Q2)断开,电流从正极流向负极,经过负载。
2.在负半周期中,上桥臂的开关管(Q1)断开,下桥臂的开关管(Q2)闭合,电流从负极流向正极,经过负载。
3.通过改变开关管的导通和断开状态,可以控制输出的交流电压的幅值和频率。
单相全桥逆变电路具有高效率、输出波形质量好、容量大等优点。
它广泛应用于工业控制、电力电子、电力变换、电力输配等领域。
在逆变器、变频器、电动机驱动器等系统中发挥着重要作用。
通过对其原理的深入理解,可以更加灵活地设计和控制逆变电路,提高电能的使用效率和质量。
MOSFET单相桥式无源逆变电路设计
MOSFET单相桥式无源逆变电路设计无源逆变电路是一种将直流电能转换为交流电能的电路,常用于交流电机驱动、太阳能逆变器等应用中。
MOSFET单相桥式无源逆变电路是其中一种常见的设计方案,下面将详细介绍其设计原理和步骤。
设计原理:MOSFET单相桥式无源逆变电路由四个MOSFET管组成,分别为Q1、Q2、Q3和Q4、其中,Q1和Q4为上管,Q2和Q3为下管。
通过控制MOSFET管的导通和关断,实现直流电源的正负半周期切换,从而产生交流电源输出。
设计步骤:1.电源选择:根据实际需求选择适当的直流电源作为输入电源。
通常情况下,选择稳定的直流电源,如电池或直流电源供应器。
2.选择MOSFET管:根据设计要求,选择适当的MOSFET管。
关键参数包括最大电流、最大电压、开关速度等。
确保所选的MOSFET管能够满足设计需求。
3.电路连接:按照桥式无源逆变电路的连接方式,将四个MOSFET管连接成桥式电路。
其中,Q1和Q4的源极连接到正极,Q2和Q3的源极连接到负极。
同时,将输入电源连接到Q1和Q3的栅极,Q2和Q4的栅极通过适当的驱动电路控制。
4.控制信号生成:通过控制Q1和Q3的栅极驱动电路,生成交替的高低电平信号,控制其导通和关断。
具体的控制信号生成方式可以采用计算机控制、单片机控制或者专用的驱动芯片。
5.输出滤波:由于无源逆变电路输出的是一个脉冲信号,需要通过滤波电路将其转变为平滑的交流电源输出。
常用的滤波电路包括LC滤波电路、RC滤波电路等。
6.保护措施:为了保护MOSFET管和其他电路元件,可以采取一些保护措施,如过流保护、过压保护、温度保护等。
7.参数调整:在实际应用中,根据具体的负载要求和输出电流电压等参数,对无源逆变电路进行调整和优化。
可以通过改变MOSFET管的参数、调整滤波电路等方式来实现。
总结:MOSFET单相桥式无源逆变电路是一种常见的无源逆变电路设计方案。
通过控制MOSFET管的导通和关断,将直流电能转换为交流电能。
MOSFET单相桥式无源逆变电路设计
MOSFET单相桥式无源逆变电路设计
首先,我们需要选择适合的MOSFET管。
选取的MOSFET应具备以下特性:低导通电阻、高开关速度、高耐压能力以及低驱动功率。
一种常用的
型号是IRF540。
然后,我们需要设计驱动电路来控制MOSFET管的开关。
对于驱动电路的设计,我们采用了一种简单的方法,即使用与非门电
路来实现对MOSFET管的驱动。
在输入端,我们使用PWM信号源,其频率
可以选择为几千赫兹。
PWM信号将通过与非门电路,经过一定的延时,控
制MOSFET管的开关。
然后,我们需要确定逆变电路的工作频率和负载电流。
在这个设计中,我们选择了50赫兹的工作频率,并假设负载电流为5安培。
根据这些参数,我们可以计算出MOSFET管的电流和功率。
接下来,我们需要选择适合的滤波电路来减小电压的谐波成分,从而
实现更好的逆变效果。
在这个设计中,我们选择了LC滤波器。
我们可以
根据负载电流和工作频率来选择合适的电感和电容。
最后,我们需要进行电路的模拟和优化。
我们利用电路仿真软件,如LTspice,来验证电路的性能。
我们可以通过对电路进行参数调整,来获
得更好的工作效果。
总结起来,MOSFET单相桥式无源逆变电路的设计需要选择适合的MOSFET管,并设计合适的驱动电路、滤波电路。
通过电路模拟和优化,
我们可以得到一个高效、稳定的逆变电路。
这种电路常用于太阳能、风能
等新能源领域,实现将直流电能转换为交流电能的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术课程设计说明书MOSFET单相桥式无源逆变电路设计(纯电阻负载)院、部:电气与信息工程学院学生姓名:指导教师:王翠职称副教授专业:自动化班级:自本1004班完成时间:2013-5-24本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及MOSFET的工作原理、全桥的工作特性和无源逆变的性能。
本次所设计的单相全桥逆变电路采用MOSFET作为开关器件,将直流电压Ud 逆变为频率为1KHZ的方波电压,并将它加到纯电阻负载两端。
本次课程设计的原理图仿真是基于MATLZB的SIMULINK,由于MATLAB软件中电源等器件均为理想器件,使得仿真电路相对较为简便,不影响结果输出。
设计主要是对电阻负载输出电流、电压与器件MOSFET输出电压的波形仿真。
关键词:单相;全桥;无源;逆变;MOSFET;1 MOSFET的介绍及工作原理 (4)2 电压型无源逆变电路的特点及主要类型 (5)2.1电压型与电流型的区别 (5)2.2逆变电路的分类 (5)2.3有源与无源的区别 (5)3 电压型无源逆变电路原理分析 (6)4 主电路设计及参数选择 (7)4.1主电路仿真图 (7)4.2参数计算 (7)4.3参数设置 (8)5 仿真电路结果与分析 (11)5.1触发电平的波形图 (11)5.2电阻负载输出波形图 (12)5.3器件MOSFET的输出波形图 (12)5.4仿真波形分析 (14)6 总结 (15)参考文献 (16)致谢 (17)1 MOSFET的介绍及工作原理MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor 场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS 型(Metal Oxide Semiconductor FET),简称功率 MOSFET(Power MOSFET)。
结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。
其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于 GTR,但其电流容量小,耐压低,一般只适用于功率不超过 10kW 的电力电子装置。
功率 MOSFET 的种类:按导电沟道可分为 P 沟道和 N 沟道。
按栅极电压幅值可分为耗尽型和增强型,当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型;对于 N (P)沟道器件,栅极电压大于(小于)零时才存在导电沟道的称为增强型;功率 MOSFET主要是N沟道增强型。
本次设计采用N沟道增强型。
2 电压型无源逆变电路的特点及主要类型2.1 电压型与电流型的区别根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。
电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。
当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
又称为续流二极管。
2.2 逆变电路的分类把直流电变成交流电称为逆变。
逆变电路分为三相和单相两大类。
其中,单相逆变电路主要采用桥式接法。
主要有:单相半桥和单相全桥逆变电路。
而三相电压型逆变电路则是由三个单相逆变电路组成。
2.3 有源与无源的区别如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去,称为有源逆变。
无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。
它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。
3 电压型无源逆变电路原理分析单相逆变电路主要采用桥式接法。
它的电路结构主要由四个桥臂组成,其中每个桥臂都有一个全控器件MOSFET和一个反向并接的续流二极管,在直流侧并联有大电容而负载接在桥臂之间。
其中桥臂1,4为一对,桥臂2,3为一对。
可以看成由两个半桥电路组合而成。
其基本电路连接图如下所示:图1 电压型全桥无源逆变电路的电路图由于采用功率场效应晶体管(MOSFET)来设计,如图1的单相桥式电压型无源逆变电路,此课程设计为电阻负载,故应将IGBT用MOSFET代替,RLC负载中电感、电容的值设为零。
此电路由两对桥臂组成,V1和V4与V2和V3两对桥臂各导通180度。
再加上采用了移相调压法,所以VT3的基极信号落后于VT1的90度,VT4的基极信号落后于VT2的90度。
因为是电阻负载,故晶体管均没有续流作用。
输出电压和电流的波形相同,均为90度正值、90度零、90度负值、90度零……这样一直循环下去。
4 主电路设计及参数选择4.1 主电路仿真图在本次设计中,主要采用单相全桥式无源逆变电路(电阻负载)作为设计的主电路。
由于软件上的电源等器件都是理想器件,故可将直流侧并联的大电容直接去掉。
由以上工作原理概论的分析可得其主电路仿真图如下所示:图2 MOSFET单相全桥无源逆变电路(电阻负载)电路4.2 参数计算电阻负载,直流侧输入电压=100V, 脉宽为θ=90°的方波,输出功率为300W,电容和电感都设置为理想零状态。
频率为1000Hz由频率为1000Hz即可得出周期为T=0.001s,由于V3的基波信号比V1的落后了90度(即相当1/4个周期)。
通过换算得:t3=0.001/4=0.00025s,而t1=0s。
同理得:t2=0.001/2=0.0005S, 而t4=0.00075S。
由理论情况有效值:Uo=Ud/2=50V。
又因为P=300W 所以有电阻:R=Uo*Uo/P=8.333Ω则输出电流有效值:Io=P/Uo=6A则可得电流幅值为Imax=12A,Imin=-12A电压幅值为Umax=100V,Umin=-100V晶闸管额定值计算,电流有效值:Ivt=Imax/4=3A。
额定电流In额定值:In=(1.5-2)*3=(4.5-6)A。
最大反向电压Uvt=100V则额定电压Un=(2—3)*100V=(200-300)V4.3 参数设置根据以上计算的各参数即可正确设置主电路图如下,进而仿真出波形图。
图3 VT1的触发电平参数设置图4 VT2的触发电平参数设置图5 VT3的触发电平参数设置图6 VT4的触发电平参数设置图7 电阻负载参数设置5 仿真电路结果与分析5.1 触发电平的波形图从上到下依次为VT1,VT2,VT3,VT4的触发电压,幅值为5V。
图8 触发电平的波形图5.2 电阻负载输出波形图从上到下依次输出电流(最大值为12A)与输出电压(最大值为100V)波形。
图9 电阻负载输出波形图由图9所示波形可得:一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相反,则输出平均电压为0。
同理输出平均电流也为0。
5.3 器件MOSFET的输出波形图从上到下依次为VT1,VT2,VT3,VT4的输出电流和电压波形。
图10 VT1电流波形(最大值12A,最小值0A),VT1电压波形(最大值100V,最小值0V)图11 VT2电流波形(最大值12A,最小值0A),VT2电压波形(最大值100V,最小值0V)图12 VT3电流波形(最大值12A,最小值0A),VT3电压波形(最大值100V,最小值0V)图13 VT4电流波形(最大值12A,最小值0A),VT4电压波形(最大值100V,最小值0V)5.4 仿真波形分析在接电阻负载时,采用移相的方式来调节逆变电路的输出电压。
移相调压实际上就是调节输出电压脉冲的宽度。
通过对图8触发脉冲的控制得到如图9和5.3MOSFET的输出波形图,图9波形为输出电流电压的波形,由于没有电感负载,在波形图中可看出,一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相反,则输出平均电压为0。
VT1电压波形和VT2的互补,VT3电压波形和VT4的互补,但VT3的基极信号不是比VT1落后180°,而是只落后θ。
即VT3、VT4的栅极信号不是分别和VT2、VT1的栅极信号同相位,而是前移了90°。
输出的电压就不再是正负各为180°的的脉冲,而是正负各为90°的脉冲。
由于没有电感负载,故电流情形与电压相同。
6 总结MOSFET单相桥式无源逆变电路共有4个桥臂,可以看成两个半桥电路组合而成,采用移相调压方式后,输出交流电压有效值即可通过改变直流电压Ud来实现,也可通过改变θ来调节输出电压的脉冲宽度来改变其有效值。
由于MATLAB软件中电源等器件均为理想器件,故可将电容直接去掉。
又由于在纯电阻负载中,VD1—VD4不再导通,不起续流作用,古可将起续流作用的4个二极管也去掉,对结果没有影响。
相比于半桥逆变电路而言,全桥逆变电路克服了半桥逆变电路输出交流电压幅值仅为1/2Ud的缺点,且不需要有两个电容串联,就不需要控制电容电压的均衡,因此可用于相对较大功率的逆变电源。
参考文献[1]王兆安刘进军.电力电子技术. 北京:机械工业出版社.第五版,2009.5﹒100~103[2]黄忠霖黄京.电力电子技术MATLAB实践. 北京:国防工业出版社.2009.1. 246~248[3]洪乃刚. 电力电子、电机控制系统的建模和仿真. 北京:机械工业出版社.2010.1. 100~107[4] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010[5] 林飞,杜欣.电力电子应用技术的MATLAB 仿真.北京:中国电力出版社,2009致谢这次电力电子技术设计,让我们有机会将课堂上所学的理论知识运用到实际中。
并通过对知识的综合运用,进行必要的分析、比较。
从而进一步验证了所学的理论知识。
同时,这次课程设计,还让我知道了最重要的是心态,在刚开始会觉得困难,但是只要充满信心,就肯定会完成的。
通过电力电子技术课程设计,我加深了对课本专业知识的理解,平常都是理论知识的学习,在此次课程设计过程中,我更进一步地熟悉了单相桥式无源电路的原理和触发电路的设计。
当然,在这个过程中我也遇到了困难,查阅资料,相互通过讨论。
我准确地找出了我们的错误并纠正了错误,这更是我们的收获,不但使我们进一步提高了我们的实践能力,也让我们在以后的工作学习有了更大的信心。