关于串级控制系统的设计
(工业过程控制)5.串级控制系统
与模糊控制系统的比较
总结词
数据处理方式
详细描述
模糊控制系统处理的是模糊数据,将输入变量的精确值转换为模糊集合的隶属度;串级控制系统则直接处理输入 变量的精确值。
与模糊控制系统的比较
总结词:适用场景
详细描述:模糊控制系统适用于具有不确定性和非线性特性的复杂系统;串级控制系统适用于具有多个重要参数且需要精确 控制的过程。
测量元件是控制系统中的传感器和变 送器,用于检测系统参数和状态,并 将信号传输给控制器。
执行器应具备高精度、高可靠性和长 寿命等特点,以保证系统控制的准确 性和稳定性。
测量元件的选择与校准对于保证系统 测量的准确性和可靠性至关重要,应 根据具体需求进行选择和校准。
04
串级控制系统的调试与优化
系统调试
调试目的:确保系统正常 运行,满足工艺要求。
调试内容
检查硬件设备是否正常工 作。
测试系统逻辑控制功能。
系统优化பைடு நூலகம்
优化方法
优化目标:提高系统性能, 降低能耗。
01
调整控制参数,提高控制精
度。
02
03
优化控制逻辑,降低误操作 风险。
04
05
改进系统结构,提高响应速 度。
系统维护与升级
01
维护内容
02
定期检查硬件设备。
详细描述:多变量控制系统需要处理多个输入和输出变 量之间的耦合关系,系统复杂性较高;串级控制系统则 通过将系统分解为多个子系统来降低复杂性。
详细描述:多变量控制系统通常采用协调控制策略,以 实现多个变量之间的优化;串级控制系统则更注重单个 变量的优化和控制。
与模糊控制系统的比较
总结词:控制规则
详细描述:模糊控制系统基于模糊逻辑和模糊集合理论,通过模糊规则进行控制;串级控制系统则基 于经典控制理论,通过PID控制器等进行控制。
串级控制系统的设计
串级控制系统的设计为了充分发挥串级控制系统的优点,在设计实施控制系统时,还应当合理设计主、副回路及选择主、副调节器的控制规律。
1、主、副回路的设计原则(1)副参数的选择应使副回路的时间常数小,控制通道短,反应灵敏。
通常串级控制系统是被用来克服对象的容积迟延和惯性。
因此,在设计串级控制系统时,应设法找到一个反应灵敏的副参数,使得干扰在影响主参数之前就得到克服,副回路的这种超前控制作用,必然使控制质量有很大提高。
(2)副回路应包含被控对象所受到的主要干扰。
串级控制系统对进入副回路的扰动有很强的克服能力,为发挥这一特殊作用,在系统设计时,副参数的选择应使得副回路尽可能多地包括一些扰动但这将与要求副回路控制通道短,反应快相矛盾,应在设计中加以协调。
在具体情况下,副回路的范围应当多大,决定于整个对象的容积分布情况以及各种扰动影响的大小副回路的范围也不是愈大愈好。
太大了,副回路本身的控制性能就差,同时还可能使主回路的控制性能恶化。
一般应使副回路的频率比主回路的频率高得多,当副回路的时间常数加在一起超过了主回路时,采用串级控制就没有什么效果。
(3)主副回路工作频率应适当匹配。
由于串级系统中主、副回路是两个相互独立又密切相关的回路。
如果在某种干扰作用下,主参数的变化进入副回路时,会引起副回路中副参数振幅增加,而副参数的变化传到主回路后,又迫使主参数变化幅度增加,如此循环往复,就会使主、副参数长时间大幅度地波动,这就是所谓串级系统的“共振现象”。
一旦发生了共振,系统就失去控制,不仅使控制品质恶化,如不及时处理,甚至可能导致生产事故,引起严重后果。
为确保串级系统不受共振现象的威胁,一般取T dl =(3~10)T d2式中: T dl为主回路的振荡周期;T d2为副回路的振荡周期。
要满足上式,除了在副回路的设计中加以考虑之外,还与主、副调节器的整定参数有关。
2、主、副调节器的选型串级控制系统中,主调节器和副调节器的任务不同,对于它们的选型即控制规律的选择也有不同考虑。
串级控制方案
串级控制方案引言串级控制(Cascaded Control)是一种常见的控制方案,通常用于处理复杂、多变的控制系统。
串级控制方案将系统拆分为多个级别,每个级别都有独立的控制器,以实现对特定过程变量的控制。
本文将介绍串级控制方案的基本原理、设计要点,并举例说明其在实际应用中的优势。
串级控制的基本原理串级控制方案由两个或多个级别组成,每个级别都有自己的控制器,而其中一个级别的输出被作为下一个级别的输入。
多个级别的控制器协同工作,使得整个控制系统能够更准确地响应于外部变化,并提高系统的稳定性和鲁棒性。
在串级控制方案中,通常将系统的过程变量划分为两个类型:一级过程变量和二级过程变量。
一级过程变量是指直接受控制器输出影响的变量,二级过程变量是指受一级过程变量控制影响的变量。
通过将系统拆分为两个或多个级别,可以更好地应对复杂的控制任务,提高系统性能。
串级控制方案的设计要点1. 级别划分要设计一个有效的串级控制方案,首先需要进行合理的级别划分。
通常情况下,一级控制变量应该是对整个系统性能有直接影响的变量,而二级控制变量是对一级控制变量有间接影响的变量。
合理的级别划分可以提高系统的控制精度和稳定性。
2. 控制器设计每个级别都需要一个独立的控制器来实现对过程变量的控制。
控制器的设计要考虑系统的响应速度、稳定性和鲁棒性。
通常情况下,一级控制器应该具有较快的响应速度,以尽快调整一级过程变量的值;而二级控制器则应更关注系统的稳定性和抗干扰能力。
3. 控制器之间的通信和协调不同级别的控制器之间需要进行通信和协调,以实现整个系统的稳定运行。
一般可以采用PID控制器、模糊控制器或者自适应控制器等方法实现控制器之间的沟通和协调。
通过合理的控制器间通信和协调策略,可以使系统达到更好的控制效果。
串级控制方案的优势串级控制方案相对于传统的单级控制方案有以下优势: 1. 提高系统的鲁棒性:通过引入多级控制,可以更好地应对外界扰动和变化,提高系统的鲁棒性。
第6章-串级控制系统讲解全文编辑修改
D1
烧成带 θ1
副测量变送器
主测量变送器 根据副控制器的“反”作用,其输出将减小,“气开”式的控制阀门将 被关小,燃料流量将被调节回稳定状态时的大小。
6.1 串级控制系统的基本概念
串级控制系统的工作过程
(2)只存在一次干扰
θ1r
主控制器
副控制器 调节阀
D2 燃烧室 θ2
隔焰板
D1
烧成带 θ1
副测量变送器
主参数设定
-
主调 节器
-
副调 节器
调节 阀
二次扰动
副对象
一次扰动 主参数
主对象
副变送器
副参数
定值控 制系统
主变送器
主回路
图6-6 串级控制系统标准方框图
1) 在结构上,串级控制系统由两个闭环组成.副回路 起“粗调”作用,主回路起“细调”作用。
2) 每个闭环都有各自的调节对象,调节器和变送器 3) 调节阀由副调节器直接控制
-
-
Gm2(s)
Y2(s)
Gm1(s)
y2,sp
+ -
Gc2 ym2
Gv Gm2
+ +
GGpo22
D2 y2
D2(s)
1 + Gc G 2Gv op22Gm2
y2,sp
Gc2GvGGop2
1 + Gc G 2Gv op22Gm2
+ D2' (s)
+
y2(s)
Go2’(s)
6.2 串级控制系统的分析
6.2 串级控制系统的分析
串级控制特点总结:
1) 在系统结构上, 它是由两个串接工作的控制器构成的双闭环 控制系统。其中主回路是定值控制,副回路是随动控制;
课程设计--加热炉温度串级控制系统(设计部分)
加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
《仪表选用及DCS组态》 2.3 串级控制系统设计
2.3.2 串级控制系统的特点及应用范围
系统特点:主回路和副回路;主控制器和副控制器;有 两个测量变送器;副回路,具有超前控制的作用和一定的自 适应能力。
设定值
温度 控制器
随动控制 系统
干扰
干扰
流量 控制器
控制阀
流量对象
温度对象
釜温
测量变送 测量变送
定值控制 系统
2.3.3 串级控制系统主、副变量的选择
内设 定+
-
+
LC102
-
FC104
变频泵
FT104
干扰 2
管道
干扰
1 L
锅炉
LT102
串级控制系统设计训练
过热蒸汽温度串级控制系统示意图
如左图所示为过热蒸 汽温度串级控制系统 示意图。 ①分析此图,指出主、 副变量; ②确定主、副控制器 的控制规律; ③确定主、副控制器 的正反作用方向; ④画出该串级系统的 方框图。
2.3.6 锅炉液位与级控制系统设计
2.3.4 主、副控制器控制规律的选择
2.3.5 主、副控制器正反作用的确定
设定值
反
温度 控制器
流量 控制器
控制阀
流量对象
温度对象
釜温
测量变送 测量变送
当主、副变量在增加(或减小)时,为使主、副 变量减小(或增加),要求控制阀的作用方向是一致 的时候,主控制器应选择反作用;反之选正作用。
冷却器出口温度的串级控制系统
2.3.1 串级控制系统的结构
f2
f1
主控制器
副控制器 控制阀
r1
u1
u2
Q
c2
c1
Gc1
Gc2
串级控制系统设计
目录1.串级控制的基本概念 (1)2.串级控制系统的原理 (1)3.串级控制系统的特点 (1)4.串级控制主、副控制器的设计 (3)5.Simulink仿真 (5)6.串级控制的改进 (6)附录 (7)参考文献 (7)1.串级控制的基本概念串级控制系统为双闭环或多闭环控制系统,控制系统内环为副控对象,外环为主控对象。
内环的作用是将外部扰动的影响在内环进行处理,而尽可能不使其波动到外环,这就加快了系统的快速性并提高个系统的品质,因此串级控制系统中选择内环时应考虑其响应速度要比外环快得多。
2.串级控制系统的原理串级控制在结构上形成的两个闭环,一个在闭环里面,成为内环、副环或副控回路,其控制器为副控制器,在控制中起“粗调”的作用;一个闭环在外面,成为外环、主环或主控回路,其控制器称为主控制器,在控制中起“细调”作用,最终被控量满足控制要求。
主控制器的输出作为副控制器的给定值,而副控制器的输出则去控制被控对象。
3.串级控制系统的特点(1) 副控制回路具有快速性,能够有效的克服进入副控回路的二次干扰。
图2为简化串级控制系统的结构图,其中)(2S G v 为二次干扰通道传递函数。
当二次干扰经扰动通道)(2S G v 进入副控回路后,首先影响副参数)(2S Y ,于是副控制器立即动作,力图削弱干扰对)(2S Y 的影响。
显然,干扰经副控回路的抑制后再进主控回路,对)(S Y 的影响将有较大的减弱。
按图2所示的串级系统,二次干扰)(2S V 到主参数)(S Y 的传递函数是为了与一个简单单环控制系统相比,由图3可以得到单回路控制下干扰)(2S V 至主参数)(S Y 的传递函数是比较(3.1)和(3.2),假定)()(1S D S D =,可以看到串级系统中的)()(2S V S Y 的分母中多了一项,即)()(22S G S D 。
在主控回路的工作频率下,这项乘积的系数一般较大,且随副控制器比例增益的增大而增大。
简述串级控制系统的设计原则。
简述串级控制系统的设计原则。
串级控制系统是一种广泛应用于各种控制系统中的控制方式。
串级控制是一种将多个层次的控制器组成的分层结构,在控制层面实现从上层到下层的控制。
这种控制方式,可以让上层控制器负责整体控制,而下层控制器负责分层控制,将系统控制复杂度降低,并且可以有效地提高控制系统的整体性能。
串级控制系统的设计原则是一组指导串级控制系统的设计原则。
它可以指导设计人员在设计串级控制系统时应遵守的原则,以达到最佳性能。
这些原则主要涉及系统的控制能力、可靠性、安全性、易用性、灵活性和普适性。
第一,控制能力。
串级控制系统的控制能力是指控制系统的性能指标,要求系统具有足够的控制能力来保证系统稳定可靠地运行。
第二,可靠性。
串级控制系统的可靠性是指控制系统的能力,要求系统具有足够的可靠性,确保系统的运行可以长期稳定可靠地进行。
第三,安全性。
串级控制系统的安全性是指系统的能力,要求系统能够在可控范围内实现安全控制,以防止发生不可控的意外情况。
第四,易用性。
串级控制系统的易用性是指系统的能力,要求系统具有良好的用户友好性,以方便用户在控制环境中使用系统。
第五,灵活性。
串级控制系统的灵活性是指系统的可拓展性,要求系统可以根据不同的应用场景进行拓展,使系统有更好的灵活性。
第六,普适性。
串级控制系统的普适性是指系统的可拓展性,要求系统可以满足各种应用场景的要求,并具有较强的可移植性。
总之,以上是串级控制系统的设计原则,主要包括控制能力、可靠性、安全性、易用性、灵活性和普适性。
这些原则可以指导设计人员在设计串级控制系统时应该遵守的原则,以达到最佳性能。
串级控制系统的优势在于它可以将系统的控制复杂度降低,并可以提高系统的可靠性、安全性和易用性。
因此,串级控制系统是当今许多控制环境中应用最广泛的控制方案,它将为许多应用场景提供更好的控制效果。
此外,在设计串级控制系统时,串级控制系统原则还可以指导开发人员在设计控制系统时,应该采用怎样的技术、结构、参数等,以获得最优的控制效果。
dcs串级控制方案
DCS串级控制方案引言在工业控制领域,DCS(分散控制系统)串级控制方案是一种常用的控制策略。
它通过将不同的控制系统串联起来,以实现更复杂的系统控制。
本文将介绍DCS串级控制方案的基本原理、应用场景和开发步骤。
基本原理DCS串级控制方案基于主从结构,其中一个控制器充当主控制器,其他控制器则作为从控制器。
主控制器负责整体控制和决策,从控制器则负责局部控制和执行。
主控制器通过传递控制指令和接收状态反馈来实现对从控制器的控制。
主控制器将整体的控制目标分解成多个子控制目标,并将其分配给各个从控制器。
从控制器根据接收到的控制指令和状态反馈进行局部控制,然后将结果返回给主控制器。
通过将多个控制器串联起来,DCS串级控制方案可以实现对复杂系统的控制。
主控制器可以根据系统的整体性能和目标,动态地调整从控制器的工作方式和控制策略。
应用场景DCS串级控制方案适用于许多工业领域的控制应用,特别是在处理复杂的物理或化学过程时。
以下是一些常见的应用场景:1.化工厂中的流程控制:DCS串级控制方案可以用于调节化工流程中的温度、压力和液位等参数,以确保生产过程的稳定性和安全性。
2.电力系统中的发电控制:DCS串级控制方案可以用于调节发电厂的负荷平衡和频率稳定,以确保电力系统的可靠性和效率。
3.智能建筑中的能源管理:DCS串级控制方案可以用于智能建筑系统中的能源优化和节能控制,以提高能源利用效率并降低能源成本。
开发步骤步骤1:系统需求分析在开发DCS串级控制方案之前,首先需要进行系统需求分析。
这包括定义系统的控制目标、性能要求和功能需求等。
同时,还需要评估系统的复杂性和可行性,以确定是否适合使用DCS串级控制方案。
步骤2:控制器设计在设计DCS串级控制方案时,需要确定主控制器和从控制器的结构和功能。
主控制器负责全局控制和决策,可以采用PID控制器、模糊控制器或其他高级控制算法。
从控制器负责局部控制和执行,通常采用PID控制器或其他简单的控制算法。
串级控制系统
副控制器:“-” 主对象: “+”
主控制器:“-”
例题
例2.拟定下图所示加热炉出口温度与炉膛温度 串级控制系统主、副控制器旳正反作用。
控制阀: “+” 副对象: “+” 副测量变送: “+”
副控制器:“-” 主对象: “+”
主控制器:“-”
二次扰动最大偏差 0.27
0.013
串级控制系统旳特点及应用范围
1、两个串接工作旳控制器构成旳双闭环控制系统, 其中主回路是定值控制,副回路是随动控制
2、副回路旳引入,大大克服了二次扰动对系统被调量旳影响 3、迅速克服进入副回路扰动旳影响,提升系统旳抗扰动能力 4、对负荷变化有一定旳自适应能力(适应操作条件旳变化) 副回路具有先调、粗调、快调旳特点;主回路具有后调、细 调、慢调旳特点,并对于副回路没有完全克服掉旳干扰影响 能彻底加以克服。
主控-串级切换旳串级控制方案
注意: 串级与主控直接切换旳条件:构成旳控制系统必须是负反馈控制系统 结论:
只有当副控制器为反作用时才干由串级与主控之间直接切换。 假如副控制器为正作用,必须在向主控切换旳同步变化主控 制器旳正反作用。
串级系统旳投运
先副后主 确保无扰动切换
阅读教材
将主、副控制器旳切换开关都置于手动;
有什么样旳影响?
课堂提问
采用PI控制,Ti调小时为保持系统稳定性,百 分比度应该怎样变化?
工程整定措施有哪几种?主要环节是什么? 系统旳投运是使执行器从手动平稳过渡到自动
状态,该说法对不对?
主要内容
了解串级控制系统旳概念与特点; 掌握串级控制系统旳方框图表达法; 结合控制原理,掌握串级系统旳分析措施; 了解串级控制系统旳设计原则; 掌握串级控制系统旳参数整定措施;
基于MATLAB的三容水箱液位串级控制系统的设计毕业设计
基于MATLAB的三容水箱液位串级控制系统的设计毕业设计三容水箱液位串级控制系统是一种常见的液位控制系统,通过对三个水箱的液位进行测量和控制,实现液位的稳定和自动控制。
本文将以MATLAB为工具,设计一个基于MATLAB的三容水箱液位串级控制系统。
首先,我们需要明确三容水箱液位串级控制系统的控制目标。
液位控制系统的目标是使得三个水箱中的液位保持在一定的目标水位,并实现液位的自动调节和稳定。
因此,我们需要设计一个液位控制器,通过测量和控制液位,使得三个水箱的液位能够维持在目标水位。
为了设计液位控制器,我们首先需要建立三个水箱的数学模型。
假设三个水箱的进水速率和出水速率是已知的,并且假设水箱的液位变化满足一阶惯性动态特性。
我们可以使用微分方程描述水箱的液位变化。
通过设计适当的参数和初始条件,我们可以模拟出三个水箱的液位变化情况。
在MATLAB中,我们可以使用StateSpace类来建立水箱的数学模型。
StateSpace类可以定义线性系统的状态空间方程,并且可以使用控制设计工具箱来进行控制设计和分析。
通过定义三个水箱的状态空间方程,并设置合适的参数和初始条件,我们可以在MATLAB中模拟出三个水箱的液位变化情况。
接下来,我们需要设计液位控制器。
在三容水箱液位串级控制系统中,可以采用传统的PID控制器来进行控制。
PID控制器基于三个控制参数:比例项、积分项和微分项。
这些参数可以通过试探法或优化方法进行调节,以实现液位的稳定和自动控制。
在MATLAB中,我们可以使用Control System Toolbox来进行PID控制器的设计和调整。
该工具箱提供了稳定性分析、频率响应分析和自动调节功能,可以帮助我们设计出合适的PID控制器。
通过调整PID控制器的参数,我们可以使得三个水箱的液位能够稳定在目标水位,并实现液位的自动调节。
最后,我们需要在MATLAB中进行仿真和实验。
通过使用Simulink工具箱,我们可以建立三容水箱液位串级控制系统的仿真模型,并进行仿真实验。
复杂过程控制系统--串级控制专业教学
2.被加热物料的流量和初温变化f1(t)----一次扰动 或主回路扰动
7
技术教育
3.一次扰动和二次扰动同时存在
假设调节阀为气开式,主、副调节器均为反 作用。如果一、二次扰动的作用使主、副被控参 数同时增大或同时减少,主、副调节器对调节阀 的控制方向是一致的,即大幅度关小或开大阀门, 加强控制作用,使炉出口温度很快调回到给定值 上。
串级控制系统主回路是一个定值控制系统。主 参数的选择和主回路的设计可以按照单回路控制 系统的设计原则进行。串级控制系统的设计主要 是副参数的选择和副回路的设计以及主、副回路 关系的考虑。
1.副回路应包括尽可能多的扰动
副回路对于包含在其内的二次扰动以及非线 性、参数变化有很强的抑制能力与一定的自适应 能力,因此副回路应包括生产过程中变化剧烈且 幅度大的主要扰动。
❖ 图4-5串级控制系统抗干扰能力可用下式表示:
QC2
(s)
=
Y1 (s)/X 1 (s) Y1(s)/F2 (s)
=
WC1 (s)W'02 (s) W *02 (s)
=
WC1
(s)WC2
(s)WV
(s)
14
技术教育
为了与单回路控制系统比较,用同样方法可得 出单回路控制系统(图4—1a)输出Y(s)对输入 X(s)的传递函数。
副调节器选P控制规律:副参数的设置是为了 保证主参数的控制质量,可以在一定范围内变化, 允许有余差。一般不引入积分(会延长控制过程, 减弱副回路的快速作用)。也不引入微分(副回路本 身起着快速作用,再引入微分规律会使调节阀动作 过大,对控制不利)。
29
管式加热炉出口温度串级控制系统设计报告
管式加热炉出口温度串级控制系统设计报告本文将详细介绍管式加热炉出口温度串级控制系统的设计方案。
1.系统结构管式加热炉出口温度串级控制系统的结构由两个级联的控制回路组成。
第一个回路为内环控制回路,负责控制燃烧系统的燃气量和进气量,以达到对加热炉温度的快速调节。
第二个回路为外环控制回路,负责控制进料速度和加热炉的出口温度。
2.内环控制回路设计内环控制回路采用比例-积分(PI)控制器。
控制器的输入信号为加热炉温度偏差,输出信号为燃气量和进气量的调节量。
采用PI控制的主要原因是为了避免过度调节,保证系统的稳定性。
3.外环控制回路设计外环控制回路以内环控制回路的调节量作为输入信号,输出信号为进料速度的调节量。
为了达到出口温度的稳定性,可以采用模糊控制器。
模糊控制器的输入信号为加热炉温度偏差和燃气量的调节量,输出信号为进料速度的调节量。
4.控制算法设计内环控制回路采用PI控制算法。
PI控制器的参数调节可以根据系统的响应速度和稳定性进行优化。
外环控制回路采用模糊控制算法。
模糊控制器的参数调节可以通过模糊化和解模糊化的方式进行,以适应不同的工况。
5.控制器实现控制器可以采用嵌入式系统实现。
嵌入式控制器可以根据实时的温度和燃气量数据进行计算和控制,以实现对加热炉温度的稳定控制。
6.系统优化系统的优化可以通过参数调节和控制策略的优化来实现。
参数调节可以通过系统的建模和仿真分析来进行,以找到最优的控制参数。
控制策略的优化可以通过实时监测和调整来实现,以适应不同的工况和控制要求。
总结:通过设计一个管式加热炉出口温度串级控制系统,可以实现对加热炉温度的稳定控制。
内环控制回路负责快速调节温度,外环控制回路负责稳定控制温度。
通过控制算法的设计和优化,可以实现系统的稳定性和响应速度的改善。
通过嵌入式控制器的实现,可以实时计算和控制温度的调节量。
最后,通过参数调节和控制策略的优化,可以进一步提高系统的效果。
dcs水泵压力串级控制系统的设计
dcs水泵压力串级控制系统的设计简介本文档旨在介绍dcs水泵压力串级控制系统的设计。
水泵压力串级控制系统是一种用于调节水泵压力的系统,通过控制多个水泵的运行来实现对压力的控制。
设计原理水泵压力串级控制系统的设计基于以下原理:- 通过传感器监测水泵的出口压力,作为反馈信号。
- 根据设定的目标压力,通过控制主泵和辅助泵的运行,以实现对水泵压力的调节。
- 利用PID控制算法,对主泵和辅助泵的运行速度进行调节,以达到稳定的压力控制效果。
系统组成水泵压力串级控制系统主要由以下组件组成:- 传感器:用于监测水泵出口压力的传感器。
- 主泵:负责提供大部分的压力输出。
- 辅助泵:辅助主泵,用于在需要更多压力输出时提供额外支持。
- 控制器:使用PID控制算法,通过控制主泵和辅助泵的运行,实现对压力的调节。
- 人机界面:用于设定目标压力和监控实时压力的界面。
设计步骤设计dcs水泵压力串级控制系统的步骤如下:1. 确定需求:根据实际应用需求,确定所需的目标压力范围和控制精度。
2. 选择传感器:选择适用的压力传感器,安装在水泵出口,以实时监测压力信号。
3. 选择主泵和辅助泵:根据需求确定所需的主泵和辅助泵的类型和性能参数。
4. 设计控制算法:根据目标压力和实时压力信号,设计PID控制算法,并进行参数调优。
5. 确定控制策略:根据算法设计,确定主泵和辅助泵的控制策略,如启停、转速调节等。
6. 编程实现:使用相应的编程语言,编写控制器的程序,并与传感器和泵进行连接。
7. 调试测试:进行系统调试和测试,验证系统的控制效果和稳定性。
8. 优化改进:根据测试结果,对系统进行优化改进,以达到更好的控制效果。
结论dcs水泵压力串级控制系统的设计是一项复杂而重要的工程任务。
通过合理选择传感器、泵和控制算法,并进行有效的系统设计和调试,可以实现对水泵压力的精确控制,满足实际应用的需求。
串级控制系统设计
串级控制系统设计串级控制系统是由多个控制回路串联组成的控制系统。
它适用于那些要求更高的系统,需要更加精确和稳定的控制。
在串级控制系统中,分别有一个主要控制回路和一个或多个次级控制回路,主要控制回路负责整体控制系统的目标,次级控制回路负责对主要控制回路的输出进行修正,以达到更高的控制精度和稳定性。
串级控制系统设计的关键是确定主要控制回路和次级控制回路的结构和参数。
在设计主要控制回路时,需要考虑系统的目标和性能要求,并选择适合的控制器类型(如比例控制、比例积分控制或比例积分微分控制)。
同时,还需要根据系统动态特性对主要控制回路进行参数调整,以实现快速而稳定的响应。
次级控制回路的设计通常是根据主要控制回路输出的误差信号来进行的。
次级控制回路的作用是修正主要控制回路的输出,以进一步提高系统的控制精度。
次级控制回路可以采用不同的控制器类型,如比例控制或预测控制。
在设计次级控制回路时,需要考虑其对主要控制回路的影响,并调整其参数以实现理想的修正效果。
在串级控制系统设计中,还需要考虑控制回路之间的耦合问题。
具体来说,主要控制回路的输出应当能够适应次级控制回路的要求,并且次级控制回路的输出对主要控制回路的性能影响应当最小化。
为了实现这一点,可以采用信号分离和滤波等技术来减小回路之间的耦合。
另外,串级控制系统设计还需要考虑反馈环节的设计。
反馈环节可以提供对系统状态的实时监测,并利用这些信息对控制回路的输出进行修正。
在串级控制系统中,反馈环节通常位于主要控制回路之后,以便对主要控制回路输出的误差进行修正。
反馈环节的设计应当考虑系统的稳定性和鲁棒性,以确保系统能够稳定运行并对扰动有良好的抑制能力。
最后,串级控制系统设计还需要进行模拟和调试。
通过模拟和调试可以验证设计的有效性,并对系统性能进行评估。
模拟和调试可以通过数学模型和仿真软件来进行,以避免对实际系统造成不必要的干扰和损坏。
总结起来,串级控制系统设计是一个复杂的过程,需要考虑系统的目标和要求、主要控制回路和次级控制回路的设计、控制回路之间的耦合问题和反馈环节的设计等因素。
串级控制系统的原理及设计
串级控制系统的原理及设计中应注意的问题摘要:介绍了串级控制系统的基本原理,性能和设计中应注意的几个问题。
关键词:内环;外环;增益;时间常数;对象;共振现象;积分饱和现象。
1、概述1.1串级控制系统介绍单回路控制系统只用一个调节器,调节器只有一个输入信号,即只有一个闭环,在大多数情况下,这种简单系统能够满足工艺生产的要求。
但是也有一些另外的情况,譬如调节对象的动态特性决定了它很难控制,而工艺对调节质量的要求又很高;或者对调节对象的控制任务要求特殊,则单回路控制系统就无能为力了。
另外,随着生产过程向着大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,为此,需要在单回路的基础上,采取其他措施,组成复杂控制系统。
串级控制是改善调节过程的一种极为有效的方法,并且在实际中得到了广泛的应用。
我厂的生产过程自动控制系统中,串级控制系统是应用最为广泛的复杂控制系统。
1.2(简单控制系统)图1.1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料流进行传质传热。
为了保证生产过程顺利进行,需要把提馏段温度t保持恒定。
为此,在蒸汽管路上装一个调节阀,用它来控制加热蒸汽流量。
从调节阀动作到温度t发生变化,需要相继通过很多热容积。
实践证明,加热蒸汽压力的波动对温度t的影响很大。
此外,还有来自液相加料方面的各种扰动,包括他的流量、温度和组分等,它们通过提馏段的传质传热过程,以及再沸器中的传热条件(塔釜温度、再沸器液面等),最后也影响到温度t。
当加热蒸汽压力较大时,如果采用图1.1所示的简单控制系统,调节质量一般都不能满足生产要求。
如果采用一个附加的蒸汽压力控制系统,把蒸汽压力的干扰克服在入塔前,这样也提高了温度调节的品质,但这样就需要增加一只调节阀并增加了蒸汽管路的压力损失,在经济上很不合理。
比较好的方法是采用串级控制,如图1.2所示。
过程控制课程设计串级控制系统
目录第1章系统总体方案选择与说明 (1)第2章系统结构框图与工作原理 (2)2.1隧道窑控制系统方案设计 (2)2.2系统控制量和被控量的选择 (3)2.3系统主副控制器的选择 (3)2.4系统各部分正反作用方式的确定 (3)第3章软件设计 (4)3.1软件设计流程图 (6)3.2参数整定 (7)第4章仿真与调试 (8)第5章总结 (12)参考文献 (13)电气与信息工程系课程设计评分表 (14)第1章系统总体方案选择与说明过程控制是指在生产过程中,运用合适的控制策略,采用自动化仪表及系统来代替操作人员的部分或全部直接劳动,使生产过程在不同程度上自动地运行,所以过程控制又被称为生产过程自动化。
隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。
几个环节都涉及到温度的控制,隧道窑的温度是生产工艺的一项重要指标,温度控制的好坏将直接影响产品的质量。
制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300℃,偏差不得超过5C。
所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。
随着现代工业生产的迅速发展,对工艺操作条件的要求更严格,对安全运行及对控制质量的要求也更高,而因为隧道窑温度的变化比较慢,所以滞后比较大。
若采用隧道窑温度简单控制系统,由于从控制阀到窑道烧成带滞后时间太大,如果燃料的压力发生波动,尽管控制阀门开度没变,但燃料流量将发生变化,必将引起燃烧室温度的波动,再经过传热、辐射,引起烧成带温度的变化。
因为只有烧成带温度出现偏差时,才能发现干扰的存在,所以对于燃料压力的干扰不能够及时发现。
烧成带温度出现偏差后,控制器根据偏差的性质立即改变控制阀的开度,改变燃料流量,对烧成带温度加以调节。
可是这个调节作用同样要经历燃烧室的燃烧、隔焰板的传热以及烧成带温度的变化这个时间滞后很长的通道,当调节过程起作用时,烧成带的温度已偏离设定值很远了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厂 \ \
、
串级控制系统就是两个控制器进行 串联 连接 , 把主控制器 当作 主要 部分 , 确保 主变量稳 定为 目标 , 两个 控制器保 持统一 , 相互协 作。 特别是在二次干扰中 , 副控制器就会做一个 大致调节 , 然后让 主 控制器做一个深入微调。 所 以控制 品质一定要 比普 遍控 制体 系高一 些 。两个控制器都会选取“ 反” 工作形式 。 图 1仿 真 图 利用和单 回路掌控体 系中各个性 能标 准进行 对 比, 证 明了串级 控制 系统在响应速度 、 稳定度 、 抗扰性 等多个方面都优 于单 回路控 调节 P I D参数 , 做一个反复实验 , 一直到这个掌控质量达到要求 。 3 . 1 经验整定参数表 制系统。 2 研 究与 开 发 2 . 1主 、 副 变 量 的 选 择 通常情况 下 , 科学有效的 串级控制体 系 , 当干扰 由副回路流入 时, 最大偏差会不断削减到单 回路控 制体系 1 / 1 0~1 / 1 0 0 , 就算是从 主 回路进去 , 其也能够迅速削减 到 1 / 3 ~1 , 5 , 不过 , 假 如串级控制体 副 回路 中依照流量做一 个调控 , 比例度要尽 可能大 , 积分 时间 系在规划时不够科学 , 那么其优势就无法 获得有效展现 。 主变量选取原则和单回路 控制 系统中选 取标准是统一 , 就是选 要尽可能小。 取直接或 者间接展示生 产中商品产值 、 品质 、 环保等掌控 目标的参 根据以上原则及整定时所得参数 ,取副 回路 K p = 6 0 , K 。 = 1 2 0 ; 观 曲线振荡剧烈 , 调节时间过长 , 说明K 。 过大, K 。 较小。 数 当作主变量 。因为串级控制体 系中副 回路 有着 超前 功能 , 使得工 察输出曲线 , 重新调整 K … K 大小。 经过反复试验 , 确定副 回路调节器 的参数 艺过程 比较稳定 , 因此 , 在一定程度 上允许 主变量有一 定的滞 后 , 这 = 70, K ̄ =9 0。 样就给直接展示掌控 目标的参数带来 了一些空间 。 因此主变量选取 Kp 主 回路按温度控制整定。温度系统就是 因为其拥有测量变送和 原则就是 : 在 条件可 以准许 的状况 下 , 尽可 能选 取一些可 以直接展 示掌控 目标 的参数 当作是主变量 , 无法操作时还能够选取和控制 目 热传递滞 后 , 因此就 比较慢 。 比例度大概在 2 0到 6 O之间 , 主要还是 一般积分时间较 大。微 标有着一些应对联系的间接参数 当作主变量 ; 因此所选取主变量一 受到温度改变范畴 与控制阀外在尺度影 响。 分 时间一般 都是积分 时 间 1 , 4 。主 回路 预设初 值为 K p = 4 0 , K i = 1 0 , 定是有着很快 的反应度 ; 还要整合到工艺中合理性与可行性 。 此次设 计 中是专门就精馏塔提馏段 温度 做一个 掌控 , 综合各方 K d = 2 0 。 观察输 出曲线 , 发现 曲线不稳定 。 按照P I D控制规律进一步 最后 明确主 回路调节器数值 K . = 3 5 , K 。 = 7 , K  ̄ = 2 8 。仿 面原 因及 以上主变量选择原则 ,以提馏 段温度为主变量最为合 适。 调整各项参数 , 既能直接反映控制 目的的参数 , 又有足够的灵 敏度 , 而且容易实现 。 真 曲线如图 1 。 由仿 真图可 以看 出 , 响应 曲线呈 4 : 1 衰减震 荡 , 其 中过渡 时间 2 . 2主 、 副控制器的选择 凡是 串级 控制系统 的场合 , 对象特性 总有较大 的滞后 , 本次设 要 比十秒小。基本达到预期效果。 计也不例外 , 因此 主控制器采用三作用 P I D控制器是必要 的。 3 串级 控 制 技 术 的 发展 前 景 随着工业 的发展 , 新工艺形成 , 生产 中也不断变得强大起来 , 对 副 回路就是随动 回路 , 是可 以有一些余差 。副 回路不需要积分 作用 。这样可 以将副 回路的开环静态增益调整得较大 , 以提 高克服 商 品品质需求也是在不 断提升 , 简单 掌控体 系已经无法符合工艺需 过程掌控有着很强惯性 、 滞后 时间也 比较久等特征 。 串级控制体 扰动得能力 。但 由于本次设计 的副变量是蒸 汽流量 , 所 以副 回路为 求 。 流量控制系统 , 这种 系统开环增益都 比较小 , 若不 加积分 , 会产生很 系 就 可 以 有效 处 理 这 类 问题 。 一 个具 体 的 串级 控 制 方案 ,由于 选 择 具体 实施方法也不一样 , 要根据具体情况 和条件 大余差 。 又 因为流量副 回路构成得等效环节 比主对象的动态滞后要 的仪器类 型不同 , 小得多 , 副控制器增加 积分作用也不太影 响主 回路性能 。因此这个 而定 。 如 电动或气动 , 电动 I 型, Ⅱ型 , 或Ⅲ型。 通常而言 , 主控制器 中给定值就是 这些工艺设定 , 其就是一个 固定数值 , 所以, 其就是一 设计所获得副控制器是使用 比例和积分这个方式 。 个定值掌控体 系。而副控制体系 中给定值是主控制器给定 , 其户因 2 . 3串级控制 系统 P I D参数整定 P I D最合适 参数通 常会包含 K c 、 r r i 等一 些 比较 常见 的掌控参 为主控制改变而有所改变 , 所以, 副回路 就是一个随动体系。 本文 以串级控制系统为研究对象 , 着重探讨 了系统参数 的取值 数, 精准迅速 选取 P I D 中最合适参数是有关 P I D控制器是不是合理 副对象 的控制器的设 计。采用 串级控制对纯滞后进行控制有 的重要步骤 , 怎样 在具体生产里获得这些最优参数 呢?现行 的方法 和主 , 有 有很 多种 , 就是 因为蒸馏塔会 全天候持续生产这 个特征 , 使用 当场 比较理想的效果 。串级控制通过副控制器对副控制对象的作用 , 效提升 了系统 中反应速度与掌控精确度 。 经验整合法去实现一个 比较好的掌控成果 。 参 考 文 献 现场经验整定法是工作人员在具体运作 中, 就各类掌控规模对 1 1 方康玲 . 过 程控 制系统『 M1 . 武汉 : 武汉理工大学出版社, 2 0 1 2 . 掌控 品质 的影响 的定性探究归纳出一些有效 、 合理并获得普遍运用 『 2 ] 邵惠鹤 . 工业过程 高级控制【 M】 . 上海 : 上海交通 大学出版社, 1 9 9 7 . 的一个方式 。 在整个过程中 , 我们始终要把 P I D维持在先 比例 , 然后 『 积分 , 最后在进行微分 这个 处理办法 , 在探 究 P V改变 情况时 , 不 断 『 3 1 金 以慧 . 过 程控 制『 M 】 . 北京 : 清 华 大 学 出版 社 , 2 0 0 6 .
完整 可行 的工 业过程 控制 ; 控 制 系统 在生产普通掌控中 , 串级控制系统是提升过程掌控质量十分有 效的一个办法 , 因此 , 得到了广 泛的应用 。 串级控制系统在构造上不 光是要 比常见控制体系增 加了_个 副回路 ,利用 实际操作证 实 , 就 同一个干扰项 , 串级控制体系 中掌控质量是普通掌控体系无法 比及
科 技 论 坛
・ 1 2 3 ・
关于串级控制系统的设 计
肖 湘 ( 黑龙 江省科 学院 大庆分 院 , 黑龙 江 大庆 1 6 3 0 0 0 ) 摘 要: 本设计是在普通 P I D控制 系统基础上设计一种广泛应用于4 g _ r - 、 冶金、 机械、 t r a c k 热工和轻工等工业过程控制 系统 中的先进控制 系统。通过对被控对象的分析, 应用所学过的相关工业过程控制理论, 结合 串级控制理念 , 经过计算, 整定, 仿真试验等一系列工作 , 设计 了一套