概率论与数理统计习题及答案----第6章习题详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题六
1.设总体X ~N (60,152
),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.
【解】μ=60,σ2=152
,n =100
~(0,1)/X Z N n
σ-=
即 60
~(0,1)15/10
X Z N -=
(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<
2[1(2)]2(10.9772)0.0456.=-Φ=-=
2.从正态总体N (,52
)中抽取容量为n 的样本,若要求其样本均值位于区间(,)内的概率不小于,则样本容量n 至少取多大 【解】
~(0,1)5/X Z N n
-=
2.2 4.2 6.2 4.2
(2.2 6.2)(
)55
P X P n Z n --<<=<<
2(0.4)10.95,n =Φ-=
则Φn =,故n >,
即n >,所以n 至少应取25
3.设某厂生产的灯泡的使用寿命X ~N (1000,σ2
)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2
=1002
,试求P (X >1062). 【解】μ=1000,n =9,S 2
=1002
1000
~(8)100/3/X X t t S n
-=
=
10621000
(1062)()( 1.86)0.05100/3
P X P t P t ->=>
=>=
4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)/X Z N n
σ=,由P (|X -μ|>4)=得
P |Z |>4(σ/n )=,
故210.02σ⎡⎤⎛-Φ=⎢⎥ ⎢⎥⎝⎭⎣⎦
,
即0.99.Φ=⎝⎭
查表得
2.33,=
所以
5.43.σ=
= 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随
机样本,S 2为其样本方差,且P (S 2
>a )=,求a 之值.
【解】22
22299~(9),()0.1.1616S a P S a P χχχ⎛
⎫=>=>= ⎪⎝⎭
查表得
914.684,16
a
= 所以 14.68416
26.105.9
a ⨯==
6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量
Y =
∑∑==-n
i i
i i X
X n 6
25
1
2)15(,n >5
服从何种分布 【解】25
2
2
2
2
221
1
~(5),~(5)i n
i
i i i X
X X n χχχ===
=-∑∑
且12
χ与22χ相互独立. 所以
2122/5~(5,5)/5
X Y F n X n =--
7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于的概率.
【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则
X ~N (20,310), Y ~N (20,
3
15
),且X 与Y 相互独立. 则33~0,
(0,0.5),1015X Y N N ⎛⎫
-+= ⎪⎝⎭
那么~(0,1),X Y
Z N = 所以
(||0.3)||2[1(0.424)]P X Y P Z Φ⎛
->=>=- ⎝
2(10.6628)0.6744.=-=
8.设总体X ~N (0,σ2
),X 1,…,X 10,…,X 15为总体的一个样本.则
Y =()
2
15
2122112
10
22212X X X X X X ++++++ 服从 分布,参数为 . 【解】
~(0,1),i
X N σ
i =1,2, (15)
那么122
2
10
15
2222
111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
∑∑
且12χ与22
χ相互独立, 所以
22
2110122
211152/10~(10,5)2()/5
X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).
9.设总体X ~N (μ1,σ2
),总体Y ~N (μ2,σ2
),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分
别来自总体X 和Y 的简单随机样本,则
⎥⎥⎥⎥
⎦
⎤
⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121
22
1
n n Y Y X X E n j j n i i = . 【解】令 122
221
211
1211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则
1
2
2
2
22
11
221
1
()(1),()(1),n n i
j i j X
X n S y y n S ==-=--=-∑∑
又2
2
22
221122
1
12
22
2
(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=
-
那么