非线性有限元解法
非线性结构有限元分析

在程序中,对增量方程求解的平衡迭代采用修正 的牛顿迭代法或BFGS法。 1. 修正的牛顿迭代法。它与完全的牛顿法的不同在 于迭代过程中系数矩阵保持不变,因此不需要重新形 成和分解刚度阵,从而大大减少了计算量。但是这样 又带来了收敛速度慢和发散问题,对此程序中加入了 加速收敛和发散处理的措施。这些措施并不明显地增 加求解的时间,但却会对修正的牛顿迭代法的性能有 所改进。 2. BFGS法。又称矩阵修正迭代,是拟牛顿法的一 种。它实际上是完全的牛顿法与修正的牛顿法之间的 一种折中方法。因为它在迭代过程中,并不重新形成
0 t t t k xi N k0 xik, xi N kt xik, xi N kt t x( i 10-28) k 1 k 1 k 1 n n n
0 k t k t t k 其中: xi , xi , xi 为节点k,i方向上在0,t, t+△t时刻的
返回
取位移插值函数为: n
t
写成矩阵形式:
t i
ui N u
k 1
t k k i
;
ui N k uik
k 1
n
(10-26) (10-27)
u [N ] u
t k i
;
ui [ N ]uik
其中:Nk为插值函数,[N]为形函数矩阵; t k ui ,uik 为k点i方向上t时刻的位移和位移增量; n为单元节点数。 取坐标变换为:
v
v s
{R} [ N ]T qv dv [ N ]T qs ds {R0}
{u}
外载荷阵 (10-6) 为节点位移对时间的二 次导数;
为节点位移对时间的一 次导数。
{u}
非线性有限元法综述

非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
如何利用非线性有限元法进行力学分析

如何利用非线性有限元法进行力学分析非线性有限元法是一种用于数值分析问题的计算方法,其主要应用于力学分析领域。
这种方法在于其对于复杂结构的建模能力和高精度数值计算能力而备受推崇。
在本文中,将介绍如何对力学问题进行分析,以及如何应用非线性有限元法对力学分析进行模拟。
1. 引言力学分析整体上分为两种类型:静力学分析和动力学分析。
静力学分析研究对于物体的力和静止条件进行研究,其中力一般会造成物体的运动。
而动力学分析则研究运动物体的变化,特别是再一定条件下物体的振动问题等。
因为力学分析问题具有很高的复杂性,很多时候需要使用非线性有限元法来得到更准确的结果。
下面我们将详细介绍使用非线性有限元法进行力学分析的方法和流程。
2. 有限元法简介有限元法是一种现代数值计算方法,它将大工程结构分割为小的有限元。
在每个有限元内,结构的物理性质可以被认为是常量。
(具体内容可以自己百度)3. 如何利用非线性有限元法进行力学分析使用非线性有限元法进行力学分析的核心是将宏观问题转变为微观问题来进行模拟计算。
其中需要注意下面几点:3.1 确定力学分析的类型根据要进行分析的结构本身的性质和应用场景,可能涉及到静力学分析或者动力学分析。
其中静力学分析的计算主要涉及到结构在平衡状态下的情况,而动力学分析主要涉及到结构在某种条件下的运动和振动情况。
因此,在进行力学分析之前需要确定其类型,以便进行后续的计算。
3.2 建立结构模型根据具体情况,需要对结构进行建模。
建模可以通过一定的工具软件实现,或者手工建立结构模型。
模型的建立需要考虑到其复杂性和具体的应用场景。
构建好结构模型之后,需要对其进行精细化剖分得到单元网格,并进行编号。
3.3 确定边界条件在进行力学分析时,还需要考虑结构的边界条件。
边界条件可以通过指定某些点的坐标或者某些角度的变化来确定。
因此,在进行计算时需要根据具体情况设定边界条件,以便进行后续的计算。
3.4 进行数值模拟计算运用有限元法的基本原理,将每个单元的机械性质进行计算,根据力学分析的情况,可以得到结构节点的位移、应变和应力等参数。
两节点曲线索单元精细分析的非线性有限元法

图1 Fig.1
索单元的坐标系
Reference frame of cable element
根据抛物线假定,取索的单元位移模式如下: u = Φ 1u1 + Φ 2 u 2 (1) v = Φ1v1 + Φ 2 v 2 w = Φ 1w1 + Φ 2 w 2 − ∆ f 其中
Φ1 = 1 − x / L, Φ2 = x / L
{u}e = {u1 v1 w1 u2 v2 w2 }T
(10)
为节点位移列向量; 0 0 Φ2 0 0 Φ1 [N] = 0 Φ1 0 0 Φ2 0 −Φ 3 0 Φ1 Φ 3 0 Φ 2 为形函数。 其中,Φ1 和 Φ 2 同前,Φ 3 = 6Φ 1Φ 2 f e / L 。 其中
要: 从 UL 列式的虚功增量方程出发,引入索的基本假定,推导出了两节点曲线索单元切线刚度矩阵
的显式;同时根据索的特性还导出了精确计算索单元索端力的表达式,从而建立起了一套完整的对拉索进 行精细分析的非线性有限元法。应用本文方法,可进行大跨度悬索桥、斜拉桥以及张拉结构等的非线性有 限元分析计算。算例结果表明,本文方法是精确有效的。 关键词: 索支承桥;张拉结构;非线性有限元;两节点曲线索单元 中图分类号: O242.21 文献标识码: A
2
基本假定和位移模式
2.1 基本假定 1. 索在弹性阶段工作; 2. 大位移小应变假定; 3. 索是理想柔性的, 只能承受拉力而不能受压 和抗弯; 4. 考虑索的自重影响, 假设索的几何形状为二 次抛物线。 2.2 位移模式 如图 1 所示,A 、B 为索单元的两节点,OXYZ 为结构整体坐标系, oxyz 为索单元的局部坐标系, 其中, x 轴为索的弦长方向, xz 为索平面, xyz 构 成右手直角坐标系, u 、 v 、 w 分别为索截面沿 x 、 y 、 z 方向的位移, u1 、 v1 、 w1 和 u 2 、 v 2 、 w2 为 相应的节点位移。
非线性有限元之非线性求解方法

非线性有限元之非线性求解方法平衡回顾✧静态平衡是内力I和外载P力量平衡;✧在非线性问题中,模型的内力I可以是以下量的非线性函数;✧在非线性问题中,模型的外力P也可以是某些量的非线性函数,如位移u和时间t。
非线性求解方法1.已知一个分析,知道结构总载荷和初始刚度,目的是找到最后的位移。
线性分析中,一次计算就能求解出最终位移;非线性问题中不可能,因为结构刚度随着结构变形而改变。
2.求解这类非线性问题需要的是一种增量\迭代技术,获得的解是非线性问题准确的近似。
这些方程通常没有精确解。
3.Abaqus使用迭代求解该方程:使用牛顿拉普森方法求解近似解,使误差最小。
4.Abaqus用法:1)载荷历史被拆解为一系列的分析步;每个分析步拆解为一系列增量步;用户为初始时间增量猜测一个值;Abaqus使用自动增量算法确定其他的增量步。
在每个增量步结束时,Abaqus根据载荷与时间关系计算当前负载大小2)使用牛顿拉普森程序迭代求解每个增量结束时的解;根据收敛容差判断牛顿拉普森程序的收敛;如果迭代不收敛,减少增量步的大小;然后使用小增量步重新进行计算。
5.分析步、增量步、迭代步1)分析步仿真载荷历程含有一个或多个分析步。
2)增量步是分析步的一部分;在静态问题中,总载荷被分成很小的增量步。
以便可以沿着非线性路径求解。
3)迭代步迭代步是增量步中寻找平衡解得一次计算尝试。
5.牛顿拉普森方法Abaqus/Standard 基于牛顿拉普森方法的增量迭代求解技术,该方法是无条件稳定(任何大小的增量步都可以)。
增量步大小影响动态分析精度,每个增量步通常要求多次迭代才能满足收敛要求,每个分析步通常有多个增量步,牛顿拉普森定义了一个残差为0位移曲线。
6.牛顿拉普森方法基础。
平衡是u的非线性方程,牛顿拉普森迭代求解在Cu 处的线性方程,Cu是位移u的修正量。
7.残差定义为了得到线性方程组,重写一下平衡方程,R(u)是u的残差。
这个残差表示的是位移u处不平衡力。
非线性有限元解法

(9)
(10 )
•在增量方法中通常引入载荷因子λ,用 R R表示载荷, 于是非线性有限
元方程可写成: ( u, ) P( u ) R 0
(1)
用载荷因子λ系列: 0 0 1 2 M 1
(2)
相应于不同的载荷。
若相应于载荷因子 n 的解已经求得,记为 u un ,则 ( un ,n ) P( un ) n R 0
KT n
KT ( un
)
un
(8)
un1 un un
其收敛判据与直接迭代法的收敛判据雷同。
非线性有限元方程组的解法(增量法)
•求解非线性方程组的另一类方法是增量方法。使用增量方法的一个优点是 可以得到整个载荷变化过程的一些中间的数值结果。当问题的性质与加载的 历史有关时,例如弹塑性问题,则必须采用增量方法。
u1 ( K1 )1 R
据此容易写出直接迭代法的迭代公式:
Kn K( un )
un1 ( K n )|1 R
(2)
按照这种迭代公式可以得到一个解数列 { un } ,当这个数列收敛时停止计
算,其数列收敛值就是方程(1)的解。
非线性有限元方程组的解法(直接迭代法)
关于数列收敛的判据,可以采用各种各样的范数定义和收敛判据。若设第 n
( un ) K( un )un R 0
(7)
该值可作为对偏离平衡的一种度量(称为失衡力),收敛判据可相应地取为:
( un ) R
(8)
(失衡力收敛判据)
非线性有限元方程组的解法(牛顿法)
把非线性有限元方程记为: ( u ) P( u ) R 0 (1)
有限元求解非线性问题

• 平时遇到的一些接触问题,如齿轮传动、冲压成 型、轧制成型、橡胶减振器、紧配合装配等,当 一个结构与另一个结构或外部边界相接触时通常 要考虑非线性边界条件。 • 实际的非线性可能同时出现上述两种或三种非线 性问题。
由于从理论上还丌能提供能普遍接受的据有时非线性材料特性可用数学模型迚行模拟尽管这些模型总有他们的局限性
有限元求解非线性问题
元计算科技发展有限公司
1)材料非线性问题
• 材料的应力和应变是非线性的,但应力与应变却 很微小,此时应变与位移呈线性关系,这类问题 属于材料的非线性问题。由于从理论上还不能提 供能普遍接受的本构关系,所以,一般材料的应 力与应变之间的非线性关系要基于试验数据,有 时非线性材料特性可用数学模型进行模拟,尽管 这些模型总有他们的局限性。在工程实际中较为 重要的材料非线性问题有:非线性弹性(包括分 段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题,几何非线性问题是由于 位移之间存在非线性关系引起的
• 当物体的位移较大时,应变与位移的关系是非线 性关系。研究这类问题一般都是假定材料的应力 和应变呈线性关系。它包括大位移大应变及大位 移小应变问题。如结构的弹性屈曲问题属于大位 移小应变问题,橡胶部件形成过程为大应变问题 。
3)非线性边界问题
Thanks!
非线性结构有限元分析课件

非线性结构有限元分析的步骤与流程
• 设定边界条件和载荷,如固定约束、压力 或力矩等。
非线性结构有限元分析的步骤与流程
01 步骤三:求解
02
选择合适的求解器,如Newton-Raphson迭代法或 直接积分法。
03 进行迭代计算,求解非线性结构的内力和变形。
非线性结构有限元分析的步骤与流程
01
步骤四:后处理
非线性有限元分析的基本概念
总结词
非线性有限元分析是一种数值分析方法,通过将复杂的结构或系统离散化为有限个小的单元,并建立 每个单元的数学模型,来模拟和分析结构的非线性行为。
详细描述
非线性有限元分析是一种基于离散化的数值分析方法,通过将复杂的结构或系统划分为有限个小的单 元(或称为有限元),并建立每个单元的数学模型,来模拟和分析结构的非线性行为。这种方法能够 考虑各种复杂的边界条件和材料特性,提供更精确的数值结果。
非线性有限元分析的常用方法
总结词
非线性有限元分析的常用方法包括迭代法、增量法、 降维法等。这些方法可以根据不同的非线性问题选择 使用,以达到更好的分析效果。
详细描述
在非线性有限元分析中,常用的方法包括迭代法、增量 法、降维法等。迭代法是通过不断迭代更新有限元的位 移和应力,逐步逼近真实解的方法;增量法是将总载荷 分成若干个小的增量,对每个增量进行迭代计算,最终 得到结构的总响应;降维法则是通过引入一些简化的假 设或模型,将高维的非线性问题降维处理,以简化计算 和提高计算效率。这些方法各有优缺点,应根据具体的 非线性问题选择使用。
03
02
弹性后效
材料在卸载后发生的变形延迟现象。
材料强化
材料在受力过程中发生的强度增加 现象。
04
第14章-几何非线性有限元分析1

d tx2 '' d tx2 '" d tx2
d tx3 '' d tx3 '" d tx3
eijk d 0xid 0xjd 0xk
eijk d txid txjd txk
3.1 物体运动的物质描述-体积及面积变换公式
d tx1
t '' dV d tx1 "' d tx1
t t 0 i j 0
t t t ijk 0 j m
d xi x , d x j
0 0 t i j
0
t
d xn ni dA e ( x , )( x , )d xm
t 0 k n 0
0 0 0 0
d 0xn (0t xi ,l )t ni t dA eijk (0t xi ,l )(0t x j ,m )(0t xk ,n )d 0xm
初始位形两邻点的距离为
t d 0xi 0xi( tx j d tx j )0xi( tx j )0 x , d t i j xj
因此可以将变形梯度视作一种线性变换,它将参考位形 t 0 中的线元 变换为现时位形中的线元 d xi ,这变换中既 d xi 有伸缩,也有转动。变形梯度在大变形分析中很重要。
t xi t t ui t x 0 i, j ij 0 ui , j ij 0 0 xj xj
t 0 i, j
0xi t t ui t x 0 i, j ij ij t ui , j t t xj xj
t t i, j
( ds ) d xid xi
0 2 0 0
3.4 Green和Almansi应变张量
第13讲 非线性有限元问题的分类与一般解法-11_35620112

10.1 引言
c)应力-应变关系为{σ}=[D]{ε} ,式中[D]为常数矩阵。 ⇒ 基于线弹性假设。 d)边界约束条件在加载过程中保持不变。 如果在加载中位移边界条件发生改变,(如某自由的自 由度在一定载荷水平下成为被约束自由度),则系统成为非 线性。这种情况在接触分析中出现。 * 如果不满足上述①、②、③假设,结构系统的力学行为将 出现非线性。
{ΔPi } ( i = 1, 2,", m ) (增量可不等)
{P} = ∑ {ΔPi }
i =1 m
P
P
ΔPi
0
δ
δLeabharlann ②逐步施加载荷增量,逐步求解。每一步计算中,将 刚度矩阵[K(δ)]处理为常数(线性化),在不同载荷 步中,刚度矩阵具有不同值。即 由
{ΔPi } 线性化 JJJJJJJ J M {Δδ i } → {Δε i } → {Δσ i }
大位移(大转 动),大应变
接触非线性
与其他组合出现
汽车工程系
结构分析与CAE研究室
10.2 非线性问题的分类
用以下例子说明各类非线性.
Δ
P/2
σ ,ε
P/2 L 求 P∼Δ 之关系 A
汽车工程系
结构分析与CAE研究室
10.2 非线性问题的分类
① 线弹性(小位移) 应力: σ = P A 位移: 应变: ε
有限元法应用
(第十三讲)
清华大学汽车工程系 结构分析与CAE研究室
第10章 非线性有限元问题的分类与 一般解法
10.1 引言 10.2 非线性问题的分类 10.3 非线性问题的一般解法
10.1 引言
在线性有限元分析中作了以下假设: ①小位移(小变形); ②线弹性; ③在加载过程中边界条件不变化。 由此,得静力学有限元方程:[ K ]{δ } = {P} 其中[K]为常数矩阵. 该方程为线性方程 即,
非线性偏微分方程数值解法

非线性偏微分方程数值解法非线性偏微分方程是研究自然界中许多现象的重要数学模型,其解析解往往难以获得。
因此,数值解法成为解决非线性偏微分方程问题的一种有效手段。
本文将介绍几种常用的非线性偏微分方程的数值解法。
一、有限差分法有限差分法是求解偏微分方程的一种常见数值方法。
其核心思想是将求解区域离散化为有限个网格点,并利用中心差分公式来近似替代微分运算。
对于非线性偏微分方程,可以采用迭代的方法进行求解。
具体步骤如下:1. 将求解区域离散化为有限个网格点,确定网格的步长。
2. 利用中心差分公式将偏微分方程离散化为差分方程。
3. 将差分方程转化为非线性代数方程组,采用迭代方法求解。
二、有限元法有限元法是求解偏微分方程的一种重要数值方法。
其核心思想是将求解区域划分为无重叠的小单元,通过在每个单元内构造适当的试探函数和加权函数,将问题转化为求解代数方程组。
对于非线性偏微分方程,可以采用Newton-Raphson迭代方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定单元的形状和大小。
2. 构造试探函数和加权函数,并利用加权残差法将偏微分方程离散化为代数方程组。
3. 对于非线性方程组,采用Newton-Raphson迭代方法求解。
三、有限体积法有限体积法是求解偏微分方程的一种常用数值方法。
其核心思想是将求解区域划分为有限个体积单元,通过对单元内偏微分方程进行积分,将方程转化为守恒形式。
对于非线性偏微分方程,可以采用显式或隐式方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定体积单元的大小和形状。
2. 对体积单元内的偏微分方程进行积分,建立守恒形式的方程。
3. 将方程离散化为代数方程组,采用显式或隐式方法进行时间步进求解。
四、谱方法谱方法是求解偏微分方程的一种高效数值方法。
其核心思想是采用特定的基函数展开待求解的函数,通过选取合适的基函数,可以有效地提高求解效率。
对于非线性偏微分方程,可以采用谱方法进行求解。
非线性有限元

(三)混合法 如对同一非线性方程组混合使用增量
法和迭代法,则称为混合法或逐步迭代法。 一般在总体上采用Euler增量法,而在
同一级荷载增量内,采用迭代法。
Ki-1
刚度的取值可根据给定的应力-应变曲 线导出。若每级计算都采用上一级增量计算 终了时的刚度值,则称为始点刚度法。
Ki-1
始点刚度法类似于解微分方程初值问题 的欧拉(Euler)折线法,计算方法简单但计算 精度较低,容易“漂移”。
若采用中点刚度法则可以提高精度。该 法类似于解常微分方程初值问题的龙格-库塔 (Runge-Kutta)法,包括中点切线刚度法 和中点平均刚度法。
(1) 直接迭代法 对非线性方程组
设其初始的近似解为 ,由此确定近似的
矩阵
可得出改进的近似解
重复这一过程,以第i次近似解求出第i+1 次近似解的迭代公式为直接迭代法
对非线性方程组
直到 变得充分小,即近似解收敛时,终止迭代。
在迭代过程中,得到的近似解一般不会满足 作为对平衡偏离的一种度量,称为失衡力。
q-Newton—Raphson迭代法的计算过程
(2)初应力法 如果在弹性材料内确实存在初应力 ,则材料的应力应变关系为
由上式及虚功原理可导出单元的结点力为
集合单元得出以下的有限元方程 式中, 为由初应力 引起的等效结点荷载
初应力法就是将初应力看作是变化的, 以此来反映应力和应变之间的非线性关系。 通过不断地调整初应力,使线弹性解逼近非 线性解。
接触非线性 由于接触体的变形和接触边界的摩擦作用,
使得部分边界条件随加载过程而变化,且不 可恢复。这种由边界条件的可变性和不可逆 性产生的非线性问题,称为接触非线性。
材科非线性有限元法 材料非线性是由本构关系的非线性引
非线性解法

解非线性方程是方法主要有:增量法、迭代法、增量迭代混合法。
几何非线性有限元方法:1、完全的拉格朗日列式法(T.L.Formulation)在整个分析过程中,以t=0时的位形作为参考,且参考位形保持不变,这种列式称为完全的拉格朗日列式(T.L法)对于任意应力-应变关系与几何运动方程,杆系单元的平衡方程可由虚功原理推导得到:式(1)式中各量分别为:应变矩阵,是单元应变与节点位移的关系矩阵;单元的应力向量;杆端位移向量;V是单元体积分域,对T.L列式,是变形前的单元体积域;单元杆端力向量;直接按上式建立单元刚度方程并建立结构有限元列式,称为全量列式法。
在几何非线性分析中,按全量列式法得到的单元刚度矩阵和结构刚度矩阵往往是非对称的,对求解不利,因此多采用增量列式法。
将式(1)写成微分形式变形后得:式(2)这就是增量形式T.L列式的单元平衡方程。
式中为:单元弹性刚度矩阵、单元初位移刚度矩阵或单元大位移刚度矩阵、初应力刚度矩阵、三个刚度矩阵之和,称为单元切线刚度矩阵。
2、修正的拉格朗日列式法(U.L.Formulation)在建立t+∆t时刻物体平衡方程时,如果我们选择的参照位形不是未变形状态t=0时的位形,而是最后一个已知平衡状态,即本增量步起始的t时刻位形为参照位形,这种列式法称为修正的拉格朗日列式法(U.L列式)。
增量形式的U.L列式结构平衡方程可写成:式(3)3、T.L列式与U.L列式的比较T.L列式与U.L列式是不同学派用不同的简化方程及理论导出的不同方法,但是它们在相同的荷载增量步内其线性化的切线刚度矩阵应该相同,这一点已得到多个实际例题的证明。
T.L列式与U.L列式的不同点比较内容| T.L列式| U.L列式| 注意点计算单刚的积分域| 在初始构形的体积域内进行| 在变形后的t时刻体积域内进行| U.L列式必须保留节点坐标值精度| 保留了刚度阵中所有线性与非线性项| 忽略了高阶非线性| U.L列式的荷载增量不能过大单刚组集成总刚| 用初始时刻各单元结构总体坐标系中的方向余弦形成转换阵,计算过程不变| 用变形后t时刻单元在结构总体坐标中的方向余弦形成转换阵,计算过程中不断改变| U.L列式中组集荷载向量也必须注意方向余弦的改变本构关系的处理| 在大应变时,非线性本构关系不易引入| 比较容易引入大应变非线性本构关系| U.L方法更适用于混凝土徐变分析从理论上讲,这这两种方法都可以用于各种几何非线性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不论材料非线性问题还是几何非线性问题,其有限元 方程都是非线性的:
( u ) P( u ) R 0
R---外部载荷的等效节点力矢量; P---内力的等效节点力矢量。 在全量方法的位移有限元解法中,u是结构的位移矢量, 在增量方法的位移有限元解法中, u是结构的位移增 量矢量。
un un1 u n
范数的定义可取 或
(3) (4)
un max{ un }
un [{ un }t { un } ] 1/ 2
于是收敛判据可取为: un un (位移收敛判据) 在这里注意到,对于非线性方程(1),将 un 代入一般不是严格满足的,即
(5) (6)
现在来求相应于载荷因子为1 n 时的解。 设 un1 un u 为其解, n 于是有 ( un u,n ) P( un u ) ( n )R 0 (4)
将 ( un u,n ) 在 un , n 处泰勒展开得
非线性有限元方程组的解法
• 直接迭代法 • 牛顿法 • 增量法
非线性有限元方程组的解法(直接迭代法)
固体力学中非线性有限元方程通常可以写成: 其中
Ku R 0 K K( u )
u1 ( K1 )1 R
(1 )
设初始近似解为 u u0 ,那么可得一个近似矩阵 K1 K ( u0 ) 于是由(1)可得到一个改进的近似解:
( K T ( un , n )) ( n 1 R P ( un ))
1
(9)
(10 )
( un ) K ( un )un R 0
(失衡力收敛判据)
(7)
该值可作为对偏离平衡的一种度量(称为失衡力),收敛判据可相应地取为: ( un ) R
(8 )
非线性有限元方程组的解法(牛顿法)
把非线性有限元方程记为:
( u ) P( u ) R 0
(1 )
据此容易写出直接迭代法的迭代公式:
K n K ( un )
un1 ( K n ) | R
1
(2)
按照这种迭代公式可以得到一个解数列 { un } ,当这个数列收敛时停止计 算,其数列收敛值就是方程(1)的解。
非线性有限元方程组的解法(直接迭代法)
关于数列收敛的判据,可以采用各种各样的范数定义和收敛判据。若设第 n 次和第 n+1 的解分别为 u un 、 un 1 ,则“偏差”为: u
现在设
u un
是方程(1)的第 n 次近似解。一般地,这时
( un ) P( un ) R 0
该值可作为对偏离平衡的一种度量(称为失衡力)。设修正值为 此时新的近似解为:
(2)
un
(3)
,
u un1 u n un
将(3)代入(1)中并在 u un 附近将 ( un un ) 泰勒(Taylor)展开: (4) ( un un ) ( un ) un un (5) n 若记 K K (u )
T T n
可得 n 1 n 1 从而可解出修正量 un 为 un ( K T ) ( un ) ( K T ) ( R P( un ))
0 ( un un ) ( un ) K T un
n
un
(6)
(7)
非线性有限元方程组的解法(牛顿法)
这样,牛顿法的迭代公式:
( un ,n ) P( un ) n R 0
( un u ,n ) ( un ,n )
un un n
(5)
非线性有限元方程组的解法(增量法)
若记作:
K T ( un ,n )
考虑到
R ,于是方程(5)可近似为 n K T ( un ,n )u R 0
un ( K T n )1 ( un ) ( K T n )1( R P( un ))
K T K T ( un )
n
un
(8)
un1 u n un
其收敛判据与直接迭代法的收敛判据雷同。
非线性有限元方程组的解法(增量法)
•求解非线性方程组的另一类方法是增量方法。使用增量方法的一个优点是 可以得到整个载荷变化过程的一些中间的数值结果。当问题的性质与加载的 历史有关时,例如弹塑性问题,则必须采用增量方法。 •在增量方法中通常引入载荷因子λ,用 R R表示载荷, 于是非线性有限 元方程可写成: ( u, ) P( u ) R 0 (1 ) (2) 用载荷因子λ系列: 0 0 1 2 M 1 相应于不同的载荷。 若相应于载荷因子 n 的解已经求得,记为 u un ,则 (3)
un
(6)
(7) (8)
或
u ( K T ( un ,n ))1 R
若考虑到相应于载荷因子 n 的解 u un 并不是精确解,亦即:
( un ,n ) P( un ) n R 0
于是方程的解为
u ( K T ( un , n ))1( R ( un , n ))
( u ) K ( u )u R 0
非线性有限元方程组的解法
• 对于线弹性小变形问题,其有限元方程组是线性的
Ku R 0
• 其解答利用直接方法很容易得到 u K 1R • 但是对于非线性有限元方程组则不能利用直接方法 得到其解答。 • 一般地说,不能期望得到非线性方程组的精确界。 • 通常利用各种数值方法,用一系列的线性方程组去 逼近非线性方程组的解。