多元线性回归方程的建立

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归方程的建立

建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。由于残差平方和

(2-2-5)

是的非负二次式,所以它的最小值一定存在。

根据极值原理,当Q取得极值时,应满足

由(2-2-5)式,即满足

(2-2-6)

(2-2-6)式称为正规方程组。它可以化为以下形式

(2-

2-7)

如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。则有

(2-2-8)

式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X 的转置矩阵。

(2-2-7)式右端常数项也可用矩阵D来表示

因此(2-2-7)式可写成

Ab=D (2-2-10)

(2-2-11)

如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为

(2-2-12)也就是多元线性回归方程的回归系数。

为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为

(2-2-13)式中

(2-2-14)将(2-2-13)式代入(2-2-7)式中的其余各方程,得

(2-2-15)其中

(2-2-16)

将方程组(2-2-15)式用矩阵表示,则有

Lb=F (2-2-17)

其中

于是

b=L-1F (2-2-18)

因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。求b时,可用克莱姆法则求解,也可通过高斯变换求解。如果把b直接代入(2-2-18)式,由于要先求出L 的逆矩阵,因而相对复杂一些。

例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。求y对x1,x2,x3的线性回归方程。

表2-2-1 土壤含磷情况观察数据

计算如下:

由(2-2-16)式

代入(2-2-15)式得

(2-2-19)若用克莱姆法则解上述方程组,则其解为

(2-2-20)其中

计算得

b 1=1.7848,b

2

=-0.0834,b

3

=0.1611

回归方程为

应用克莱姆法则求解线性方程组计算量偏大,下面介绍更实用的方法——高斯消去法和消去变换。

多项式回归

标签:c

2009-07-04 14:52 6443人阅读评论(0) 收藏举报在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。虽然在一些特定的情况下我们可以比较容易地做到这一点,但是在许多实际问题上常常会令我们不知所措。根据高等数学知识我们知道,任何曲线可以近似地用多项式表示,所以在这种情况下我们可以用多项式进行逼近,即多项式回归分析。

一、多项式回归方法

假设变量y与x的关系为p次多项式,且在x i处对y的随机误

差(i=1,2,…,n)服从正态分布N(0,),则

x i1=x

i

, x

i2

=x

i

2,…,x

ip

=x

i

p

则上述非线性的多项式模型就转化为多元线性模型,即

这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。其系数矩阵、结构矩阵、常数项矩阵分别为

(2-4-11)

(2-4-12)

(2-4-

13)

回归方程系数的最小二乘估计为

(2-4

-14)

需要说明的是,在多项式回归分析中,检验b j是否显著,实质上就是判断x的j次项x j对y是否有显著影响。

对于多元多项式回归问题,也可以化为多元线性回归问题来解决。例如,对于

(2-4 -15)

令x

i1=Z

i1

, x

i2

=Z

i2

, x

i3

=Z

i1

2, x

i4

=Z

i1

Z

i2

, x

i5

=Z

i2

2

则(2-4-15)式转化为

转化后就可以按照多元线性回归分析的方法解决了。

下面我们通过一个实例来进一步说明多项式回归分析方法。

一、应用举例

例2-4-2 某种合金中的主要成分为元素A和B,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。

表2-4-3 例2-4-2试验数据

首先画出散点图(图2-4-3)。从散点图可以看出,y与x的关系可以用一个二次多项式来描述:

i=1,2,3…,13

现在我们就可以用本篇第二章介绍的方法求出

的最小二乘估计。由表2-4-3给出的数据,求出

由此可列出二元线性方程组

将这个方程组写成矩阵形式,并通过初等变换求b1,b2和系数矩阵L的逆矩阵L-1:

于是

=-13.3854

b

1

=0.16598

b

2

=2.3323+13.385440-0.165981603.5=271.599

b

因此

下面对回归方程作显著性检验:

由(2-2-43)式

相关文档
最新文档