基于51单片机的数字电压表课程设计.
基于51单片机的直流数字电压表设计
基于51单片机的直流数字电压表设计概述:直流数字电压表是一种用于测量直流电压的仪器,它通过将电压信号转换为数字形式,并显示在数码管上,实现对电压的准确测量。
本文将介绍基于51单片机的直流数字电压表的设计原理和实现方法。
一、设计原理:1.1 电压信号采集:直流数字电压表的第一步是采集待测电压信号。
常用的采集方法是使用一个分压电路将待测电压降低到合适的范围,再通过运算放大器将其放大到合适的电平。
51单片机的模拟输入引脚可以接受0-5V的模拟电压信号,因此可以直接将放大后的信号接入单片机进行采集。
1.2 模数转换:采集到的模拟电压信号需要经过模数转换(A/D转换)才能被单片机读取和处理。
51单片机内部集成了一个10位的A/D转换器,可以将输入的模拟电压转换为相应的数字量。
通过设置不同的参考电压和采样精度,可以实现对不同电压范围的准确测量。
1.3 数码管显示:经过模数转换后,得到的数字量需要通过数码管进行显示。
51单片机的IO口可以通过控制段选和位选的方式,将数字量转换为相应的数码管显示。
可以根据需要选择常用的七段数码管或者液晶显示屏进行显示。
二、设计实现:2.1 硬件设计:硬件设计包括电路原理图设计和PCB布局设计两个部分。
电路原理图设计主要包括电压采集电路、运算放大器、A/D转换器和数码管驱动电路等部分。
PCB布局设计需要考虑信号的走线和电源的分布,以保证电压信号的准确采集和显示。
在设计过程中,需要注意地线和信号线的分离,以减少干扰。
2.2 软件设计:软件设计主要包括单片机的程序编写和调试。
首先需要编写采集模拟电压信号和进行A/D转换的程序,将转换后的数字量存储在单片机的内部存储器中。
然后编写数码管驱动程序,将存储的数字量转换为相应的数码管显示。
最后,通过按键或者旋转编码器等方式,可以实现对量程和精度的选择。
三、设计优化:3.1 精度优化:为了提高直流数字电压表的测量精度,可以采用更高精度的A/D转换器,增加参考电压的精度,或者通过校准电路对测量误差进行校正。
最新基于51单片机的数字电压表设计--《单片机原理与应用》课程设计说明书
1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。
而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。
因此AD转换是此次设计的核心元件。
输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。
本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。
通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。
其实也为建立节约成本的意识有些帮助。
本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。
1.3 本次设计要求本次设计的作品要求制作数字电压表的量程为0到10v,由于用到的模数转换芯片是ADC0809,设计系统给的供电电压为+5v,所以能够测量的电压范围为-0.25v到5.25v之间,但是一般测量的直流电压范围都在这之上,所以采用电阻分压网络,设计的电压测量范围是0到25v之间,满足设计要求的最大量程5v的要求。
同时设计的精度为小数点后三位,满足要求的两位小数的精度,在不考虑AD芯片的量化误差的前提下,此次设计的精度能够满足一般测量的要求。
2单片机和AD相关知识2.1 51单片机相关知识51单片机是对目前所有兼容intel 8031指令系统的单片机的统称。
该系列单片机的始祖是intel的8031单片机,后来随着技术的发展,成为目前广泛应用的8为单片机之一。
单片机是在一块芯片内集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等计算机所需要的基本功能部件的大规模集成电路,又称为MCU。
51系列单片机内包含以下几个部件:一个8位CPU;一个片内振荡器及时钟电路;4KB的ROM程序存储器;一个128B的RAM数据存储器;寻址64KB外部数据存储器和64KB外部程序存储空间的控制电路;32条可编程的I/O口线;两个16位定时/计数器;一个可编程全双工串行口;5个中断源、两个优先级嵌套中断结构。
基于51单片机的数字电压表设计
目录摘要 (I)1 绪论 (1)1.1数字电压表介绍 (1)1.2仿真软件介绍 (1)1.3 本次设计要求 (2)2 单片机和AD相关知识 (3)2.1 51单片机相关知识 (3)2.2 AD转换器相关知识 (4)3 数字电压表系统设计 (5)3.1系统设计框图 (5)3.2 单片机电路 (5)3.3 ADC采样电路 (6)3.4显示电路 (6)3.5供电电路和参考电压 (7)3.6 数字电压表系统电路原理图 (7)4 软件设计 (8)4.1 系统总流程图 (8)4.2 程序代码 (8)5 数字电压表电路仿真 (15)5.1 仿真总图 (15)5.2 仿真结果显示 (15)6 系统优缺点分析 (16)7 心得体会 (17)参考文献 (18)1 绪论1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。
而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。
因此AD转换是此次设计的核心元件。
输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。
本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。
通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。
其实也为建立节约成本的意识有些帮助。
本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。
1.2仿真软件介绍Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。
它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:(1)现了单片机仿真和SPICE电路仿真相结合。
基于51单片机的数字电压表课程设计.
信息与电气工程学院电子应用系统CDIO一级项目设计说明书(2011/2012学年第二学期)题目:___ _数字电压表__________专业班级:电子信息0902班学生姓名:张文盛学号:090070213指导教师:贾少锐、李晓东、马永强李丽宏、贾东立、刘会军设计周数:设计成绩:2012年6月28日1、CDIO设计目的本次CDIO设计题目是:利用所学的51单片机,C语言,数字电路等知识,设计一个符合要求的数字电压表。
主控芯片可以是AT89C51,而采集电压的模拟量转换成数字量的芯片可以是ADC0804,也可以是PCF8591。
而显示模块可以是数码管,也可以是液晶LCD1602,从而展示给我们所得的电压值。
2、CDIO设计正文2.1 数字电压表系统设计框图本次数字电压表系统设计框图如图1所示:图1 数字电压表设计框图数字电压表主要由模/数转换电路、单片机控制电路、显示电路等三部分组成。
其中PCF8591等器件组成的转换电路,将输入的模拟量信号进行取样、转换、然后将转换的数字信号送进单片机。
单片机控制电路主要实现对数据进行程序处理;显示电路主要用于将单片机的信号数据转换后显示测量结果。
模拟信号产生模块:输入电源电路(变压器、整流电路、滤波电路、稳压电路组成)和分压电路(9万欧姆和1万欧姆的电阻分压)。
模数转换模块组成部分:PCF8591芯片程序处理的单片机控制模块:AT89C51芯片电压结果显示部分:LCD1602液晶2.2 各模块介绍2.2.1 AT89C51芯片介绍AT89S52 具有以下标准功能:8k 字节Flash,256 字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个 6 向量 2 级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2 种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
基于51单片机的数字电压表的设计
摘要随着电子技术的发展,电子测量技术对测量的精度和功能的要求也越来越高,而数字电压表作为实验室的基本测量设备,它可以很好的满足测量精度和功能的要求。
本设计利用AT89S51单片机技术结合A/D转换(采用ADC0809)构建了一个直流数字电压表。
经过对数字电压表基本原理的分析,本文设计了一个以51单片机为核心的数字电压表系统,给出了直流数字电压表的设计流程,设计了电压测量子系统和电流测量子系统,给出了硬件电路的框图、电气原理图和软件流程图。
系统设置了3个键的键盘,用于设定电压、电流切换的功能键、系统复位键以及清零键。
关键词:数字电压表;AT89S51单片机;A/D转换;ADC0809;AbstractAs electronic science and technology development, electronic measurement technology on the accuracy of measurement and functional requirements are increasingly high, and digital voltmeter measurement equipment as the basic laboratory, it can well meet the measuring precision and function requirements. A dc digital voltmeter is built by using AT89S51 with the A/D convertor (ADC0809)in the paper.This paper first introduces the main method and design voltmeter SCM system advantage; Then introduces the design process of dc digital voltmeter, and hardware system and the design of software system, and gives the hardware circuit design system diagram and software system design flow diagram.Keywords: Digital voltmeter; AT89S51MCS; A/D conversion; ADC0809.目录1 绪论 (1)1.1前言 (1)1.2数字电压表的介绍 (1)1.2.1数字电压表的发展概况 (1)1.2.2数字电压表在各领域中的应用 (2)1.2.3数字电压表的优点 (2)1.3单片机的介绍 (3)1.3.1单片机简介 (3)1.3.2单片机的发展概况 (3)1.3.3单片机的应用 (4)1.3.4单片机的特点 (6)1.4课题背景,国内外研究现状 (6)1.5本文主要研究内容 (8)2 数字电压表的工作原理 (9)2.1数字电压表的基本结构 (9)2.2数字电压表的工作原理 (9)2.2.1模数(A/D)转换与数字显示电路 (10)2.2.2多量程数字电压表分压原理 (10)2.2.3多量程数字电压表分流原理 (11)3 硬件系统各模块具体设计及实现 (14)3.1单片机的选择 (14)3.1.1AT89S51的引脚框图 (15)3.1.2AT89S51的内部结构图 (17)3.2A/D转换器的选择 (18)3.2.1ADC0809的引脚结构 (19)3.2.2ADC0809的内部逻辑结构 (21)3.3显示器的选择 (21)3.4键盘的选择 (23)3.5表笔探针设计 (23)4 系统总体方案研究 (25)4.1总体方案确定 (25)4.2系统框图及阐述 (25)4.3ADC0809与AT89S51的连接 (26)4.4键盘与单片机的连接 (27)4.5多量程数字电压表档位切换原理 (28)4.5.1多量程电压的测量 (28)4.5.2多量程电流的测量 (30)5 系统的软件设计 (31)5.1系统软件设计的总体思想 (31)5.2系统单片机的软件设计 (31)5.2.1键盘的处理 (31)5.2.2显示的处理 (31)5.2.3档位切换的处理 (32)6 系统软件流程图 (33)6.1主程序流程图 (33)6.2A/D转换流程图 (34)7 设计总结 (35)参考文献 (36)致谢 (37)附录 (38)1 绪论1.1前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
基于51单片机-PCF8591数字电压表课程设计
课程名称:微机原理课程设计题目:数字电压表ﻬ摘要单片微型计算机简称单片机,是典型的嵌入式微控制器,常用英文字母的缩写MCU表示单片机,单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
单片机由运算器,控制器,存储器,输入输出设备构成,相当于一个微型的计算机(最小系统),和计算机相比,单片机缺少了外围设备等。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
它最早是被用在工业控制领域。
其中我们用于学习用的最多的是STC89C52单片机,STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。
STC89C52使用经典的MCS-51内核,但也做了很多改进使得芯片具有传统51单片机不具备的功能。
STC89C52具有8k字节Flash,512字节RAM,32位I/O口线,看门狗定时器,内置4KB EE PROM,MAX810复位电路,3个16位定时器/计数器,4个外部中断,一个7向量4级中断结构,全双工串行口。
本设计就是以单片机STC89C52为核心,附以外围电路,实现数字电压表的功能,并运用软件Proteus进行仿真来得到实验结果。
关键词:STC89C52单片机、仿真、中断、数字电压表、数码管显示ﻬ目录一、任务要求ﻩ错误!未定义书签。
1.1 设计任务ﻩ错误!未定义书签。
1.2设计要求ﻩ错误!未定义书签。
1.3发挥部分 ...................................................................................... 错误!未定义书签。
1.4 创新部分 ........................................................................................... 错误!未定义书签。
基于51单片机的数字电压表的设计
目录目录1 课程设计 (1)1.1课程设计目的1.1.1熟悉51单片机功能 (1)1.1.2提高编程,排错,仪器设备知识 (1)1.1.3熟悉元件工作原理 (1)1.2 设计要求 (1)1.2.1显示 (1)1.2.2编程 (1)1.2.3仿真 (1)2 主要元件介绍 (1)2.1模数转换芯片ADC0808 (1)2.1.1简介 (2)2.1.2引脚功能 (2)2.2控制芯片AT89C51 (3)2.2.1概述 (3)2.2.2管脚说明 (4)2.3LED数码管 (6)3 电压表原理系统硬件电路设计与实现 (6)3.1系统设计原理说明 (6)3.2系统功能阐述 (7)4 课程设计心得 (7)参考文献: (8)附录 (9)附录1整体程序 (9)附录2系统电路图 (12)1 课程设计1.1 课程设计目的1.1.1 熟悉51单片机功能熟悉51单片机的功能,积累一定的单片机开发经验。
1.1.2 提高编程,排错,仪器设备知识锻炼和提高在软件编程、排错调试、相关仪器设备的使用技能等方面的知识。
1.1.3 熟悉元件工作原理熟悉数字电压表和A/D转换器,液晶显示屏的工作原理。
1.1.4加深知识进一步加深对电子电路、电子元器件、印制电路板等方面知识的认识,为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。
1.2 设计要求1.2.1显示可以测量0-5V范围内的输入电压值1.2.2将采集到的电压值显示在4位数码管上。
1.2.2编程采用汇编或C语言编程;1.2.3仿真采用Proteus、KeilC等软件实现系统的仿真调试2 主要元件介绍2.1 模数转换芯片ADC0808图2.1 ADC08082.1.1 简介ADC0808是采样分辨率为8位的、以逐次逼近原理进行模/数转换的器件。
其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。
ADC0808是ADC0809的简化版本,功能基本相同。
基于51单片机电压表设计
课程设计名称:基于51单片机电压表设计目次1引言 (2)1.1背景 (2)1.2课程设计的目的及意义 (2)1.3课程设计课题 (2)2总体方案设计 (3)2.1课程设计器材 (3)2.2实验原理图 (4)2.3系统框图 (4)3硬件设计 (5)3.1 AT89S51单片机系统 (5)3.2模数转换模块 (8)3.2.1主要特性 (9)3.2.2内部结构 (9)3.2.3外部特性 (9)3.3 三路可调电压模块 (10)3.4各模块直接引脚连接方法 (11)4软件设计 (11)4.1根据系统硬件图编写系统调试程序 (11)4.2软件仿真 (13)5总结 (14)参考文献 (14)附录 (15)1引言1.1背景近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。
并且应该学会利用单片机AT89S51设计一个数字电压表,能够精确测量0-5V之间的直流电压值,并用四位数码显示电压值。
“单片机原理及应用课程设计”是电类专业的学科基础课,它是继“汇编语言程序设计”、“微机原理与接口技术”等课程之后开出的实践环节课程。
1.2课程设计的目的及意义目的:通过本次课程设计,巩固和加深“单片机原理与应用”中的理论知识,了解和应用仿真软件,结合软硬件,基本掌握单片机的应用的一般设计方法,提高电子电路的设计和实验能力,并且提高自身查找和运用资料能力意义:通过本次课程设计,使得理论知识系统化,从中或得一些实战工作经验,提高个人与团体指挥的作用。
1.3课程设计课题:利用单片机AT89S51设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。
2总体方案设计2.1课程设计器材:Design: C:\Users\lwzwj\Desktop\单片机课程设计\新建文件夹\数字电压表\VOLTMETER.DSNDoc. no.: <NONE>Revision: <NONE>Author: <NONE>Created: 09/06/15Modified: 09/06/18QTY PART-REFS VALUE--- --------- -----Resistors---------1 R1 10kCapacitors----------2 C1,C2 30uF1 C3 10uFIntegrated Circuits-------------------1 U1 AT89C511 U2 ADC08081 U3 74LS74Miscellaneous-------------1 RV1 1k1 X1 CRYSTAL2.2实验原理图(见下页)2.3系统框图软件产生CLK 信号电压变化 LED84S四位数码显示AT89S51单片机系统 三路可模数模拟信号3硬件设计(各模块详细介绍)3.1 AT89S51单片机系统AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准 MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
基于51单片机的数字电压表设计
内容摘要:进入二十一世纪以来,在现代化检测技术运用过程中,往往需要通过具有高精细度以及科学化的数字电压表完成相应的现场检测工作。
通过将世纪检测得到的数据通过传输功能送入计算机计算中心,从而完成相应的存储、计算以及控制、实时显示等各项功能。
而在本文中,笔者所的数值电压表为51式单片机(AT89c51),而A/D转换装置采用的是TLC2543型号硬件,从而实现整个数值电压表软件以及硬件电路的设计。
在本系统中,具有电路简单,元件使用数量少、设计成本低等优点,并且整个调节过程完全自动化。
除此以外,本数字电压表可以进行八路的转化量(A/D)测量以及测量结果远程传送等多项功能。
本设计数值电压表能够对0V~5V电压的8路电压值进行准确的测量,同时在外部数码管上进行单路或者轮流模式的显示。
关键词:模拟信号数字电压表单片机 A/D转换The design of digital voltage meter based on 51 single chipmicrocomputerAbstract:the twenty-first century, in the process of applying modern detection techniques , often need to complete the appropriate field testing work by having a high finesse and scientific digital voltmeter . Century detected by the data transfer function obtained by computing center into the computer , thus completing the appropriate storage , computing and control , real-time display and other functions . In this article, the author numerical voltmeter 51 type microcontroller (AT89c51), while the A / D converter TLC2543 model is used in hardware , enabling the entire value voltmeter software and hardware design . In this system , with a simple circuit using a small number of components , design and low cost , and the whole adjustment process is fully automated. In addition, the eight digital voltmeter can be converted amount (A / D) measurement and remote transmission of measurement results and many other features . The design values voltmeter capable of 0V ~ 5V voltage 8 accurately measure voltage , single or simultaneous display mode turns on an external digital control .Keywords: Analog signal Digital voltmeter SCM A/D converter;目录前言 (1)1 概述 (1)1.1 选题背景 (1)1.2 研究意义 (1)2 设计方案分析 (2)2.1 A/D转化装置 (2)2.2 电源 (2)3 硬件部分设计分析 (3)3.1 单片机 (3)3.1.1 对单片机芯片进行选择 (3)3.2 外围电路与AT89C51接口设计分析 (6)3.2.1 TLC2543 (7)3.2.2 TLC2543的特点 (7)3.2.3 TLC2453接口时序 (7)3.2.4 TLC2543 A/D芯片与89C51单片机的接口 (7)4 软件部分设计分析 (10)4.1 程序初始化 (11)4.2 A/D转换装置子程序 (12)4.3 显示子程序 (12)5 结论 (13)参考文献: (14)附录: (15)基于51单片机的数字电压表设计前言随着时代的进步,科技不断发展,电压表也在更新换代,由以前的表面指针电压表更替为以数码管或者液晶显示面板显示的电压表。
基于51单片机的数字电压表设计
Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。 它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件 和集成电路,该软件的特点是:
(1)实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿 真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动 态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种 虚拟仪器,如示波器、逻辑分析仪、信号发生器等。
武汉理工大学单片机原理与应用课程设计说明书pagepage18目录摘要itoco12hzu1绪论111数字电压表介绍112仿真软件介绍113本次设计要求22单片机和ad相关知识32151单片机相关知识322ad转换器相关知识43数字电压表系统设计531系统设计框图532单片机电路533adc采样电路634显示电路635供电电路和参考电压736数字电压表系统电路原理图74软件设计841系统总流程图842程序代码85数字电压表电路仿真1551仿真总图1552仿真结果显示156系统优缺点分析167心得体会17参考文献181绪论11数字电压表介绍数字电压表简称dvm数字电压表基本原理是将输入的模拟电压信号转化为数字信号再进行输出显示
开始 结束 初始化 AD采样量化 液晶显示
图9 系统流程图
4.2 程序代码
/********电压表********/ #include<reg52.h> #include<intrins.h>//库函数头文件,代码中引用了_nop_()函数 /*ADC初始定义*/ sbit start=P3^0; //转换开始控制 sbit oe=P3^2; //输出允许控制 sbit eoc=P3^1; //转换结束信号
基于51单片机的简易数字电压表的方案设计书
班级:智能电网111学生:喻卫湖南铁道职业技术学院电气工程系目录1控制要求2设计目的意义3 系统原理框图4 89C52单片机5 ADC0809 的工作原理6 系统原理图和PCB图7程序流程图8 C语言程序9数字电压表工作原理10设计体会1控制要求利用STC89C52单片机和ADC0809设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码管显示,使用的元器件数目较少。
外界电压模拟量输入到A/D转换部分的输入端,通过ADC0809转换变为数字信号,输送给单片机。
然后由单片机给数码管数字信号,控制其发光,从而显示数字。
2设计目的意义1.通过亲身的设计应用电路,将所用的理论知识应用到实践中,增强实践动手能力,进而促进理论知识的强化。
2.通过数字电压表的设计系统掌握51单片机的应用。
掌握A/D转换的原理及软件编程及硬件设计的方法,掌握根据课题的要求,提出选择设计方案,查找所需元器,设计并搭建硬件电路,编程写入STC89C52单片机并进行调试等。
3 系统原理框图4 89C52引脚资料STC89C52P1 P0P3 P2AD0809D0~D7IN0~IN7VREF+VREF-CLKOEST、ALE四位数码管位选段选控制线数据待测电压系统原理框图89C51引脚图总线型DIP40引脚封装电源引脚(2个)VCC:接+5V电源。
GND:接地端。
外接晶体引脚(2个)XTAL1:外接晶振输入端(采用外部振荡器时,此引脚接地)。
XTAL2:外接晶振输入端(采用外部振荡器时,此引脚作为外部振荡信号输入端)。
并行输入/输出引脚(32个)P0.0~P0.7:通用I/O引脚。
P1.0~P1.7:通用I/O引脚。
P2.0~P2.7:通用I/O引脚或数据低8位地址总线复用引脚。
P3.0~P3.7:通用I/O引脚或第二功能引脚(RXD、TXD、INT0、INT1、T0、T1、WR 、RD)。
控制引脚(4个)RST/VPD:复位信号输入引脚/备用电源输入引脚。
基于51单片机的数字电压表
课程设计题目数字电压表学生姓名张玉龙学号20081341056学院信息与控制学院专业测控技术与仪器指导教师葛化敏二O一一年六月三十日基于51单片机的数字电压表一、设计内容:先在proteus 上进行软件仿真设计,在仿真实现的基础上,要求完成部分硬件模块的制作和系统联调,实验内容为设计一个数字电压表,实现从模拟信号输入到数字信号输出的基本功能。
二、设计要求:采用51系列单片机和ADC 设计一个数字电压表电路,通过调节滑动变阻器改变电压,在LCD 液晶屏上显示其相应的电压值,要求电压精确到小数点后第四位,显示格式为,LCD 第一行前一段为“20081341056”(班级同学张玉龙的学号),后一段则为“V :”(电压单位);第二行的前一段为“Class 2”(班级2班),后一段则显示电压值,单位为“V ”。
三、设计原理:通过在Keil 软件对单片机AT89C52进行编程,硬件电路中单片机与ADC0804及LCD 显示屏连接。
P0与ADC0804相连接,P1与LCD 连接。
通过start()子程序启动ADC0804,通过init ()子程序初始化LCD 。
模拟信号通过ADC0804的VIN+引脚输入到ADC0804中转换为数字信号,P0获得此数字量后,经过处理得到每位的数据后,通过P1口写数据到LCD上图为基本的原理图 四、实验电路图及仿真结果:51系列 单片机电压输入五、程序代码:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit lcdrs=P3^0;sbit lcden=P3^1;sbit wrad=P3^6;sbit rdad=P3^7;uint temp,a1,a2,a3,a4,a5,num;uchar code table[]="0123456789.";//显示数字uchar code table1[]="20081341056 V:"; uchar code table2[]="Class 2";void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=100;y>0;y--);}void start()//启动AD{wrad=1;wrad=0;wrad=1;}void write_command(uchar com)//写命令{lcdrs=0;P1=com;delay(2);lcden=1;delay(2);lcden=0;}void write_data(uchar date)//写数据{lcdrs=1;P1=date;delay(5);lcden=1;delay(5);lcden=0;}void init()//lcd初始化{lcden=0;write_command(0x38);//设置16x2显示write_command(0x0c);//设置光标write_command(0x06);//写字符指针加1,光标加1write_command(0x01);//清屏}void main(){init();//LCD初始化write_command(0x80);//LCD写地址for(num=0;num<15;num++){write_data(table1[num]);delay(5);}while(1){start();//启动ADdelay(50);rdad=0; //rd低脉冲读数据delay(50);temp=P0;a1=(temp*50000/255)/10000;//区分位数,最高位 255*50000/255/10000=5.0000V a2=(temp*50000/255)%10000/1000;a3=(temp*50000/255)%1000/100;a4=(temp*50000/255)%100/10;a5=(temp*50000/255)%10;write_command(0x80+0x40);for(num=0;num<7;num++){write_data(table2[num]);delay(5);}write_command(0x80+0x49);//LCD写地址write_data(table[a1]);delay(1);write_data(table[10]);delay(1);write_data(table[a2]);delay(1);write_data(table[a3]);delay(1);write_data(table[a4]);delay(1);write_data(table[a5]);delay(1);write_data('V');delay(1);}}六、心得体会:课程设计中不得不遇到一些问题,但只要自己有恒心有毅力,终究会克服一切困难;在设计中我们要学会运用keil软件及protues软件对我们设计的电路不断地进行仿真、调试和修正,遇到程序问题时我们应该学会一段一段地去排查,最终解决所有问题;另外,还应熟练掌握每个芯片及器件如51单片机及ADC0804和LM016L每个引脚的作用和接法及各种状态的判断。
基于51单片机的简易数字电压表的设计
五邑大学单片机课程设计报告基于51单片机的简易数字电压表的设计学院:信息工程学院专业:交通工程(交通控制与管理)班姓名学号指导老师:完成日期:2015年01月05日目录1 引言 (1)2 设计方案 (1)3 元器件 (3)4 实际电路 (8)5 单片机程序 (10)6 电路板制作 (15)7总结 (16)8附录 (16)9参考文献 (17)数字电压表设计1引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。
传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。
采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。
数字电压表是诸多数字化仪表的核心与基础。
以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。
目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。
目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面。
本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。
其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号2 设计方案2.1设计要求以单片机为核心,设计一个数字电压表。
单片机数字电压表课程设计
4.程序设计及仿真
2.C语言程序源代码
void main() { EA=1; TMOD=0X02; TH0=216; TL0=216; TR0=1; ET0=1; while(1) { bianma(); yima(); display(); } } void t0()interrupt 1 using 0 { CLK=~CLK; }
4.程序设计及仿真
2.C语言程序源代码
void bianma() { START=0; ADC0808(); a=P1*100; a=a/51; } void yima() { b=a/1000; //取出千位 c=a-b*1000;//取出百、十、个位 d=c/100;//取出百位 e=c-d*100;//取出十、个位 f=e/10;//取出十位 g=e-f*10;//取出个位 }
术,把连续旳模拟量(直流输入电压)转换成不连续、离散旳数字形 式并加以显示旳仪表
数字电压表特点: ★显示清楚直观、读数精确 ★精确度高、辨别率高 ★测量范围宽、扩展能力强 ★抗干扰能力强等
2.设计要求
此次课程设计旳设计要求是: 利用AT89C52与A/D转换器ADC0809设
计一种数字电压表,使其能够测量0~5v直流电 压,4位数码管显示。
输出允许信号, 高电平有效
ADC0809仿真引脚图
地址锁存允许信 号,高电平有效
正负参照电压 输入端
3.ADC0809简介
2.ADC0809时序图分析
ADC0809时序图
4.程序设计及仿真Fra bibliotek1.程序设计流程图
开始开始
选择ADC0809旳转换通道
设置定时器,为ADC0809提供时钟信号
开启A/D转换
基于51单片机的数字电压表课程设计
摘要随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。
本设计AT89C51单片机的一种电压测量电路,该电路采用基于ADC0808芯片的一种A/D 转换电路,测量范围直流 0~5V 的4路输入电压值,并在LED数码管上显示。
测量最小分辨率为0.019V,测量误差约为正负0.02V。
目录摘要 (1)第1章设计原理及要求 (3)1.1数字电压表的实现原理 (3)2.2数字电压表的设计要求 (3)第2章芯片介绍 (4)2.1 AT89C51引脚及功能介绍 (4)2.1.1 简单概述 (4)2.1.2 主要功能特性 (5)2.1.3 AT89C51的引脚介绍 (5)2.2 ADC0808引脚及功能介绍 (7)2.2.1 芯片概述 (7)2.2.2 引脚简介 (7)2.2.3 ADC0808的转换原理 (8)2.2.4 ADC工作时序 (8)2.3 MAX7219引脚及功能介绍 (9)2.3.1 芯片概述 (9)2.3.2 引脚简介 (10)2.3.3 功能特点 (11)2.3.4 MAX7219工作时序 (11)2.4 矩阵键盘 (12)2.5 LED数码管显示 (13)2.5.1 LED数码管模型 (13)2.5.2 数码管接口简介 (13)第3章软件仿真电路设计 (15)3.1设计思路 (15)3.2仿真电路图 (15)3.3设计过程 (19)第4章系统软件程序的设计 (20)参考文献 (21)心得与体会 (22)附录 (23)第1章设计原理及要求本设计是利用单片机AT89C51与ADC0808设计一个数字电压表,测量0-5V之间的直流电压值,并用数码显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息与电气工程学院电子应用系统CDIO一级项目设计说明书(2011/2012学年第二学期)题目:___ _数字电压表__________专业班级:电子信息0902班学生姓名:张文盛学号:090070213指导教师:贾少锐、李晓东、马永强李丽宏、贾东立、刘会军设计周数:设计成绩:2012年6月28日1、CDIO设计目的本次CDIO设计题目是:利用所学的51单片机,C语言,数字电路等知识,设计一个符合要求的数字电压表。
主控芯片可以是AT89C51,而采集电压的模拟量转换成数字量的芯片可以是ADC0804,也可以是PCF8591。
而显示模块可以是数码管,也可以是液晶LCD1602,从而展示给我们所得的电压值。
2、CDIO设计正文2.1 数字电压表系统设计框图本次数字电压表系统设计框图如图1所示:图1 数字电压表设计框图数字电压表主要由模/数转换电路、单片机控制电路、显示电路等三部分组成。
其中PCF8591等器件组成的转换电路,将输入的模拟量信号进行取样、转换、然后将转换的数字信号送进单片机。
单片机控制电路主要实现对数据进行程序处理;显示电路主要用于将单片机的信号数据转换后显示测量结果。
模拟信号产生模块:输入电源电路(变压器、整流电路、滤波电路、稳压电路组成)和分压电路(9万欧姆和1万欧姆的电阻分压)。
模数转换模块组成部分:PCF8591芯片程序处理的单片机控制模块:AT89C51芯片电压结果显示部分:LCD1602液晶2.2 各模块介绍2.2.1 AT89C51芯片介绍AT89S52 具有以下标准功能:8k 字节Flash,256 字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个 6 向量 2 级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2 种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
AT89C52的引脚图如图2 所示。
图 2 A T89C52引脚图VCC : 接电源GND: 接地P0 口:P0 口是一个8 位漏极开路的双向I/O 口。
作为输出口,每位能驱动8 个TTL 逻辑电平。
对P0 端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0 口也被作为低8 位地址/数据复用。
在这种模式下,P0 具有内部上拉电阻。
在flash 编程时,P0 口也用来接收指令字节;在程序校验时,输出指令字节。
程序校时,需要外部上拉电阻。
P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。
对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个TTL 逻辑电平。
对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)在访问外部程序存储器或用16 位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。
P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个TTL 逻辑电平。
对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P3 口亦作为AT89C52 特殊功能(第二功能)使用,A T89C52的P3口的第二功能表如表1所示。
表1 AT89C52的P3口的第二功能RST: 复位输入。
晶振工作时,RST 脚持续2 个机器周期高电平将使单片机复位。
看门狗计时完成后,RST 脚输出96 个晶振周期的高电平。
特殊寄存器AUXR(地址8EH)上的DISRTO 位可以使此功能无效。
DISRTO 默认状态下,复位高电平有效。
ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8 位地址的输出脉冲。
在flash 编程时,此引脚(PROG)也用作编程输入脉冲。
在一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。
然而,特别强调,在每次访问外部数据存储器时,ALE 脉冲将会跳过。
PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。
当A T89S52 从外部程序存储器执行外部代码时,PSEN 在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN 将不被激活。
EA/VPP:访问外部程序存储器控制信号。
为使能从0000H 到FFFFH 的外部程序存储器读取指令,EA 必须接GND。
为了执行内部程序指令,EA 应该接VCC。
在flash 编程期间,EA 也接收12V编程电源(VPP)。
XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。
XTAL2:振荡器反相放大器的输出端。
(2)晶振电路晶振电路是单片机的最小系统的组成部分。
典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)。
特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行。
(3)复位电路复位电路也是单片机的最小系统的组成部分。
当单片机系统在运行中,受到环境干扰出现程序执行错乱的时候,按下复位按钮内部的程序自动从头开始执行。
复位电路的原理是单片机RST引脚接收到2us以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。
按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。
单片机最小系统复位电路的极性电容的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。
2.2.2PCF8591 AD/DA芯片PCF8591是一个单片集成、单独供电、低功耗、8-bit CMOS数据获取器件。
PCF8591具有4个模拟输入、1个模拟输出和1个串行I²C总线接口。
PCF8591的3个地址引脚A0, A1和A2可用于硬件地址编程,允许在同一个I²C总线上接入8个PCF8591器件,而无需额外的硬件。
在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线双向I²C总线以串行的方式进行传输。
PCF8591的功能包括多路模拟输入、内置跟踪保持、8-bit模数转换和8-bit数模转换。
PCF8591的最大转化速率由I²C总线的最大速率决定。
1、主要技术指标和特性单独供电PCF8591的操作电压范围2.5V-6V低待机电流通过I2C总线串行输入/输出PCF8591通过3个硬件地址引脚寻址PCF8591的采样率由I2C总线速率决定4个模拟输入可编程为单端型或差分输入自动增量频道选择PCF8591的模拟电压范围从Vss到VDDPCF8591内置跟踪保持电路8-bit逐次逼近A/D转换器通过1路模拟输出实现DAC增益2、ADC0808引脚功能PCF8591引脚图如图3所示AIN0~AIN3:模拟信号输入端。
A0~A3:引脚地址端。
VDD、VSS:电源端。
(2.5~6V)图3 PCF8591引脚图SDA、SCL:I2C 总线的数据线、时钟线。
OSC:外部时钟输入端,内部时钟输出端。
EXT:内部、外部时钟选择线,使用内部时钟时 EXT 接地。
AGND:模拟信号地。
AOUT:D/A 转换输出端。
VREF:基准电源端。
4 功能描述(1)地址IIC总线系统中的每一片PCF8591通过发送有效地址到该地址器件来激活。
该地址包括固定部分和可编程部分。
可编程部分必需根据地址引脚A0、A1和A2来设置。
在IIC总线协议中地址必需是起始条件后作为第一个字节发送。
地址字节的最后一位是用于设置以后数据传输方向的读/写。
(2)控制字 控制字节用于实现器件的各种功能,如模拟信号由哪几个通道输入等。
控制字节存放在控制寄存器中。
总线操作时为主控器发送的第二字节。
其格式如下图5所示:其中:D1、D0两位是A/D 通道编号:00通道0,01通道1,10通道2,11通道3 D2 自动增益选择(有效位为1)D5、D4模拟量输入选择:00为四路单数入、01为三路差分输入、10为单端与差分配合输入、11为模拟输出允许有效当系统为A/D 转换时,模拟输出允许为0。
模拟量输入选择位取值由输入方式决定:四路单端输入时取00,三路差分输入时取01,单端与差分输入时取10,二路差分输入时取11。
最低两位时通道编号位,当对0通道的模拟信号进行A/D 转换时取00,当对1通道的模拟信号进行A/D 转换时取01,当对2通道的模拟信号进行A/D 转换时取10,当对3通道的模拟信号进行A/D 转换时取11。
在进行数据操作时,首先是主控器发出起始信号,然后发出读寻址字节,被控器做出应答后,主控器从被控器读出第一个数据字节,主控器发出应答,主控器从被控器读出第二个数据字节,主控器发出应答…一直到主控器从被控器中读出第n 个数据字节,主控器发出非应答信号,最后主控器发出停止信号。
(3)A/D 转换A/D 转换器采用逐次逼近转换技术。
在A/D 转换周期将临时使用片上转换器和高增益比较器。
一个A/D 转换周期总是开始于发送一个有效读模式地址给PCF8591之后。
A/D 转换周期子在应答时钟脉冲的后延被触发。
并在传输前一次转换结果时执行(见图6)图4 PCF8591地址设置 图 5 控制字格式图 6 A/D 转换一旦一个转换周期被触发,所选通的输入电压采样将保存到芯片并被转换为对应的8位二进制码,取自差分输入的采样将被转换为8位二进制补码转换结果被保存在ADC 数据寄存器等待传输。
如果自动增量标志被置1,将选择下一个通道。
在读周期传输的第一个字节包含前一次读周期的转换结果代码,以上电复位之后读取的第一个字节是0x80。
最高A/D 转换速率取决于实际的IIC 总线速度。
(4)D/A 转换发送给PCF8591的第三个字节被存储到DAC 数据存储器,并使用片内D/A 转换器转换成对应的模拟电压。
这个D/A 转换器由连接到外部参考电压的具有256个接头的电阻分压电路和选择开关组成。