常微分方程阶段(2)复习题
常微分方程第一、二、三次作业参考答案
1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。
由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。
(4) 求出满足条件33ydx =⎰的解。
解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。
2、求下列方程的解。
1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。
则令2X x =-,73Y y =-。
故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。
3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。
2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。
常微分方程复习卷
常微分方程课程总复习第一章 绪论第一章的主要内容是建立方程和初始条件,并介绍整个课程中所使用的主要概念。
以下几点是对第一章内容的总体要求。
*一.对于通过物理过程而建立微分方程,本课程不作太高的要求,了解和初步掌握几个方程及初始条件建立过程的物理模型即可。
!二. 对于利用平面曲线的分析性质(曲线()y f x =的切线的斜率是导数()y f x ''=)建立简单的曲线所满足的微分方程,则是要求初步掌握的。
一些具体的例题可见作业中的相应部分。
!三. 对于微分方程的一些基本的概念则要求熟练掌握,因为这些是后面求解方程所必须的。
要求熟练掌握的概念有 ● !微分方程的阶数;● !微分方程的解的概念和解的验证; ● !微分方程组的解的概念和解的验证; ● !微分方程的通解及特解;● !判断一个微分方程是线性的还是非线性的;● !判断一个线性微分方程是齐(次)的还是非齐(次)的; ● !判断一个线性微分方程是常系数的还是变系数的.至于一阶方程的解的几何意义,包括积分曲线,方向场,等斜线等则作为了解即可。
本章重点和注意事项:1. !关于微分方程的概念,主要放在概念性题目(例如选择题)中考查。
2. !利用平面曲线的分析性质建立简单的常微分方程,通常放在简答性题目(例如填空题)中考查。
3. !验证方程的解通常出现在概念性的题目中。
!典型例题:下列四个微分方程中, 为四阶线性微分方程的有( )个.(1) 4434322tan 1d y d y x x x y dx dx x ⎛⎫++= ⎪+⎝⎭(2) 43243ln cos(ln )d y d y y x dx dx ⎛⎫-+= ⎪⎝⎭(3) 4422d yx dx d y dyey e dx dx+++=(4) 424ln tan xd y dy ex y x x dx dx++=A. 1B. 2C. 3D. 4(见模拟试题)!典型例题:微分方程1222212(1)ln(1cot )n n n n d y d y dy n n xy x dx dx dx--+++-+=+L 是( ). A. n 阶常系数非线性常微分方程;B. n 阶变系数非齐次线性常微分方程;C. n 阶变系数非线性常微分方程;D. n 阶常系数非齐次线性常微分方程.!典型例题:微分方程21(1)ln dy x y x y dx y+=++的一个解是( ).A. 1y x =+B. 1-=x yC. xy 1=D. xy 1-= (见模拟试题)!典型例题:(见第17页: 9. (1)) 曲线上任意一点的切线与该点的向径之间夹角为θ.*典型例题:(见第17页: 9. (3)) 曲线上任意一点的切线与坐标轴所成的三角形的面积都等于常数2a .*典型例题:平面上过点(4,4)的曲线为)(x f y =, 该曲线上任一点处的切线与坐标轴所成的三角形的面积都等于2, 则这个曲线应满足的常微分方程及初始条件分别为( ).*典型例题:平面上过点(4,4)的曲线为)(x f y =, 该曲线上任一点处的切线夹在两个坐标轴之间的部分为定长l , 则这个曲线应满足的常微分方程及初始条件分别为( ).!典型例题:平面上过点(,)e π的曲线为)(x f y =, 该曲线上任一点处的切线与切点和原点的连线的夹角为/4π, 则这个曲线应满足的常微分方程及初始条件分别为 ( , ). (见模拟试题)第二章 一阶微分方程的初等解法第二章的主要内容是求解几类的一阶微分方程,这里总结主要的解法: 一. 变量分离方程:)()(y x f dxdyϕ=.求解方法:先进行变量分离:dx x f y dy)()(=ϕ,再在两边积分即得通解: c dx x f y dy+=⎰⎰)()(ϕ.注意:在常微分方程中所遇到的不定积分和定积分是数学分析中所学过的公式中较为简单的形式。
常微分方程习题二
x c1x1 (t ) c2 x2 (t ) cn xn (t ) (4.5)
其中 c1 , c2 ,, cn 是任意常数,且通解(4.5)包括 方程(4.2)的所有解。
定理7
设x1 (t ), x2 (t ),, xn (t ) 为方程(4.2)
的基本解组,而x(t ) 为方程(4.1)的某一解,则 方程(4.1)的通解可表为
记 lim n ( x) ( x), x [ x0 , x0 h].
n
(3.5)定义于 [ x0 , x0 h]上连续解 . 命题4 ( x)是积分方程
(3.5)定义于[ x0 , x0 h]上的 命题5 设 ( x)是积分方程 一个连续解 , 则 ( x) ( x), x [ x0 , x0 h].
5.解对初值和参数的连续性定理
设f ( x, y, )在区域G 连续, 且在G内一致地关于 y满足 局部Lipschitz条件, 则方程(3.1) 的解y ( x, x0 , y0 , ) 作为x, x0 , y0 , 的函数在它们存在范围 内是连续的 .
6.解对初值可微性定理
有复值解x U (t ) iV (t ), 其中ai (t )(i 1,2, n),
u (t ), v(t ) 都是实值函数,则U(t)和V(t)分别是方程
d nx d n 1 x dx a1 (t ) n 1 an 1 (t ) an (t ) x u (t ) n dt dt dt d x d x dx a1 (t ) n 1 an 1 (t ) an (t ) x v(t ) 和 n dt dt dt
z (t ) 的实部 (t ) 和虚部 (t ) 以及共轭复数 z(t )
河北专接本数学(常微分方程)模拟试卷2(题后含答案及解析)
河北专接本数学(常微分方程)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.方程y”+4y’=x2-1的待定特解形式可设为[ ].A.y=x(ax2+b)B.y=x(ax2+bx+c)C.y=ax2+bx+cD.y=ax2+b正确答案:B 涉及知识点:常微分方程2.微分方程x ln x.y”=y’的通解是[ ].A.y=C1xln x+C1B.y=C1x(ln x—1)+C2C.y=xln xD.y=C1x(ln x—1)+2正确答案:B 涉及知识点:常微分方程3.函数y=3e2x是微分方程y”-4y=0的[ ].A.通解B.特解C.是解,但既非通解也非特解D.不是解正确答案:B 涉及知识点:常微分方程4.方程y”+y=cosx的待定特解形式可设为[ ].A.y=axcosxB.y=acosxC.y=a cosx+b sin xD.y=x(a cos x+bsin x)正确答案:D 涉及知识点:常微分方程5.若某二阶常系数齐次微分方程的通解为y=C1e-2x+C2ex,则该微分方程为[ ].A.y”+y’=0B.y”+2y’=0C.y”+y’-2y=0D.y”-y’-2y=0正确答案:C 涉及知识点:常微分方程填空题6.已知二阶常系数齐次微分方程的通解为y=C1ex+C2e-x,则原方程为_______.正确答案:y”-y=0 涉及知识点:常微分方程7.以y=e3x,y=xe2x为特解的二阶常系数齐次微分方程为_______.正确答案:y”-4y’+4y=0 涉及知识点:常微分方程8.已知微分方程y”+y=x的一个解为y1=x,微分方程y”+y=ex的一个解为,则微分方程y”+y=x+ex的通解为_______.正确答案:y=C1cosx+C2sinx++x。
涉及知识点:常微分方程9.微分方程xy’-yln y=0的通解为_______.正确答案:y=eCx 涉及知识点:常微分方程10.微分方程y”=2y’的通解为_______.正确答案:y=C1+C2e2x 涉及知识点:常微分方程11.微分方程y’=e2x-y满足初始条件的特解为_______。
《常微分方程》练习题二
常微分方程 练习题二一、填空题1.方程y y xy ln d d =所有常数解是( y=1 ). 2.方程y x x y cos cos d d +=满足解的存在惟一性定理条件的区域是( 全平面 ).3.n 阶线性齐次微分方程的所有解构成一个( n )维线性空间.4.方组0y y ''+=的基本解组是( y 1=cos x, y 2=sin x ).5.若函数组)()(21x x ϕϕ,在区间),(b a 上线性相关,则它们的朗斯基行列式)(x W 在区间),(b a 上( 恒等于零 ). 6.方程d cos d x y y xe x+=的任一解的最大存在区间必定是 (,)-∞+∞ . 7.方程sin cos dy x y dx =⋅满足解的存在惟一性定理条件的区域是 xoy 平面 .8.n 阶线性齐次微分方程的所有解构成一个 n 维线性空间.9.方程2sin dy x y dx=的所有常数解是 ,0,1,2,y k k π==±± . 10.方程20y y y '''++=的基本解组是 y=ex - y=xe x - .一、 单项选择题 1.方程t t x x xcos 2=++ 的任一解的最大存在区间都是( B ). (A )),0(∞+ (B )),(∞+-∞ (C ))0,(-∞ (D ))2,1(2. 李普希兹条件是保证一阶微分方程初值问题解惟一的( A )条件.(A )充分 (B )必要 (C )充分必要 (D )必要非充分3.方程2d d y xy =过点)1,3(-的解的存在区间是( C ). (A )),0(∞+ (B ))3,(-∞ (C )),2(∞+ (D )),2[∞+4.方程03=+x x的任一非零解在),,(x x t 空间中( A ). (A )不能与t 轴相交 (B )可以与t 轴相交(C )可以与t 轴横解相交 (D )可以与t 轴相切5.用待定系数法求方程x y y sin 2=+''的非齐次特解1y 时,应将特解1y 设为( D ).(A )x A y sin 1= (B )x B x A y cos sin 1+=(C )x B y cos 1= (D ))cos sin (1x B x A x y +=6.李普希兹条件是保证一阶微分方程初值问题解唯一的( B )条件.(A )必要 (B )充分 (C )充分必要 (D )必要非充分7. 方程0x x +=的任一非零解在tox 平面上( A )与t 轴横截相交.(A )可以 (B )不可以 (C )只能在0t =处可以 (D )只能在2t π=处可以8. 方程1y '=( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D ) 无9.方程y '=(0,0)解sin y x =,这个解的存在区间是( C ).(A )(0,)+∞ (B )(,0)-∞ (C )[,]22ππ-(D )(,)-∞+∞ 10.线性齐次微分方程组的解组12(),(),,()n Y x Y x Y x 在区间I 上线性相关的( B )条件是在区间I 上它们的朗斯基行列式()0W x =.(A )充分 (B )充分必要 (C )充分非必要 (D )必要三、简答题1. 用分离变量法求解方程()()dy f x y dxϕ=的步骤和原理是什么? 化成积分方程求解且二者等价1. 该方程在全平面上满足解的存在唯一及延展定理条件,因此该方程任一解可以延展到平面的无穷远处,为什么该方程的所有解不能都在(,)-∞+∞上存在,这与解的延展定理矛盾吗?为什么?不矛盾,因为平面的无穷远有任意的方向。
《常微分方程》题库及答案
《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。
14.求方程xy dxdyy x 2)(22=+之通解。
15.求方程0)(222=-+dy y x xydx 之通解。
16. 求方程y x e dxdy-=之通解。
17. 求方程0)2(=+---dy xe y dx e yy 之通解。
18. 求方程x x y y sec tan '=+之通解。
二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。
常微分方程阶段复习题2
《常微分方程》试题一.填空题1.若)(t x i (i=1,2,┄,n )是n 阶线性齐次方程的一个基本解组,x(t)为非齐性齐次方程方程的一个特解,则非齐线形方程的所有解可表为2.若ϕ(t )和ψ(t )都是x ˊ= A(t) x 的 基解矩阵,则ϕ(t )与ψ(t )具有关系:3.若ϕ(t )是常系数线性方程组x Ax '=的 基解矩阵,则该方程满足初始条件0()t ψη=的解()t ψ=_____________________4.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件5.n 阶线性齐次微分方程的所有解构成一个 维线性空间.6. 向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 条件是它们的朗斯期行列式W (x )=0.7.若X 1(t), X 2(t) , X n (t)为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是8.若)()(t t ψφ和都是'X =A(t)X 的基解矩阵,则 )()(t t ψφ和具有关系:二.单选题1.容易验证:y wx y wx w 120==>cos ,sin ()是二阶微分方程''+=y w y 20的解,试指出下列哪个函数是方程的通解。
(式中C C 12,为任意常数)( )(A )y C wx C wx =+12cos sin (B )y C wx wx =+12cos sin(C )y C wx C wx =+112cos sin (D )y C wx C wx =+122cos sin2.微分方程1x y y e ''-=+的一个特解应有形式 ( )(A )b ae x +; (B )bx axe x +; (C )bx ae x +; (D ) b axe x +3.微分方程'''+'=y y x sin 的一个特解应具有形式 ( )(A )A x sin (B )A x cos(C )Asix B x +cos (D )x A x B x (sin cos )+4.微分方程''+=y y x x cos2的一个特解应具有形式( ) (A )()cos ()sin Ax B x Cx D x +++22 (B )()cos Ax Bx x 22+(C )A x B x cos sin 22+ (D )()cos Ax B x +25.微分方程012'''=++y y 的通解是( )(A )x e x C C y -+=)(21; (B )x x e C e C y -+=21;(C )x e C C y x 21221-+=-; (C )x x C x C y 21sin cos 21-+=。
二阶常系数微分方程部分(201308)习题及解答
二阶常系数微分方程部分习题1. 设方程xy ay by ce '''++=的一个特解为:2(1)x x y e x e =++,试确定常数,,a b c ,并求该微分方程的通解.2. 设微分方程322e xy y y ¢¢¢-+=的积分曲线与另一曲线x y ìïïïíï=ïïî在1x =处有相同切线,求此积分曲线方程.3.求方程2cos 2sin y y y x x x ¢¢¢-+=+的通解.4.求解微分方程x y x y x y x e cos 2sin 3cos ¢¢¢-+=。
5.求微分方程34(107)34sin x y y y x e x -'''--=-+的通解。
6.求微分方程(4)22210y y y y ''''''-+-+=的通解。
7. 设函数()y y x =在(,)-¥+¥内具有二阶导数,且0,()y x x y ¢¹=是()y y x =的反函数。
(1) 试将()x x y =所满足的微分方程232(sin )()0d x dxy x dy dy++=变换为()y y x =满足的微分方程; (2) 求变换后的微分方程满足初始条件3(0)0,(0)2y y ¢==的解。
8.已知21x x y xe e =+,2x x y xe e -=+,23x xx y xe e e -=+-是二阶线性非齐次方程的三个解,求此微分方程。
10.设u f =在第一象限内有二阶连续的偏导数,且22220u ux y∂∂+=∂∂,1()lim21x f x x →=-, 试求()f x 的表达式。
常微分方程阶段(2)复习题
《常微分方程》第二阶段试题一. 单选题1. 函数 )cos(C x y +=(其中C 为任意常数)所满足的微分方程是( ) )sin()(C x y A +-='; 1)(22=+'y y B ;)sin()(C x y C +='; 22)(22=+'y y D 。
2.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式为零 (C )12()=()x C x ϕϕ(常数) (D )线性相关 3.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=不是基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式不为零 (C )12()()x C x ϕϕ≠(常数) ( )线性相关 4.线性齐次微分方程组()dx A t x dt=的一个基本解组的个数不能多于( ) (A ) -1n (B ) n (C )+1n (D )+2n 5.n 阶线性齐次微分方程线性无关解的个数不能多于( )个.(A ) n (B )-1n (C )+1n (D )+2n6. 设常系数线性齐次方程特征方程根i r r ±=-=4,32,1,1,则此方程通解为( ) (A )x C x C e x C C y x sin cos )(4321+++=-; (B )x C x C e C y x sin cos 321++=-;(C )x x C x C e C y x sin cos 321++=-; (D )x C x x C e C y x sin cos )(321+++=-7.方程xxe y y 2'2"=-的特解具有形式( )。
(A ) x Axe y 2*=; (B ) x e B Ax y 2)(*+=;(C ) x e B Ax x y 2)(*+= ; (D )x e B Ax x y 22)(*+=。
考研数学一(常微分方程)历年真题试卷汇编2(题后含答案及解析)
考研数学一(常微分方程)历年真题试卷汇编2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1989年)设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y”+p(x)y’+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是A.c1 y1+c2y2+y3B.c1y1+c2y2一(c1+c2)y3C.c1y1+c2y2一(1一c1—c2)y3D.c1y1+c2y2+(1一c1一c2)y3正确答案:D解析:由于(D)中的y=C1y1+C2y2+(1一C1—C2)y3=C1(y1一y3)+C2(y2一y3)+y3其中y1一y3和y2一y3是对应的齐次方程的两个解,且y1一y3与y2—y3线性无关.事实上,若令A(y1—y3)+B(y2一y3)=0即Ay1+By2一(A+B)y3=0由于y1,y2,y3线性无关,则A=0,B=0,一(A+B)=0因此y1一y3与y2一y3线性无关,故y=C1y1+C2y2+(1一C1—C2)y3是原方程通解.知识模块:常微分方程2.(1991年)若连续函数f(x)满足关系式则f(x)等于A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:等式两边求导得f’(x)=2f(x)解此方程得f(x)=Ce2x由原方程可知f(0)=ln2,代入f(x)=Ce2x得C=ln2.故f(x)=e2xln2 知识模块:常微分方程3.(1993年)设曲线积分与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于A.B.C.D.正确答案:B解析:由得f’(x)+f(x)=ex解此方程得f(x)=e-x(e2x+C)由f(0)=0得,故知识模块:常微分方程填空题4.(1992年)微分方程y’+ytanx=cosx的通解为y=_____________.正确答案:(x+c)cosx.解析:由线性方程通解公式得知识模块:常微分方程5.(1996年)微分方程y”一2y’+2y=ex的通解为___________.正确答案:特征方程为λ2一2λ+2=0,解得λ1,2=1±i,则齐次方程通解为y=ex(C1cosx+C2sinx)易观察出y=ex是非齐次方程的一个特解.则原方程通解为y=ex(C1cosx+C2sinx)+ex 涉及知识点:常微分方程6.(1999年)y”一4y—e2x的通解为y=____________.正确答案:C1e-2x+C2e2x+xe2x.解析:特征方程为λ2一4=0,则λ=一2,λ2=2,从而齐次方程的解为由于λ=2为特征方程单根,则非齐次待定特解可设为y*=Axe2x代入原方程得故所求通解为y=C1e-2x+C2e2x+xe2x 知识模块:常微分方程7.(2000年)微分方程xy”+3y’=0的通解为____________.正确答案:解析:令y’=p,则y”=p’.代入原方程得解得因此知识模块:常微分方程8.(2001年)设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为___________.正确答案:y”-2y’+2y=0解析:所求方程的特征根为λ1,2=1,±i则其特征方程为λ2一2λ+2=0故所求方程为y”一2y’+2y=0 知识模块:常微分方程9.(2002年)微分方程yy”+y’2一0满足初始条件的特解是____________.正确答案:y2=x+1或解析:解 1 令y’=P,则代入原方程得解得可知,则所求的特解为y2=x+1 解2 由于原方程左端从而原方程可改写为因此yy’=C1以下求解同解1.知识模块:常微分方程10.(2004年)欧拉方程的通解为___________.正确答案:解析:令z=et 代入原方程所得新方程的特征方程为ρ(ρ一1)+4ρ+2=0 解得ρ1=一1,ρ2=一2则新方程通解为y=C1e-t+C2e-2t,将x=et代入得原方程通解为知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题 第二章答案
习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e x Q x +=∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy x Q '=∂∂ 所以xQy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y=++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y xy)()(--=+两边积分得:c e x e y x y ++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2yx dx dy+= 0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=(5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:y(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①0≠y 时,ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
常微分方程试题库
答:没有
20.方程的常数解是
.
答:
21.向量函数组在其定义区间上线性相关的 条件是它们的朗斯基
行列式,.
答:必要
22.方程满足解的存在唯一性定理条件的区域是 .
答: 平面
23.方程所有常数解是 .
答:
24.方程的基本解组是
.
答: 25.一阶微分方程的通解的图像是
答:2
维空间上的一族曲线.
代入原方程,有 , 可解出 . 故原方程的通解为 2.求下列方程组的通解
. 解 方程组的特征方程为
即 特征根为 ,
对应的解为
其中是对应的特征向量的分量,满足
可解得. 同样可算出对应的特征向量分量为 .
所以,原方程组的通解为
3.求方程的通解. 解:方程的特征根为,
齐次方程的通解为 因为不是特征根。所以,设非齐次方程的特解为
6.试用一阶微分方程解的存在唯一性定理证明:一阶线性方程 , 当 , 在上连续时,其解存在唯一 证明: 令 : , , 在上连续, 则 显然在上连续 , 因为 为上的连续函数 , 故在上也连续且存在最大植 , 记为 即, ,= 因此 一阶线性方程当 , 在上连续时,其解存在唯一
答:
8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,
则非齐次线性方程的所有解可表为_____________________
答:
9.若为毕卡逼近序列的极限,则有 __________________
答:
10.______________________称为黎卡提方程,若它有一个特解 ,则
常微分方程
一、填空题
1.微分方程的阶数是____________
答:1
考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析)
考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】A.y*=aχ2+bχ+c+χ(Asinχ+Bcosχ).B.y*=χ(aχ2+bχ+c+Asinχ+Bcosχ).C.y*=aχ2+bχ+c+Asinχ.D.y*=aχ2+bχ+c+Acosχ.正确答案:A解析:方程y〞+y=0的特征方程为ρ2+1=0,其特征根为ρ=±i,因此方程y〞+y=χ2+1+sinχy*=aχ+bχ+C+χ(Asinχ+Bcosχ) 故应选A.知识模块:常微分方程2.(2006年)函数y=C1eχ+C2e-2χ+χeχ满足的一个微分方程是【】A.y〞-y′-2y=3χeχ.B.y〞-y′-2y=3eχ.C.y〞+y′-2y=3χeχ.D.y〞+y′-2y=3eχ.正确答案:D解析:由y=C1eχ+C2e-2χ+χeχ知,齐次方程的两个特征根分别为1和-2,所以只有C和D项可能是正确的选项,将y=χeχ代入D项中方程知其满足该方程,则应选D.知识模块:常微分方程3.(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】A.+y〞-4y′-4y=0.B.+y〞+4y′+4y=0.C.-y〞-4y′+4y=0.D.-y〞+4y′-4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i 则其特征方程为(ρ-1)(ρ2+4)=0,故所求方程应为y″′-y〞+4y′-4y=0 故应选D.知识模块:常微分方程4.(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则【】A.B.C.D.正确答案:A解析:由于λy1+μy2为方程y′+p(χ)y=q(χ)的解,则(λy1+μy2)′+p(χ)(λy1+μy2)=g(χ) 即λ(y′1+p(χ)y1)+μ(y′2+p(χ)y2)=q(χ) λq(χ)+μ(χ)=q(χ) λ+μ=1 (1) 由于λy1-μy2为方程y′+p(χ)y=0的解,则(λy1-μy2)′+p(χ)(λy1-μy2)=0 λ(y′1+p(χ)y1)-μ(y′2+p(χ)y2)=0 λq(χ)-μq(χ)=0 λ-μ=0 (2) 由(1)式和(2)式解得λ=μ=知识模块:常微分方程5.(2011年)微分方程y〞-λ2y=eλχ+e-λχ(λ>0)的特解形式为【】A.aχ(eλχ+e-λχ).B.aχ(eλχ+e-λχ).C.χ′〞(aeλχ+be-λχ).D.χ2(aeλχ+be-λχ).正确答案:C解析:方程y〞-λ2y=0的特征方程为r2-λ2=1 r1=λ,r2=-λ方程y〞-λ2y=eλχ的特解形式为aχeλχ方程y〞-λ2y=e-λχ的特解形式为bχe-λe 则原方程的特解形式为y=χ(aχeλχ+bχe-λχ) 故应选C.知识模块:常微分方程填空题6.(2006年)微分方程y′=的通解是_______.正确答案:y=Cχe-χ.解析:则ln|y|=ln|χ|-χ=ln|χ|+lne-χ=ln(|χ|e-χ) y=Cχe-χ.知识模块:常微分方程7.(2007年)二阶常系数非齐次线性微分方程y〞-4y′+3y=2e2χ的通解为y=_______.正确答案:y=C1eχ+C2e3χ-2e2χ.解析:齐次方程特征方程为ρ2-4ρ+3=0 解得ρ1=1,ρ2=3,则齐次方程通解为y=C1eχ+C2e3χ设非齐方程特解为=Ae2χ,代入原方程得A=-2,则原方程通解为y=C1eχ+C2e3χ-2e2χ知识模块:常微分方程8.(2008年)微分方程(y+χ2e-χ)dχ-χdy=0的通解是y=_______.正确答案:y=χ(C-e-χ).解析:方程(y+χ2e-χ)dχ-χdy=0可改写为知识模块:常微分方程9.(2010年)3阶常系数线性齐次微分方程-2y〞+y′-2y=0的通解为y =________.正确答案:y=C1e2χ+C2cosχ+C1sinχ.解析:方程y″′=2y〞+y′-2y=0的特征方程为r3-2r2+r-2=0 即r2(r-2)+(r-2)=0 (r-2)(r2+1)=0 r1=2,r2,3=±l′则原方程通解为y=C1e2χ+C2cosχ+C1sinχ.知识模块:常微分方程10.(2011年)微分方程y′+y=e-χcosχ满足条件y(0)=0的解为y=_______.正确答案:e-χsinχ.解析:由一阶线性方程的通解公式得y==e-χ[∫cosχdχ+c]=e-χ[sinχ+C] 由y(0)=0知,C=0,则y=e-χsinχ知识模块:常微分方程11.(2012年)微分方程ydχ+(χ-3y2)dy=0满足条件y|χ=1=1的解为y=_______.正确答案:解析:由ydχ+(χ-3y2)dy=0 得这是一阶线性微分方程,由通解公式得又因为y=1时,χ=1,解得C=0,故χ=y2.y=知识模块:常微分方程12.(2013年)已知y1=e3χ-χe2χ,y2=eχ-χe2χ,y3=-χe2χ是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|χ=0=0,y′|χ=0=1的解为y=_______.正确答案:C1eχ+C2e3χ-χe2χ.解析:由题设知y1-y3=e3χ,y2-y3=eχ为齐次方程两个线性无关的特解,则非齐次方程的通解为y=C1eχ+C2e3χ-χe2χ.知识模块:常微分方程13.(2015年)设函数y=y(χ)是微分方程y〞+y′-2y=0的解,且在χ=0处y(χ)取得极值3,则y(χ)=_______.正确答案:2eχ+e-2χ.解析:原方程的特征方程为λ2+λ-2=0 特征根为λ1=1,λ2=2 原方程的通解为y=C1eχ+C2e-2χ由y(0)=3,y′(0)=0得则C1=2,C2=1,y=2eχ+e-2χ.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
常微分方程试题库试卷库2
常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。
有只含y 的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求exp At4、32()480dy dyxy y dx dx-+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。
常微分方程期终试卷(2)一、填空题 30%1、 形如____________的方程,称为变量分离方程,这里.)().(y x f ϕ分别为x .y的连续函数。
2、 形如_____________的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数.n ,可化为线性方程。
常微分方程2.2习题参考解答
习题2.2求下列方程的解1.dxdy =x y sin +解:y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c]=c e x -21(x x cos sin +)是原方程的解。
2.dt dx +3x=e t2解:原方程可化为:dt dx =-3x+e t 2所以:x=e ⎰-dt 3(⎰e t 2e -⎰-dt 3c dt +)=e t 3-(51e t 5+c)=c e t 3-+51e t 2是原方程的解。
3.dt ds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c +)=e t sin -(⎰+c dt te t t sin cos sin )=e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。
4.dx dy nx x e y n x =-,n 为常数.解:原方程可化为:dx dy nx x e y nx +=)(c dx e x e e y dx x n n x x n +⎰⎰=⎰-)(c e x x n +=是原方程的解.5.dx dy +1212--y x x =0解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x +是原方程的解.6.dx dy 234xy x x +=解:dx dy 234xy x x +==23y x +x y 令x y u =则uxy =dx dy =u dx du x +因此:dx du x u +=2u x 21udx du =dxdu u =2c x u +=331c x x u +=-33(*)将x y u =带入(*)中得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为: y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye yQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
常微分方程习题2.doc
常微分方程习题2・11.— = 2xy,并求满足初始条件:x=O,y=l的特解.dx解:对原式进行变量分离得丄dy = 2衣仕,两边同时积分得:111卜|=兀2 +(?,即『=(?幺兀把x = 0, y = 1代入得c = 1,故它的特解为y =幺“。
22.y dx + (兀+ l)dy = 0,并求满足初始条件:x=0,y=l的特解.解:对原式进行变量分离得:dx =当y北0时,两边同时积分得;ln|x + l| = —+ c,即丁 = \x + 1 y y c + ln|x +1|r当y = 0时显然也是原方程的解。
当兀=0』=1时,代入式子得c = l,故特解是1歹 1 + ln|l + x|23 4 = Idx兀》+兀、解:原式可化为:2 2空=•丄显然工0,故分离变量得~^dy = —^dxdx y x+x y i+y~ x + x两边积分得*lnl+)/ =ln|x|-|ln|l + %2|+ ln|c|(c 0),即(1+才)(1 + %2) = c/ 故原方程的解为(1 +)/)(1+ +)= d4:(1 + x)ydx + (1- y)xdy = 0解:由y = 0或兀=0是方程的解,当xy ^0时,变量分离^-^-dx = -― dy = 0两边积分In卜| + 兀 + In卜| 一y = c,BPln|xy| + x - y = c.故原方程的解为ln|兀y| = x-y = c;y = 0;x = 0.解:^ — = u, y = ux, — = u + x —,则原方程化为:x dx dx du 二 sgn x^^-dx 兀 / 2 2、du_Jx(1~U\分离变量得 dx x /i2 两边积分得:arcsinu = sgnx • ln|x| + c 代回原来变量,得arcsin — = sgn x • ln|x| + c另外,y=x 也是方程的解。
7: tgydx - ctgxdy = 0 解:变量分离,得:ctgydy = tgxdx 两边积分得:ln|sin y\ = - ln|cos x| + c.dx y解:变量分离,得-=-扎% + c y 3e9: x(ln x - In y)dy 一 ydx = 0解:方程可变为:-\n — 9dy-—dx = 0x x令u =—,贝U 有丄必 = dlnux x 1 + In w代回原变量得:cy = 1 +In —ox10:红厂dx解:变量分离$ dy = d dx5: (y + x)dy + (y - x)dx = 0解:史,令“ 坯空斗+二空 dx y + x x dx dx 贝I 拉+ x —= U +\变量分离,得:_弘?+1 du = — dxdx w +1 眈 +1 x两边积分得:arctgu + *ln(l + /) = —ln|T + c 。
新编文档-常微分方程二阶线性微分方程习题课-精品文档
将 y,y,y 代入方程,
A 1 , y1xe3x
4
4
原方程通解: yYy
C 1e3xC 2ex
1 4
xe3
x
12
二阶线性微分方程
例9 求方 y3y 程 2yxe2x的通 . 解
解 f(x)xe2x,2
(1) 求对应齐次方程的通解
特征方程 2320
特征根 11 , 22
对应齐次方程通解 YC 1exC 2e2x
(2) 求特征根,1,2
(3) 根据特征根的不同情况,得到相应的通解。
特征根的情况
通解的表达式
实根 12
y C 1 e 1 x C 2 e 2 x
实根 12
复根 1, 2i
y (C 1 C 2 x )e1 x
y e x ( C 1 co x C s 2 six ) n
3
二阶线性微分方程
例2 求方 y4y程 4y0的.通解
解 特征方程 2440
特征根 2(二重根)
通解: y(C 1C 2方 y2y程 5y0的.通解
解 特征方程 2250
特征根 1,212i,
通解: y e x ( C 1 c2 o x C s 2 s2 ix ) n
5
二阶线性微分方程
例4
解初值问题
16y24y9y0, yx04, yx02.
的解, 求此方程的通解.
非齐次线性方程的两个特解之差
是对应 齐次方程的特解.
解
y2y1x2,y3y2ex,
x e
2 x
常数
x2,ex 线性无关.
齐次线性方程的通解:YC1x2C2ex,
非齐次方程的通解: yYy.
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设 ,其中 为连续函数,求
2.设 具有二阶连续导数, ,且为一全微分方程,求 及此全微分方程的通解。
七.证明题
1.设 是方程 的n+1个线性无关解,证明微分方程的任一解恒能表为:
且
2. 阶线性齐次微分方程一定存在 个线性无关解。
3.试验证 = 是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。
19.设函数 , 方程 在区间[a,b]上的两个解,则其朗斯基行列式不为零,是它们在[a,b]上线性无关的().
(A)充分条件; (B)必要条件;
(C)充分必要条件; (D)充分非必要条件.
20.设函数 , 方程 在区间[a,b]上的两个解,则其朗斯基行列式区间[a,b]上某一点不为零,是它们在[a,b]上线性无关的().
24.形如的方程称为欧拉方程。
25. 阶线性齐次微分方程线性无关解的个数最多为个.
阶非齐次线性微分方程的任意两解必为其相应的齐次线性微分方程的解
三.求高阶微分方程的解
1.试验证 0有基本解组t, ,并求方程
t-1的通解。
yy2ex
3.
4.
5.
6.求方程 的解。
7.求微分方程 的通解。
10
9.求 满足 的特解
(C) = 其中 为非奇异常数矩阵 (D) = 其中 为常数矩阵
27.若 是 的基解矩阵,则 满足 的解()
(A) (B)
(C) (D)
28.方程组 的()称之为 的一个基本解组。
(A)n个线性无关解(B)n个不同解
(C)n个解(D)n个线性相关解
阶齐线性微分方程的()称方程的一个基本解组。
(A) n个线性相关解(B)n个不同解
4.设 为方程x =Ax(A为n n常数矩阵)的标准基解矩阵(即 (0)=E),证明: (t )= (t- t )其中t 为某一值.
5.试证:如果 满足初始条件 的解,那么
6.假设 不是矩阵 的特征值,试证非齐线性方程组
有一解形如 ,其中 , 是常数向量。
7.假设y= 是二阶常系数线性微分方程初值问题
15.若 为 的一个基本解组, 为 的一个特解,则 的所有解可表为 ____________ 。
16.若 为齐线性方程的一个基本解组, 为非齐线性方程的一个特解,则非齐线性方程的所有解可表为 ________________ 。
17.若 是 的基解矩阵,则向量函数 = _______________是 的满足初始条件 的解;
4.线性齐次微分方程组 的一个基本解组的个数不能多于()
(A) (B) (C) (D)
5. 阶线性齐次微分方程线性无关解的个数不能多于()个.
(A) (B) (C) (D)
6. 设常系数线性齐次方程特征方程根 ,则此方程通解为()
(A) ;(B) ;
(C) ;(D)
7.方程 的特解具有形式()。
(A) ;(B) ;
(A)是; (B)不是;
(C)也许是; (D)也许不是.
23.两个不同的线性齐次微分方程组是否可以有相同的基本解组()
(A)不可以(B)可以
(C)也许不可以(D)也许可以
24.若 是线性齐次方程组 的一个基解矩阵,T为非奇异n×n常数矩阵,那么 T是否还是此方程的基解矩阵.()
(A)是(B)不是
(C)也许是(D)也许不是
18.若 是 的基解矩阵向量函数 = _____ 是 的满足初始条件 的解。
19.若矩阵 具有 个线性无关的特征向量 ,它们对应的特征值分别为 ,那么矩阵 = ______ 是常系数线性方程组 的一个基解矩阵。
20.若 为n阶齐线性方程的n个解,则它们线性无关的充要条件是__________________________________________。
四.求解下列方程组的解
1.解方程组
2.已知 的基解矩阵为 ,求方程组 的通解
3.
4.
5.
6.若 试求方程组 的解 并求expAt
7.试求方程组 =Ax的一个基解矩阵,并计算expAt,其中A为
五.应用题
1.试求yx的经过点M(01)且在此点与直线 相切的积分曲线4
2.求微分方程 的一条积分曲线,使其在原点处与直线 相切。
25.方程组 ()
(A) 个线性无关的解 称之为方程组的一个基本解组
(B) 个解 称之为方程组的一个基本解组
(C) 个线性无关的解 称之为方程组的一个基解矩阵
(D) 个线性相关的解 称之为方程组的一个基本解组
26.若 和 都是 的基解矩阵,则()
(A) = 其中 为非奇异常数矩阵 (B) = 其中 常数矩阵
(A)充分条件; (B)必要条件;
(C)充分必要条件; (D)充分非必要条件.
21.函数 , 在区间[a,b]上的朗斯基行列式在[a,b]上某一点处不为零,是它们在[a,b]上线性无关的()
(A)充分条件; (B)必要条件;
(C)充分必要条件; (D)充分非必要条件.
22.n阶线性非齐次微分方程的所有解是否构成一个线性空间()
(C) ; (D) 。
8.微分方程 的一个特解应具有形式()
(A) (B)
(C) (D)
9.微分方程 的通解是()
(A) ; (B) ;
(C) ; (C) 。
10.容易验证: 是二阶微分方程 的解,试指出下列哪个函数是方程的通解。(式中 为任意常数)()
(A) (B)
(C) (D)
11.微分方程 的一个特解应有形式 ()
21.若 为一阶齐线性方程组的n个解,则它们线性无关的充要条件是__________________________________________。
22.方程组 的_________________称之为 的一个基本解组。
23.若 是常系数线性方程组 的基解矩阵,则expAt =____________。
(A) ; (B) ;
(C) ; (D)
16.方程 的通解是().
(A) ;(B) ;
(C) ;(D) .
17.求方程 的特解时,应令()
; ;
; 。
18.函数 , 在区间[a,b]上的朗斯基行列式恒为零,是它们在[a,b]上线性相关的().
(A)充分条件; (B)必要条件;
(C)充分必要条件; (D)充分非必要条件.
(C)n个解(D)n个线性无关解
、B为 的常数矩阵,则下列式子错误的是 ()
(A) (B)
(C) (D)
二.填空题
1.以 为特解的二阶常系数线性齐次微分方程为。
2.若 为 阶齐线性微分方程的 个解,则它们线性无关的充要条件是__________________________。
3.形如___________________的方程称为欧拉方程。
《常微分方程》第二阶段试题
一.单选题
1.函数 (其中 为任意常数)所满足的微分方程是()
; ;
; 。
2.二阶线性齐次微分方程的两个解 , 成为其基本解组的充要条件是()
(A)线性无关 (B)朗斯基行列式为零 (C) (D)线性相关
3.二阶线性齐次微分方程的两个解 , 不是基本解组的充要条件是()
(A)线性无关 (B)朗斯基行列式不为零 (C) ()线性相关
10.若 为齐线性方程的 个线性无关解,则这一齐线性方程的所有解可表为
11.若 为齐线性方程组的 个线性无关解,则这一齐线性方程组的所有解可表为
12.若 为齐线性方程组的 个线性无关解,则这一齐线性方程组的基解矩阵为
13.若 是 的基解矩阵,则 满足 的解
14.函数组 的伏朗斯基行列式为 _______ 。
4.若 和 都是 的基解矩阵,则 和 具有的关系是__________
5.以 为特解的二阶常系数线性齐次微分方程为。
6. 的通解是
7.若 和 都是 的基解矩阵,则 和 具有的关系是____________
8.若 是 的基解矩阵,则 满足 的解
9.设 的某一解,则它的任一解 ---------------------。
的解,试证 是方程
的解,这里f(x)为已知连续函数。
8.设y1(x)、y2(x)是二阶齐次线性方程yp(x)yq(x)y0的两个解令
证明W(x)满足方程Wp(x)W0
9设y1(x)、y2(x)是二阶齐次线性方程yp(x)yq(x)y0的两个解令
且W(x)满足方程Wpຫໍສະໝຸດ x)W0证明(A) ; (B) ; (C) ; (D)
12.微分方程 的一个特解应具有形式 ()
(A) (B)
(C) (D)
13.微分方程 的一个特解应具有形式()
(A) (B)
(C) (D)
14.微分方程 的通解是()
(A) ; (B) ;
(C) ; (C) 。
15.设线性无关的函数 都是二阶非齐次线性方程 = 的解, 是任意常数,则该非齐次方程的通解是()