《圆柱与圆锥》单元测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆柱与圆锥》单元测试题
一、圆柱与圆锥
1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?
【答案】解:5厘米=0.05米
沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)
沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)
所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).
答:能铺75.36米。
【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的
底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.
2.计算圆锥的体积。
【答案】解:3.14×2²×15×
=3.14×4×5
=62.8(dm³)
【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。
3.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。每半块木头的表面积和体积是多少?
【答案】解:1米=100厘米,
表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)
体积:3.14×(20÷2)2×100÷2=15700(立方厘米)
答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。
【解析】【分析】根据题意,劈开的每半块木头的表面积是原来木头的表面积的一半增加了一个切面的面积,据此代入公式解答即可;劈开的每半块木头的体积是原来木头的体积的一半,据此代入公式解答即可;圆柱表面积S=2×底面积+侧面积=2×3.14×r2+3.14×d×h;截面面积S=dh;体积V=3.14×r2×h。
4.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。
【答案】解:18.84÷3.14÷2=3(dm)
3.14×3²×5×
=3.14×15
=47.1(dm²)
【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。
5.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?
【答案】解:3.14×6×10+3.14×(6÷2)2
=18.84×10+3.14×9
=188.4+28.26
=216.66(平方分米)
答:做这个水桶大约要用铁皮216.66平方分米。
【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
6.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?
【答案】解:沙堆的体积: ×3.14×52×1.8= ×3.14×25×1.8=47.1(立方米)
沙堆的重量:1.7×47.1≈80.07(吨)
答:这堆沙约重80.07吨。
【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。
7.填写下列表格(cm)。
名称半径直径高表面积体积
圆柱54
24
205
圆锥4 2.4——
0.5 4.5——
【答案】【解答】根据计算,填表如下:
名称半径直径高表面积体积
圆柱5104282.6314
12431.412.56
2040531406280圆锥24 2.4——10.048
0.51 4.5—— 1.1775
【解析】【分析】已知圆柱的底面半径和高,求直径,用半径×2=直径,要求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;
已知圆柱的底面直径和高,先求半径,用直径÷2=半径,求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;
已知圆锥的底面直径和高,先求半径,用直径÷2=半径,求圆锥的体积,用公式:圆锥的体
积=×底面积×高,据此列式解答;
已知圆锥的底面半径和高,求圆锥的体积,用公式:圆锥的体积=×底面积×高,据此列式解答.
8.把两根底面积相等高为 2.5m的圆柱形钢材拼成一根圆柱形钢材,表面积减少了16dm2,如果每立方分米的钢材的质量为7.9kg,拼成的这根钢材的质量为多少千克? 【答案】解:2.5m=25dm
16÷2×(25+25)×7.9
=8×50×7.9
=400×7.9
=3160(千克)
答:拼成的这根钢材的质量为3160千克。
【解析】【分析】把两根钢材拼在一起,表面积会减少两个底面积,因此用表面积减少的部分除以2求出一个底面积,用一个底面积乘钢材的总长度求出总体积,用体积乘每立方分米钢材的重量求出总重量。注意统一单位。
9.一个圆锥形小麦堆,底面半径是2米,高是1.5米。如果每立方米小麦重0.75吨,那么这堆小麦一共重多少吨?
【答案】解:×3.14×22×1.5×0.75
=×3.14×4×1.5×0.75
=3.14×4×0.5×0.75
=12.56×0.5×0.75
=6.28×0.75
=4.71(吨)
答:这堆小麦一共重4.71吨.
【解析】【分析】根据题意可知,先求出圆锥形麦堆的体积,用公式:V= πr2h,然后用体积×每立方米小麦的质量=这堆小麦的总质量,据此列式解答
10.一个圆柱形水池底面直径8米,池深3米,如果在水池的底面和四周涂上水泥,涂水泥的面积是多少平方米?水池修好后最多能盛水多少立方米?
【答案】解:涂水泥的面积为:3.14×8×3+3.14×(8÷2)2
=25.12×3+3.14×42
=75.36+50.24
=125.6(平方米)
这个水池可装水:3.14×(8÷2)2×3
=50.24×3
=150.72(立方米)
答:涂水泥的面积是125.6平方米,水池修好后最多能盛水150.72立方米。
【解析】【分析】涂水泥的面积=水池的侧面积+水池的底面积,水池的侧面积=水池的底面周长×高,其中,水池的底面周长=πd;水池修好后最多能盛水的立方米数=水池的体积=π(d÷2)2h。
11.压路机的滚筒是个圆柱,它的宽是2米,滚筒横截面半径是0.6米,如果滚筒每分钟滚动5周,那么1小时可压路多少平方米?
【答案】解:1小时=60分
0.6×2×3.14×5×60
=18.84×60