化学反应工程课件

合集下载

化学反应工程全套教学课件

化学反应工程全套教学课件

可逆反应 不可逆反应
❖ 按照反应分子数分
单分子反应 双分子反应
多分子反应
❖ 按照反应机理分 单一反应
多重反应
平行反应 同时反应 连串反应 平行连串反应 集总反应
平行反应:一例如:氯苯的再氯化 k1
C6H5Cl + Cl2
k2
对-C6H4Cl2 + HCl 邻-C6H4Cl2 + HCl
❖ 本征动力学:又称化学动力学,是在理想条件下研究化学反 应进行的机理和反应物系组成、温度、压力等参数,不包括 传递过程及反应器结构等参数对反应速率的影响。
❖ 宏观反应动力学与本征动力学的区别:宏观反应动力学除了 研究化学反应本身以外,还要考虑到质量、热量、动量传递 过程对化学反应的交联作用及相互影响,与反应器的结构设 计和操作条件有关。
❖传递工程:涉及到动量传递、热量传递和质量传递。
❖工程控制:反应器的运转正常与否,与自动控制水平 相关。
1.4 化学反应工程学中涉及的定义
❖ 宏观反应过程:在工业规模的化学反应器中,化学反应过程 与质量、热量及动量传递过程同时进行,这种化学反应与物 理变化过程的综合称为宏观反应过程。
❖ 宏观反应动力学:研究宏观反应过程的动力学称为宏观反应 动力学。
❖ 停留时间分布:在非理想流动中,不同的质点在反应器中的停 留时间不同,形成停留时间分布。
寿命分布:指质点从进入到离开反应
停留时间分布有两种
器时的停留时间分布
年龄分布:指仍然停留在反应器中的
质点的停留时间分布。
寿命和年龄的关系:寿命是反应器出口处质点的年龄。
❖ 返混:不同停留时间的质点或粒子的混合称为返混,又称为 逆向混合。是不同年龄质点的混合,逆向是时间的概念上的 逆向,不同于一般的搅拌混合。

《化学反应工程》PPT课件

《化学反应工程》PPT课件
14
解答: 图1
图2
(1)可逆反应
可逆反应
(2)放热反应
吸热反应
(3)M点速率最大,A点速率最小 M点速率最大,A点速率最小
(4)O点速率最大,B点速率最小 H点速率最,B点速率最小
15
【例题】在一定空时(空时=体积/流量)的全混釜中进行如 下反应,求R产量最大时的反应温度(注意和活化能联系起来)。
=_______。
A. 0
B. 1 C. 2 D. 3
反应 A + B → C, 已知k = 0 .15 s-1 ,则反应级数 n=_______。
A. 0
B. 1 C. 2 D. 3
8
•习题:丙烷的热分解反应式为:
C3H8(A)→C2H4(R)+CH4(S)
其速率方程式为:
dpA dt
k
pA
dpA dt
2p (1xA)2
dxA dt
k1xA 1xA
p
dxA dt
k 2(1xA)(1xA)
10
其三,求解V~t的关系:
dV FRT
d v tp p F 0 ( 1 y A 0A x A ) v 0 ( 1 y A 0A x A ) v 0 ( 1 x A )
将上述得到的二式相除,得到V~xA的关系:
dV 2 v0(1xA ) 2 v0 1 dA xk (1xA )1 (xA ) k 1xA
积分上式,得:
V 2v0 xA dxA 2v0 ln 1 k 0 1 xA k 1 xA
2 2.2 21 04
1
1.11104
ln 1 0.5
2.77m3
11
【例题】在液体中,反应物A按下式生成R和S:

化学反应工程课件

化学反应工程课件

3、简化模型的要求:
(1)不失真; (2)能满足应用的要求;
(3)能适应当前实验条件,以便进行模型鉴别和参数估值; (4)能适应现有计算机的能力;
4 、基础数学模型
1)化学动力学模型:排除传递过程因素后描述化学反应速
率、物料温度和浓度的数学关系。传统上是物理化学的 研究领域,侧重于研究反应机理;化学反应工程侧 重于 表达三者的数学关系,而直接加以应用。
(3)反应过程的优化:投资少、效率高、生产强度大、产 品质量好。 设计最佳化——反应器体积最小,投资少。 操作最佳化——管理、控制最佳化,最佳操作参数。
(4)反应器的工程放大: 对现成的生产工艺,进行生产规模放大; 新产品研发:小试——中试——扩大试验;
反应过程开发放大方法
• 逐级经验放大法
• 相似放大法
1 、化学工程发展史及化学反应工程学科的形成
• 化学工程学科体系的基本内容:
化学工程共同的现象,可概括为“三传一反”,即动 量传递、热量传递、质量传递及化学反应,其学科形成了 以传递过程及化学反应工程为核心的学科体系(包括化工 热力学、化工单元过程、分离工程、化工系统工程等)
过程工程
• 过程工程(process engineering)的概念是对“化学工程” 概念的拓展。化学工程学在发展过程中不断向科技新领域 渗透拓展,应用对象已经涵盖了所有与物质的物理、化学 加工过程相联系的工业部门,这个部门称为“过程工业” (process industry),包括石油炼制、化学工业、能源 工业、航空、军事、冶金、环保工业、建材、印染、生物 技术、医药、食品、造纸等工业部门。
2 、化学反应器
在这类设备中发生了化学反应,通过化学反应改变了物 料的化学性质。 化工生产过程是由物理过程和化学反应过程组成的。化 工设备分为“物理型”和化学反应器两大类。在化学反应器 中发生化学反应,由原料转换成产物,是化工生产的核心设 备。

《化学反应工程》课件

《化学反应工程》课件

部分模化法
将反应器的一部分进行放大或缩小, 以研究其放大效应或缩小效应。
相似放大法
通过相似理论来预测大试实验结果, 需要保证相似条件得到满足。
04
流动与混合
流动模型与流型
1 2
层流模型
适用于低雷诺数的流体,流速较低,流体呈层状 流动。
湍流模型
适用于高雷诺数的流体,流速较高,流体呈湍流 状态。
3
过渡流模型
化学反应影响流动特性
化学反应释放的热量和产生的压力变化会影响流体的流动状 态。
流动与混合实验技术
实验设备
包括管式反应器、搅拌釜式反应器、喷射式反应器等。
实验方法
通过测量流体的流速、压力、温度等参数,分析流动与混合对化学反应的影响 。
05
传递过程与反应器的热力学基础
传递过程基础
传递过程定义
物质和能量的传递是自然界和工程领域中普遍存在的现象,传递 过程是研究物质和能量传递规律的科学。
通过调节进料浓度来控制反应物浓度,保证反应的稳定性和效率。
催化剂选择与优化
选择合适的催化剂并优化其用量,提高反应效率和选择性。
反应器放大与缩小
经验放大法
根据小试实验数据和经验公式,通过 比例放大来预测大试实验结果。
数学模拟放大法
通过建立数学模型来模拟反应过程, 并利用计算机技术进行放大和缩小实 验。
管式反应器
适用于连续操作和大量生产,传热效果好, 适用于高粘度液体和悬浮液。
流化床反应器
适用于固体颗粒的反应,传热效果好,适用 于大规模生产。
反应器设计基础
反应动力学
研究反应速率和反应机理,为反应器设计提 供基础数据。
热力学
研究反应过程中的能量变化和物质平衡,为 反应器设计提供热力学依据。

化学反应工程课件-PPT

化学反应工程课件-PPT

k/
k
K
1/ p
E
E
1
H
r
ln
k
ln
k
1
ln
K
p
d ln k dT
d ln k dT
1
d ln K p dT
1
H r 1R4T 2
E
E
1
H r
对于吸热反应,ΔHr>0 对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
r k f (X A) k g(X A)
r
dk
dk
( T ) xA f ( X A ) dT g( X A ) dT
kcA0 (1 X A ) (cB0
B A
cA0 X A )
(2.48)
XA——t
● 变
AA BB PP
ci
ni V
XA

过 程
* rA kcAcB
1 V
dnA dt
kcA cB
30
AA BB PP
组分
A B
反应前(XA=0)
nA0
1 j A1 2 j A2 ij Ai 0 rj
1M A1 2M A2 iM Ai 0 rM
M
i ij r j (*) j 1
rj

i
●忽略次要反应,确定独立反应数M;
●测M个组分的 i
●对每个组分按(*)式,建立M个线 性方程;
●求解代数方程组,得 rj.
22
例:乙苯催化脱氢反应可以用下列方程式表示
不受其他反应的反应组分浓度的影响。
特殊 情况
●多相催化反应; ●变容气相反应.

化学反应工程全套课件完整版ppt全册电子教案

化学反应工程全套课件完整版ppt全册电子教案

04
动力学方程式
定量描述反应速
率与影响因素之
间的关系式。
反应速率与影响反应
速率的影响因素之
间的函数表达式
r f (T、c)
均相反应:本征动力学方程
非均相反应:宏观动力学方程
反应速率
定义:在反应系统中,某一物质在单位时间,单位反 应体系内的变化量。
变化量
反应速率
反应时间 (反应体系)
注意:
1、上述定义无论对反应物和产物均成立。
若为反应物则为消失速度 .
若为产物则为生成速度.
1 dnA
V dt
1 dni
ri
V dt
(rA )
反应速率
2、反应速率恒为正值
1 dni
ri
V dt
3、速度的表示形式和化学计量系数有关
对于 A A B B P P S S
05
工业指标
反 应 程 度
对于下列化学反应:
AA BB RR S S
初始:
某一时刻:
nA0
nA
nB0
nB
nR0
nR
ns0
ns
反应的量 nA- nA0 <0 nB- nB0 <0 nR- nR0>0 nS- nS0>0
其中 为化学计量系数。对反应物而言为“-”,对生成物而
I
言为“+”。
3. 示踪剂必须是能用简便而又精
确的方法加以确定的物质
4.示踪剂尽量选用无毒、不燃、无
腐蚀、价格便宜的物质






03
反应器流体流动
脉冲法
过 程:
在反应器中流体达到定态流动后,在极短的时间内将示踪物注入进料中,然后立刻

化学反应工程课件

化学反应工程课件

The object of the course
▪ 课程目标:反应器分析与设计并重,结 合实际、结合工艺。
▪ 授课方法:讲课与讨论相结合。 ▪ 考试方式:考试与/或作业结合平时成绩
化学反应工程 (Chemical Reaction Engineering)
▪ 主要参考书 ▪ 《化学反应工程》,陈甘棠 主编,化学工业出版社 ▪ 《化学反应工程》,朱炳辰 主编,化学工业出版社
化学与化工是自然科学技术发展的基 础学科之一
化学是研究物质的组成、结构、性质及其变化规律和变化过程中能 量关系的学科
化工是运用化学原理和机械原理,将物质的组成、结构、性质变成目 标产品的过程工程学科
▪ 化学 (Chemistry)
▪ 无机化学 ▪ 分析化学
▪ 物理化学 ▪ 高分子化学与物理
▪ 化学工程与工艺 (Chemical Engineering and Technology)
特征:反应器高度为直径的数倍以至十几倍。 内部常设置能增加两相接触的构件,如填料,筛板等。 适用于两种流体相反应的过程。如气液反应、液液反应。
1.4 工业反应器的分类
第一章 绪 论
1.4.4 固定床反应器
▪ 特征:反应器内填充有固定不动的固体颗粒。 可以是催化剂,也可以是固体反应物。 适用于气固催化反应,固相加工反应,应用非常广泛。
第一章 绪 论
1.1 化学反应工程学的学科历史
第一章 绪 论
30年代,石油化学工业刚刚兴起。提出了“单
元操作”和“单元过程”等概念。
单元操作——流体输送,蒸馏,干燥等专管物
理工序。
单元过程——磺化,水解,加氢等专管化学反
应工序。
1937年,丹克莱尔较系统的阐述了“扩散,流

化学反应工程PPT演示课件

化学反应工程PPT演示课件
方程。
非均相模型(考虑流体和粒子表面间 1.按动力学 的拟温均度相和模浓型度(差忽)略流体和粒子表面间
的温度和浓度差,假设流体与粒子为 浑然一体的均相)
2.床层温度二 一维 维模 模型 型( (轴 平向 推和 流径 模向 型) 和轴向扩散模型)
3.按流体流动非 理理 想想 流流 动动 模模 型型
26
• 解:①求颗粒的平均直径。
dS
1 xi
0.60 0.25 0.15 1 3.96mm 3.96103 m 3.40 4.60 6.90
di
• ②计算修正雷诺数。
Re m

g
dSG
1 B

3.96 103 6.2
2.3105 1 0.44

dV
19
•(2)外表面积当量直径: (非球形颗粒折合 成相同外表面积的球形颗粒应当具有的直径)
球形外表面积:SS


d 2
2


SS π
1
2

da
• (3)比表面积当量直径: (非球形颗粒 折合成相同比表面积的球形颗粒应当具 有的直径)
球形比表面积:
SV

SS VS
-P f
L de

um2 2 B 2
=f
L
2 3
.
(1


B

B
)
.d
S

um2 2 B2

=3 f 4
L dS
1B

3 B

u m2

f L dS
1B

3 B

u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸热反应
r E
E
( T)xAR2T kf(X A )R2T kg(X A )
r≥0
kf(XA)kg(XA)
吸热反应
EE
RET 2 kf(XA)RET 2 kg(XA)
r 0 T X A
可逆吸热反
应与温度及 XA 转化率的关
平衡曲线
系图
15
可逆 放热 反应
r≥0 kf(XA)kg(XA)
r
r 1 dni 1 d iV dt V dt
恒容 rAV 1d(c dA V t)ddA ctc V Ad dV t 过程
rA
dcA dt3
流动床反应器(定常态过程)
FA0
FA
M
Vr
FA
dVr
FA+dFA
连续反应器 反应速率
rA
dFA dVr
多相反应 反应速率
r'A
dFA da
r'
'
A
dFA dW
1
对于吸热反应,ΔHr>0
EE
Hr
对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
rkf(XA)kg(XA)
r
dk
dk
(T)xA f(XA)dTg(XA)dT

dk kE dT RT 2
dk kE dT RT 2
r E
E
( T)xAR2T kf(X A )R2T kg(X A )14
rA aV r 'A br ''A
4
例2.1 在350℃等温恒容下纯丁二烯进行二聚反应,测 得反应系统总压 p 与反应时间 t 的关系如下:
t/min 0 6 12 26 38 60 p/kPa 66.7 62.3 58.9 53.5 50.4 46.7 试求时间为26min时的反应速率。
5
11
2.3 温度对反应速率的影响
rf1 (T )f2(c ) k2(c f)
阿累尼乌斯方程 kAexp E/(R)T
指前因子
活化能
k又称为比反应速率,其意义是所有反应组分 的浓度均为1时的反应速率。它的因次与速率 方程的形式和反应速率及浓度的因次有关。
lnklnAERT
lnk1T
气相反应
kc(R) T kp(R/T p )ky 12
设 2A+B ↔ R 的反应机理为 (1) A ↔ A* (2) A* + B ↔ X (3) A* + X ↔ R
10
例2.2 等温下进行醋酸(A)和丁醇(B)酯化反应 CH3COOH+C4H9OH ↔ CH3COOC4H9+H2O
醋酸和丁醇的初始浓度分别为0.2332和1.16kmol/m3,测 得不同时间下醋酸转化量,试求该反应的速率方程。
例:2NO+O2→ 2NO2
机理(1): NO+NO=(NO)2
(NO)2+O2→ 2NO2
机理(2): NO + O2 = NO3 NO3 + NO → 2NO2
rkcN2 OcO2
1. 某些非基元反应,其速率方程符合质量作用定律;
2. 不同机理可以导出相同形式的速率方程;
3. 动力学实验数据与速率方程相符合,仅是证明机理
2.2 反应速率方程
定 溶剂、催化剂和压力一定的情况 义 下,描述反应速率与温度和浓度
的定量关系,即速率方程或动力 学方程。
rfc,T
基元反应
AABB RR rAkcAAcBB
非 基
APD
元 反 A A* P
应 A* D
rArA k2c A
c*Ac p cA K1
c*A K1cA cP
r A k 2 K 1 c A /c P kA /c c P 6
一定要注明反应速率是按哪一个组分计算的。
2
AABBRR rAV 1ddAn ,trBV 1d dBn ,trRV 1ddRnt
各组分r
间关系
dA :n dB :n dR nA :B :R
( r A ):( r B ):r R A :B :R
反应速率 普遍化 定义式
rA
A
rB
B
rR R
Top
Te
1 RTe ln E
E E E
当反应达到平 衡时,r=0
g(XA) k Aexp(E/RTe)
f(XA)
k
Aexp(E/RTe)
17
可逆放热 反应的反 应速率与 温度及转 化率的关 系图
反应速率大小次序: r4> r3> r2> r1 每一条等速率线上都有一极点,此点转化率最高,
第二章 反应动力学基础
天津大学化工学院 反应工程教学组
1
2.1 化学反应速率
定义:单位时间,单位体积反应物系中某一反应组分 的反应量。
AABB RR
rAV 1d dAn ,trBV 1d dBn ,trRV 1d dRn t
1. 对反应物dn/dt<0,对产物dn/dt>0 2. 按不同组分计算的反应速率数值上不等,因此
正确的必要条件,而不是充要条件。
7
速率方程经验形式 幂函数型速率方程
rf1(T)f2(c)
N
rkcAAcBB...k cii i1
可逆反应
N
N
rk cii k cii
i1
i1
AABB RR
rA kc A A c B B c R R kcA A cB B cR R 8
平衡时,r=0 kc AAc BBc RR kcA AcB BcR R
c c c AA BB RR ABR
k/k
cAAcBBcRR Kc
1
A AAB BBR RR
A B C
cA cB cR k/k
cAA/cBB/cRR/Kc1/
9
A AAB BBR RR1
k/ k KC1/
1. 正逆反应的反应级数之差与相应的化学计量系 数之比为一定值;
2. 化学计量数ν,为速率控制步骤出现的次数。
对应的温度即为Top 。连接所有等速率线上的极值点
所构成的曲线,叫最佳温度曲线。
18
例2.3 在实际生产中合成氨反应
N2+3H2 ↔ 2NH3
(A)
是在高温高压下采用熔融铁催化剂进行的。合成氨
●正逆反应活化能与反应热的关系
lnklnAERT
d ln k dT
E RT2
d ln k E
dT RT2
d ln k E
dT RT2
dln kdln kEE
d T d TR2TR2T
k/ k K1p/
EE
1Hr
ln kln k1lnKp
dd lnk Tdd lnk T1dldnK Tp1 R 13H2 rT
可逆放热反应
EE
r 0,0,0 TXA
r
可逆放热 反应反应 速率与温 度的关系
T op
T
16
●最佳反应温度Top
r E
E
( T)xAR2T kf(X A )R2T kg(X A )
0
Ekf(XA)Ekg(XA)0
EAexp(E/RTop) g(XA)
EAexp(E/RTop)
f (XA)
相关文档
最新文档