函数的对称性与函数的图象变换总结
函数的对称性与周期性(归纳总结)
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数的对称性与函数的图象变换
(1)y=2-x (2)y=-2x (3)y=-2-x
y
y
y
1 Ox
1
O
-1
x
1
O
-1
x
函数图象对称变换的规律:
1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对称 4.函数y=f(x)与函数y=f(2a-x)的图像关于直线 x=a
,0
) 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x),
则函数图像关于点 (
a+b 2
,C
) 对称
轴对称 函数图像关于直线x=0对称
中心对称性 函数图像关于(0,0)中心对称
-x
x
f(-x)=a对称
函数图像关于(a,0)中心对称
x=a
y=f(x)图像关于(0,0)中心对称
f(-x)=-f(x)
y
-x
o xa
x
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(a,0)中心对称
f(x)=-f(2a-x)
y
2a-x o
a
xx
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(a,0)中心对称
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
关于直线 x=5 对称.
问题2. 设f(x)= 1 (x>0),求函数y=-f(x)、y=f(-x)、
x
y=-f(-x)的解析式及其定义域,并分别作出它们的图象。
函数对称性的总结
函数对称性的总结函数是数学中十分重要的概念之一,它描述了两个集合之间的关系。
而在函数的定义中,有一种特殊的性质被广泛研究和应用,那就是对称性。
函数的对称性是指函数图像关于某个中心轴或中心点具有对称性。
在实际问题中,对称性可以帮助我们简化问题、提取信息,以及更好地理解函数的性质。
在本文中,将对函数对称性进行总结和阐述。
函数对称性可以分为水平对称、垂直对称、中心对称以及零对称四种类型。
水平对称是指函数图像关于x轴对称。
具体而言,若函数f(x)满足对于任意x,f(x) = f(-x),则函数f(x)是水平对称的。
例如,函数y =x^2是一个典型的水平对称函数,其图像关于x轴对称。
水平对称函数在图像上旋转一定角度后,仍然与原图像重合,这种性质可以简化问题的解决过程。
比如在研究汽车的加速度与减速度时,我们可以利用水平对称性简化计算,因为加速度与减速度的变化规律是相似的。
垂直对称是指函数图像关于y轴对称。
具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是垂直对称的。
例如,函数y =sin(x)是一个典型的垂直对称函数,其图像关于y轴对称。
垂直对称函数在图像上左右移动一定距离后,仍然与原图像重合。
这种性质在处理对称结构时非常有用。
例如,在纺织品设计中,我们可以利用垂直对称性确定图案的左右对称部分,以减少设计成本和提高生产效率。
中心对称是指函数图像关于某个点对称。
具体而言,若函数f(x)满足对于任意x,f(x) = f(-x + a),其中a为常数,则函数f(x)是中心对称的。
例如,函数y = e^(-x^2)是一个典型的中心对称函数,其图像关于原点对称。
中心对称函数在图像上绕某个点旋转一定角度后,仍然与原图像重合。
这种性质在物理学中十分重要。
例如,在研究电场的分布时,我们可以利用中心对称性确定电场的中心位置和形状。
零对称是指函数图像关于原点对称。
具体而言,若函数f(x)满足对于任意x,f(x) = -f(-x),则函数f(x)是零对称的。
函数对称性的总结
函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。
理解和应用函数对称性有助于我们更好地理解和解决数学问题。
本文将对函数对称性的概念、性质和应用进行总结。
函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。
具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。
函数对称性可以分为轴对称、中心对称和周期对称等。
1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。
轴对称函数的图像具有左右对称的特点。
比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。
2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。
中心对称函数的图像具有上下左右对称的特点。
比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。
3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。
即,在给定的周期内,函数的某个值与另一个值相等。
周期对称函数的图像在周期内具有相似的形状和变化趋势。
比如,y = sin(x) 就是一个周期对称函数,其周期为2π。
函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。
通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。
2.函数对称性能够简化函数的分析和计算过程。
根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。
3.函数对称性能够提供问题求解的启示。
函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。
函数对称性的总结
函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。
在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。
首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。
具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。
这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。
常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。
这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。
2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。
这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。
3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。
这意味着函数的图像在x轴上对称,即图像关于x轴对称。
函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。
例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。
2. 对称性可以帮助我们发现函数的特点。
例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。
现在,让我们来看看如何判断一个函数是否具有对称性。
一般来说,我们可以通过一些简单的方法来进行判断。
1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。
例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。
2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。
我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。
3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。
函数对称性公式大总结
函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。
函数对称性有多种形式,如轴对称性、中心对称性等。
本文将对函数对称性的一些常见公式进行总结,并提供示例说明。
2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。
设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。
2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。
•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。
偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。
3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。
设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。
3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。
•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。
•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。
4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。
函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。
4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。
5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。
函数对称性知识点归纳总结
函数对称性知识点归纳总结一、函数的对称性概念1.1 函数的定义在数学中,函数是一种将输入值映射到输出值的关系。
它通常表示为f(x),其中x是输入值,f(x)是输出值。
函数可以用数学公式、图表、图形等方式来表示。
1.2 函数的对称性函数的对称性是指在某种变换下,函数图像保持不变的性质。
这种变换可以是关于坐标轴的对称、关于原点的对称、关于直线或平面的对称等。
函数的对称性可以分为以下几种:- 偶函数:如果对任意的x,有f(x) = f(-x),那么函数f(x)是关于y轴对称的,称为偶函数。
偶函数的图像在y轴对称。
- 奇函数:如果对任意的x,有f(x) = -f(-x),那么函数f(x)是关于原点对称的,称为奇函数。
奇函数的图像关于原点对称。
- 周期函数:如果存在一个正数T,使得对任意的x,有f(x+T) = f(x),那么函数f(x)是周期函数。
周期函数的图像在某一段距离上重复。
1.3 示例以函数f(x) = x^2为例,它是一个偶函数。
因为对任意的x,有f(x) = x^2 = (-x)^2 = f(-x),所以函数图像关于y轴对称。
又如函数f(x) = sin(x),它是一个奇函数。
因为对任意的x,有f(x) = sin(x) = -sin(-x) = -f(-x),所以函数图像关于原点对称。
二、函数对称性的判定与应用2.1 函数对称性的判定在判断一个函数是否具有对称性时,可以通过以下方法进行判定:- 偶函数:验证函数f(x)是否满足f(x) = f(-x)即可判断是否为偶函数。
- 奇函数:验证函数f(x)是否满足f(x) = -f(-x)即可判断是否为奇函数。
- 周期函数:通过周期函数的定义,验证函数f(x)是否满足f(x+T) = f(x)即可判断是否为周期函数。
2.2 函数对称性的应用函数对称性在数学分析、物理学、工程学等领域中有着广泛的应用。
以下是函数对称性的一些应用场景:- 在积分计算中,利用函数的对称性可以简化积分的计算。
函数对称性公式大总结
函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。
函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。
本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。
2. 对称轴对称轴是函数对称性的一个重要概念。
对称轴是指函数图像关于某一直线对称。
对称轴上的点与其对称点关于对称轴对称。
对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。
2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。
对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。
常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。
对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。
常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。
3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。
常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。
常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。
函数与像的对称性与变换
函数与像的对称性与变换函数与像的对称性与变换是数学中一个重要的概念和技巧,它主要用于研究函数图像的性质与特点。
通过对函数的变换和对称性的研究,可以更深入地了解函数的行为和特性,从而解决一些实际问题。
一、函数的对称性函数的对称性是指函数图像在某些操作下表现出的某种规律性。
常见的函数对称性有:奇函数、偶函数、周期函数和一般函数。
1. 奇函数:若对于任意x,有f(x)=-f(-x),则函数f(x)为奇函数。
奇函数的图像以原点为对称中心,即左右对称。
2. 偶函数:若对于任意x,有f(x)=f(-x),则函数f(x)为偶函数。
偶函数的图像以y轴为对称轴,即左右对称。
3. 周期函数:若存在正数T,对于任意x,有f(x+T)=f(x),则函数f(x)为周期函数。
周期函数的图像呈现出某种规律的重复性。
4. 一般函数:既不满足奇函数也不满足偶函数性质的函数称为一般函数,它的图像没有明显的对称性。
二、函数的变换函数的变换是指通过一系列的操作,改变函数图像的位置、形状、大小等特征。
常见的函数变换操作包括平移、伸缩、翻转和旋转等。
1. 平移:函数的平移是指将整个函数图像沿着坐标轴的方向移动一定的距离。
平移有水平平移和垂直平移两种情况,分别用平移量a和b 来表示。
2. 伸缩:函数的伸缩是指将整个函数图像在坐标轴的方向上进行拉伸或压缩。
伸缩有水平伸缩和垂直伸缩两种情况,分别用伸缩因子k 和h来表示。
3. 翻转:函数的翻转是指将整个函数图像关于某一直线对称。
翻转有水平翻转和垂直翻转两种情况,分别用翻转轴x=a和y=b来表示。
4. 旋转:函数的旋转是指将整个函数图像绕坐标原点或者某一点旋转一定的角度。
旋转用旋转中心和旋转角度来表示。
三、应用实例函数与像的对称性与变换在实际问题中有着广泛的应用。
以下举几个例子进行说明。
1. 对称轴的求解:利用函数的对称性,可以通过观察函数的图像来推断函数的对称轴,并进一步求解问题。
例如,通过观察一条曲线图像在x轴的对称性,可以得出该函数是偶函数,进而得到函数的性质和解析式。
高一数学《函数的对称性》知识点总结
高一数学《函数的对称性》知识点总结高一数学《函数的对称性》知识点总结一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P'(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。
故点P'(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P'关于点A(a,b)对称,充分性得征。
推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0 定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)定理 3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。
②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。
③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4a-b是其一个周期。
①②的证明留给读者,以下给出③的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f2a-(2b-x)]=2c………………(*)又∵函数y=f(x)图像直线x=b成轴对称,∴f(2b-x)=f(x)代入(*)得:f(x)=2c-f2(a-b)+x]…………(**),用2(a-b)-x代x得f2(a-b)+x]=2c-f4(a-b)+x]代入(**)得:f(x)=f4(a-b)+x],故y=f(x)是周期函数,且4a-b是其一个周期。
知识点:函数的对称性总结
知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。
高中函数对称性的总结
高中函数对称性的总结
什么是函数的对称性?对称可以被定义为当某一对象被某种对
称变换(包括旋转,移动等)后,依然能够得到完全相同的对象。
函数的对称性指的是在函数的几何图像上,经过某种变换,图形的形状仍然不变。
在函数的对称性中,常见的有偶函数和奇函数。
偶函数是指函数图形以y轴中点为中心对称,也就是说,把函数图形经过水平翻转得到的图形与原函数图形完全相同。
而奇函数是指函数图形以极点为中心对称,也就是说,把函数图形经过垂直翻转得到的图形与原函数图形完全相同。
此外,在函数的对称性中,还有可以定义为函数的X轴对称性和Y轴对称性。
X轴对称性是指函数图形以X轴中点为中心对称,也就是说,把函数图形经过垂直翻转得到的图形与原函数图形完全相同。
而Y轴对称性是指函数图形以Y轴中点为中心对称,也就是说,把函数图形经过水平翻转得到的图形与原函数图形完全相同。
除了以上这些,我们还可以从参数的角度来看函数的对称性,有时候我们会将函数的参数的取值范围改变,会发现函数的图形也会发生变化,比如函数形如y=f(x+a)的参数a的取值变化,会使得函数的图形发生水平移动的变化,当a的取值为负值时,可以使得函数的图形整体向左移动,当a的取值为正值时,可以使得函数图形整体向右移动。
综上所述,高中函数对称性主要有偶函数,奇函数,X轴对称函
数,Y轴对称函数,以及参数变换引起的函数对称性等。
这些函数的对称性都是高中函数的有趣的特点,并且这些特性也可以帮助我们更好地理解函数,从而更好地解决函数相关的数学问题。
函数的对称性与函数的图象变换课件
轴对称
点对称
如果函数$f(x)$满足$f(k-x) = f(k+x)$ ,则称函数$f(x)$具有点对称性。
如果函数$f(x)$满足$f(-x) = f(x)$, 则称函数$f(x)$具有轴对称性。
函数对称性的分类
01
02
03
偶函数
如果对于定义域内的任意 $x$,都有$f(-x) = f(x)$ ,则称函数$f(x)$为偶函 数。
THANKS
感谢观看
详细描述
在平面坐标系中,顺时针旋转函数图像意味 着将每个点按照顺时针方向移动一定的角度 。具体来说,如果一个点在坐标系中的坐标 为(x, y),经过顺时针旋转θ角度后,其新的 坐标变为(x', y'),其中x' = x cosθ - y sinθ ,y' = x sinθ + y cosθ。
逆时针旋转
一个函数如果既是奇函数又是偶函数,则被称为既奇又偶函 数。其定义是对于所有x,有f(-x) = -f(x)当且仅当f(-x) = f(x) 。例如,函数y = sin(x)是一个既奇又偶函数,其图像关于原 点对称。
04
函数图象的翻折变换
沿x轴翻折
总结词
当函数图像沿x轴翻折时,图像在x轴 两侧对称。
$y$轴。
对称中心的性质
如果函数$f(x)$具有点 对称性,则其对称中心
为$(k,0)$。
偶函数的性质
偶函数的图像关于$y$ 轴对称。
奇函数的性质
奇函数的图像关于原点 对称。
02
函数图象的平移
向左平移
总结词
当函数图像向左平移时,图像上 的每一个点都沿着x轴负方向移动 。
详细描述
对于函数$y = f(x)$,若图像向左 平移$a$个单位,则新的函数解析 式为$y = f(x + a)$。
函数对称的知识点总结
函数对称的知识点总结函数对称是数学中的一个重要概念,它在代数、几何和分析等各个领域都有着重要的应用。
函数对称可以由函数的图像、函数表达式和函数的性质来描述。
在本文中,我们将探讨函数对称的各种类型和性质,并且将介绍函数对称在各种数学问题中的应用。
一、基本概念1.1 函数的对称性在数学中,函数的对称性是指函数图像相对于某个直线或者点的对称性质。
常见的对称性包括关于x轴的对称、关于y轴的对称、关于原点的对称以及关于直线y=x的对称等。
1.2 函数的图像和对称性根据函数的图像可以很直观地判断函数的对称性。
例如,当函数的图像关于y轴对称时,函数的表达式一般可以表示为f(x)=f(-x);当函数的图像关于x轴对称时,函数的表达式一般可以表示为f(x)=-f(-x);当函数的图像关于原点对称时,函数的表达式一般可以表示为f(-x)=-f(x)。
1.3 函数的性质和对称性函数的对称性也可以由函数的性质来判断。
例如,奇函数具有关于原点对称的性质,即f(-x)=-f(x);偶函数具有关于y轴对称的性质,即f(-x)=f(x)。
二、函数的对称类型2.1 奇函数奇函数是指满足f(-x)=-f(x)的函数。
奇函数的图像关于原点对称。
常见的奇函数包括正弦函数、余弦函数、和函数等。
2.2 偶函数偶函数是指满足f(-x)=f(x)的函数。
偶函数的图像关于y轴对称。
常见的偶函数包括幂函数、指数函数、对数函数等。
2.3 周期函数周期函数是指函数f(x)满足f(x+T)=f(x),其中T为正常数。
周期函数的图像在某个区间上有重复的规律。
常见的周期函数包括正弦函数、余弦函数、正切函数、三角函数等。
2.4 对称关于y轴的函数函数关于y轴对称的性质是指f(x)=f(-x)。
常见的对称关于y轴的函数包括二次函数、幂函数、指数函数等。
2.5 对称关于x轴的函数函数关于x轴对称的性质是指f(x)=-f(-x)。
常见的对称关于x轴的函数包括一次函数、双曲函数、指数函数等。
函数对称性的总结
参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。
函数对称性的总结
函数对称性的总结1. 两个关于函数图象对称性的结论1.x=02.x=(a+b)/2.∵y=f(a+x)=f[(a+b)/2+(a-b)/2+x]=f[(a+b)/2+t],其中t=(a-b)/2+x,而y=f(b-x)=f[(a+b)/2-(a-b)/2-x]=f[(a+b)/2-((a-b)/2+x)]=f[(a+b )/2-t],所以:函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=(a+b)/2对称。
楼主你好:2的答案就是x=(a+b)/2.不是x=(b-a)/2.若是后者,当a=b时对称轴就成x=0了,这明显错误。
其实当a=b时对称轴明显是x=a,与我这里的答案符合。
2. 函数对称性结论是怎样推出的周期函数是指函数值随自变量的变化而呈周期性变化,正弦、余弦函数都是周期函数.表达式是f(x+T)=f(x)(x取任意值),假如一个函数能找到满意这一条件的T,那么这个函数就叫做周期函数,周期为T.f(1+x)=f(1-x) (1+x)+(1-x)=2 也就是说在这个函数中假如两个自变量的平均值为1,则它们的函数值相等,也就是此函数关于x=1对称.同理,f(2+x)=f(2-x),(2+x)+(2-x)=4 也就是说在这个函数中假如两个自变量的平均值为2,则它们的函数值相等,也就是此函数关于x=2对称.假如一个函数同时具备两个对称轴,那么,相临的轴的间距就是函数的半个周期,你可以对比正弦、余弦函数的图像发觉这个规律.这样,本题的函数周期为2,那么函数必定还关于x=0对称,所以函数是偶函数.依据定义或者画图象,不过画图象比较麻烦,一般选择用定义3. 求真正有用的函数周期性对称性结论对于函数y=f(x)周期性1.关于x=a and x=b(a>b) 都对称函数周期2(a-b)2.关于(a,0) (b,0)都对称周期同上3.关于(a,0)和x=b 都对称周期是4(a-b)对称性1. f(a+x)=f(b-x) 那么y=f(x)的图像关于y=(a+b)/2对称2.f(a-x)=-f(b+x),那么y=f(x)的图像关于((a+b)/2 ,0 )对称…………许多可以搜一下,更具体的现在考得不多了我感觉开辟思路吧。
函数对称性知识点归纳总结
函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。
本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。
希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。
1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。
如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。
常见的函数关于x轴对称的例子有二次函数和正弦函数。
2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。
如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。
常见的函数关于y轴对称的例子有二次函数和余弦函数。
3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。
如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。
常见的函数关于原点对称的例子有奇次函数和正切函数。
除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。
这些对称性在函数的研究和应用中都有重要的意义。
函数对称性的应用十分广泛。
其中一项重要的应用是利用对称性来求函数的零点。
如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。
这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。
同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。
函数图像的变换
函数图像的变换1、平移变换函数y = f(x)的图像向右平移a个单位失掉函数y = f(x - a)的图像;向上平移b个单位失掉函数y =f(x)+ b 的图像 ;左平移a个单位失掉函数y = f(x + a)的图像;向下平移b个单位失掉函数y =f(x)- b 的图像(a ,b>0)。
2、伸缩变换函数 y = f(x)的图像上的点坚持横坐标不变纵坐标变为原来的k倍(01时,伸)失掉函数 y = k f(x)的图像;函数 y = f(x)的图像上的点坚持纵坐标不变横坐标变为原来的1/k倍(01时,缩)失掉函数y = f(k x)的图像(k>0,且 k ≠1)。
3、对称变换(1)函数y = f(x)的图象关于y轴对称的图像为 y =f(-x);关于x轴对称的图像为y =-f(x);关于原点对称的图像为y =-f(-x)。
(2)函数y = f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y =2b-f(x);关于点(a,b)中心对称的图像为y =2b-f(2a-x)。
(3)相对值效果①函数 y =f(x)x轴及其上方的图像坚持不变,把下方图像关于x轴对称的翻折到上方,再把下方的图像去掉失掉函数 y =| f(x)|的图像;②函数 y =f(x)y轴及其右侧的图像坚持不变,把左侧图像去掉,再把右侧图像关于y轴对称的翻折到左侧失掉函数 y =f(| x|)的图像;③函数y = f(x)先用第②步的方法失掉函数y =f(| x|)的图像,再平移a个单位失掉函数y =f(|x-a|)图象。
我们还可以失掉下面的结论:(1)函数y = f(x)与y =f(2a-x)图象关于直线x = a 对称;(2)函数y = f(x)与y =2b-f(x)图象关于直线y = b 对称;(3)函数y = f(x)与y =2b-f(2a-x)图象关于点(a,b)对称;附注:下面是有关函数图象自身的对称性的一些结论,我们把它放在这里来对比一下:(1)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=f(a -x)成立,那么函数 f(x)的图像关于x=a对称;(2)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=f(2a -bx)成立,那么函数 f(x)的图像关于x=a对称;(b≠0)(3)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=-f(a -x)成立,那么函数 f(x)的图像关于点(a,0)对称;(4)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=-f(2a -bx)成立,那么函数 f(x)的图像关于(a,0)对称;(b≠0)(5)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=2b -f(a -x)成立,那么函数 f(x)的图像关于点(a,b)对称;(6)假定函数 f(x)满足:对恣意的实数x,都有f(x)=2b -f(2a -x)成立,那么函数 f(x)的图像关于(a,b)对称。
函数的对称性及其图像变换
函数的对称性及其图像变换介绍对称性之前⾸先介绍下抽象函数f(x),这个含义是:将映射关系f作⽤于括号内的东西,这⾥就是x。
强调⼀下,f作⽤的对象是括号内的全体,所以不管括号内的式⼦长什么样⼦,需要整体看待。
⼀个映射关系f就对应⼀个⾃变量为x的函数图像,作⽤的结果就是函数值。
举个例⼦:f(x),f(x+10) 有相同的映射关系f,但这个映射关系作⽤的对象不同,前者直接作⽤于⾃变量x,后者作⽤于x+10,所以两者得到的函数式是不同的,因为函数图像是函数值和⾃变量x之间的关系,并不是函数值和所作⽤对象之间的关系,所以f(x),f(x+10) 两者的图像不⼀样。
1. 函数的变换之所以会存在这样⼀个变换,是由于两个函数之间存在⼀个相同的映射关系f,只是作⽤的对象不⼀样,导致图像不⼀样,但因为映射关系相同,所以可以找到它们图像之间的联系,或者说:找能使它们函数值相等的⾃变量之间的关系。
1)平移变换⽐如:f(x),f(x+10),这两个图像有什么位置联系呢?由于映射关系相同,所以f作⽤于相同的⼀个值,那函数值必然相同,观察可得:只要函数f(x+10) 代⼊的⾃变量x⽐代⼊函数f(x) 的⾃变量⼩ 10,那它们的函数值就⼀样,对于它们的⾃变量全体都有这样的特点,于是可以得到它们图像的特点:图像f(x+10) 右移 10 个单位就是图像f(x)。
更通俗来讲:因为f(x+10) 本⾝⾃带了⼀个增量,所以⾃变量可以少⼀点,⽽f(x) 本⾝没有增量,所以⾃变量要多,两者才能相等。
总之:针对同⼀个x,函数f(x) 代⼊x,函数f(x+10) 代⼊x−10,两者函数值相等。
2)对称变换⽐如:f(−x+k) 和f(x+k),这两个图像有什么位置关系呢?它们的⾃变量之间存在怎样的关系,才会使函数值相同呢?针对同⼀个x,可以发现这两个函数的作⽤对象 −x+k和x+k关于直线x=k对称,所以函数f(−x+k) 代⼊x,⽽函数f(x+k) 代⼊x关于直线x=k的对称点 2k−x(对称的对称,所以作⽤对象就相同),两者就有相同的函数值。
函数对称知识点高中总结
函数对称知识点高中总结一、函数对称的定义1. 函数对称轴函数对称轴是指当函数关于某个直线对称时,这条直线就是函数的对称轴。
对称轴可以是x轴、y轴,也可以是直线y=x或y=-x等。
2. 函数对称关系当函数关于某个直线对称时,函数图象在这条直线上的对应点互相关于对称轴对称。
具体地说,设函数为y=f(x),对称轴为直线x=a,若对于任意点(x,y),都有a-x对称点也在函数图象上,即有f(a-x)=f(x)。
3. 偶函数若函数f(x)满足f(x)=f(-x),即对于任意x,有f(x)=f(-x),则称f(x)为偶函数。
偶函数的图象关于y轴对称。
4. 奇函数若函数f(x)满足f(x)=-f(-x),即对于任意x,有f(x)=-f(-x),则称f(x)为奇函数。
奇函数的图象关于原点对称。
二、函数对称的性质1. 对称关系的性质(1)关于y轴对称的函数f(x)满足f(x)=f(-x),即f(x)为偶函数;(2)关于原点对称的函数f(x)满足f(-x)=-f(x),即f(x)为奇函数。
2. 函数对称轴的性质(1)当函数对称于y轴时,其对称轴为y轴,表现为f(x)=f(-x);(2)当函数对称于x轴时,其对称轴为x轴,表现为f(x)=-f(-x);(3)当函数对称于直线y=x时,其对称轴为y=x,表现为f(y)=f(x);(4)当函数对称于直线y=-x时,其对称轴为y=-x,表现为f(-y)=f(-x)。
3. 对称函数的图象(1)偶函数的图象关于y轴对称;(2)奇函数的图象关于原点对称。
三、函数对称的分类1. 偶函数与奇函数(1)偶函数:满足f(x)=f(-x)的函数称为偶函数。
例如,y=x^2、y=cosx等都是偶函数。
(2)奇函数:满足f(x)=-f(-x)的函数称为奇函数。
例如,y=x^3、y=sinx等都是奇函数。
2. 关于坐标轴的对称函数(1)关于y轴对称:函数图象关于y轴对称,即f(x)=f(-x)的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
b o
a
x
思考?
(1)若y=f(x)满足f(a-x)=-f(b+x), 则函数图像关于
点( a+b ,0 ) 2 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x), 则函数图像关于点 (
a+b ,C ) 对称 2
轴对称
函数图像关于直线x=0对称
中心对称性
函数图像关于(0,0)中心对称
函数的对称性
有些函数 其图像有着优美的对称性, 同时又有着优美的对称关系式
知识回顾(偶函数)
从”形”的角度看, Y=f(x)图像关于直线x=0对称
Y
从“数”的角度看, f(-x)=f(x)
f (1) f (1) f (2) f (2) f ( x) f ( x)
-x
-x
o
x a
x
类比探究
中心对称性
从”形”的角度看, y=f(x)图像关于(a,0)中心对称
y
从”数”的角度看, f(x)=-f(2a-x)
f(a-x)=-f(a+x)
b
a-x o
a
a+xx源自类比探究中心对称性
y=f(x)图像关于(a,b)中心对称
y
f(2a-x)=2b-f(x) f(a+x)=2b-f(a-x)
x 2
o
-1
1
2
x
y = f(-x)
y = - f(x)
练习:已知函数y=f(x) 1 的图象如图所,分别画 o 1 -1 出下列函数的图象: -2 -0.5 (1) y = f(-x); (2) y = - f(x). (3) y = f(|x|); (4) y = |f(x)|.
y -1 -0.5
特例:a=0
xa
y=f(x)图像关于直线x=0对称
f(x)= f(-x)
思考? 若y=f(x)满足f(a-x)=f(b+x), x= a+b 直线 则函数图像关于 2 对称
类比探究
中心对称性
从”形”的角度看, y=f(x)图像关于(0,0)中心对称
y
从”数”的角度看, f(-x)=-f(x)
函数图象的三大变换
平移
对称
伸缩
问题1:如何由f(x)=x2的图象得到下列各函 y 数的图象? y=f(x)+1
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1 函数图象的平移变换: y=f(x) y=f(x) a>0,向左平移a个单位 y=f(x+a)左右平移 a<0,向右平移|a|个单位 k>0,向上平移k个单位 y=f(x)+k 上下平移 k<0,向下平移|k|个单位
y=f(x+1)
y=f(x-1) 1 -1 O 1
x
y=f(x)-1 -1
同步练习:
①若函数f(x)恒过定点(1,1),则函数f(x-4)-2恒过 定点
(5,-1) .
x=5
对称.
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
关于直线
问题2. 设f(x)=
1 x
(x>0),求函数y=-f(x)、y=f(-x)、
答案:A
5.指数函数
bx y= 的图像如图所示,则二次函数 a
y=ax2
+bx 的顶点的横坐标的取值范围是__________.
解析:由图可知函数
2
bx y= 是减函数,所以 a
b 0< < 1.而二 a
b 1b 1 次函数 y= ax + bx 的顶点的横坐标为- =- ·.所以- <- 2a 2 2a b < 0,即二次函数 y=ax2+ bx 的顶点的横坐标的取值范围为 2a 1 (- , 0). 2
-3 -2 -1
x
x0
1 2 3 4 5 6 7 8
X
从”形”的角度看,
Y=f(x)图像关于直线x=2对称
y
从”数”的角度看,
f(1)= f(3) f(0)= f(4)
f ( x)
f(-2)= f(6)
f(310)=f(4-310)
7 8
4-x
-3 -2 -1 0 1
练习:已知函数y=f(x) 1 的图象如图所,分别画 o 1 -1 出下列函数的图象: -2 -0.5 (1) y = f(-x); (2) y = - f(x). (3) y = f(|x|); (4) y = |f(x)|.
y 1 -2 -1 o 1 -0.5 x 2 -2 -1 0.5 y
y
y=-f(-x)的解析式及其定义域,并分别作出它们的图象。
y
y=f(-x) y=f(x)
y
y=f(x)
y
y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
对 (1)y=f(x)与y=f(-x)的图象关于 y 轴 称 (2)y=f(x)与y=-f(x)的图象关于 x 轴 变 (3)y=f(x)与y=-f(-x)的图象关于 原 点 换
(5)若y=f(x)满足f(3-x)=3-f(4+x)
函数图象是研究 函数的重要工具,它能 为所研究函数的数量 关系及其图象特征提 供一种”形”的直观 体现,是利用”数形结 合”解题的重要基础.
描绘函数图象的两种基本方法: ①描点法;(通过列表﹑描点﹑连线三个步骤完成) ②图象变换;(即一个图象经过变换得到另一个与 之相关的函数图象的方法)
答案:D
1 3.函数 y= 5 与函数 y=- x的图像关于( 5
x
)
A.x 轴对称 C.原点对称
B.y 轴对称 D.直线 y=x 对称
1 - 解析:因为 y=- x=-5 x,所以关于原点对称. 5
答案:C
4.使log2( -x)<x+ 1成立的x的取值范围是 ( ) A.(-1,0) B.[-1,0) C.(-2,0) D.[-2,0) 解析:作出 y = log2( - x) , y = x + 1 的图像知 满足条件的x∈(-1,0).
A.向左平移 3 个单位长度 B.向右平移 3 个单位长度 C.向左平移 1 个单位长度 D.向右平移 1 个单位长度
1x 1x- 1 1x 解析:∵y=3× = ,∴y=3× 的图像可以把函 3 3 3
数
1x y= 的图像向右平移 3
1 个单位长度.
易错点二 判断图像的对称性失误 【自我诊断②】 设函数y=f(x)的定义域为R, 则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
解析:方法一:设 (x1, y1) 是y =f(x - 1) 图像 上任意一点,则y1=f(x1-1),而f(x1-1)=f[1- (2-x1)],说明点(2-x1,y1)-定是函数y=f(1- x)上的一点,而点(x1,y1)与点(2-x1,y1)关于直 线x=1对称,所以y=f(x-1)的图像与y=f(1-x) 的图像关于直线x=1对称,所以选D. 方法二:函数y=f(x)与y=f(-x)的图像关于 y 轴对称, y = f(1 - x) = f[ - (x - 1)] .把 y = f(x) 与 y = f( - x) 的图像同时都向右平移 1 个单位长度, 就得到y=f(x-1)与y=f(1-x)的图像,对称轴y 轴向右平移1个单位长度得直线x=1,故选D.
-x
x
f(-x)=f(x)
f(-x)=-f(x) 函数图像关于(a,0)中心对称
函数图像关于直线x=a对称 f(x)=f(2a-x) f(a-x)=f(a+x)
x=a
a
f(x)=-f(2a-x) f(a-x)=-f(a+x)
练习: (1)若y=f(x)满足f(-2-x)=f(-2+x),
则函数图像关于 对称 (2)若y=f(x)满足f(3-x)=f(4+x) (3)若y=f(x)满足f(-2-x)=-f(-2+x), (4)若y=f(x)满足f(3-x)=-f(4+x)
问题3:分别在同一坐标系中作出下列各组函 数的图象,并说明它们之间有什么关系?
(1)y=2x与y=2|x|
y
|x| y=2 y=2x
1
O
x
由y=f(x)的图象作 y=f(|x|)的图象:保留y=f(x)中y轴右侧部分, 再加上y轴右侧部分关于y轴对称 的图形.
y
由y=f(x)的图象作 y=|f(x)|的图象:
y = f(|x|)
y
x 2
y 1 o 1 x 2 -2 -1 -0.5
1
o
1
-2
x 2
y = |f(x)|
例1.将函数y=2-2x的图象向左平移1个单位,再作关于 原点对称的图形后.求所得图象对应的函数解析式. y=2-2x
向左平移1个单位 x 换成 x+1
y=2-2(x+1)
关于原点对称
x换成-x y换成-y
y
y=|2x-2|