2017武汉元调数学试卷及问题详解(Word精校版)

合集下载

【精选高中试题】湖北省武昌区高三元月调考数学(理)试题 Word版含答案(1)

【精选高中试题】湖北省武昌区高三元月调考数学(理)试题 Word版含答案(1)

武昌区 2017 届高三年级元月调研考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设,A B 是两个非空集合,定义集合{}|A B x x A -=∈∈且x B .若{}|05,A x N x =∈≤≤{}2|7100B x x x =--<,则 ()A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}2.已知复数2a iz i +=-(i 为虚数单位)的共轭复数在复平面内对应的点在第三象限,则实数a 的取值范围是( )A.12,2⎛⎫- ⎪⎝⎭B.1,22⎛⎫- ⎪⎝⎭C.(),2-∞-D.1,2⎛⎫+∞ ⎪⎝⎭3.执行如图所示的程序框图,若输入的 x = 2017 ,则输出的i = ( )A .2B .3C .4D .54.已知函数f ( x )=2ax –a +3 ,若0x ∃()1,1∈-, f ( x 0 )=0 ,则实数 a 的取值范围是( )A. ()(),31,-∞-+∞B. (),3-∞-C. ()3,1-D.()1,+∞5.小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A =“4 个人去的景点不相同”, 事件B =“小赵独自去一个景点”,则P ( A |B )=( )A.29 B.13 C.49 D. 596.中国古代数学名著《九章算术》中记载了公元前 344 年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x =( )A. 1.2B. 1.6C. 1.8D.2.47.若n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是( )A. -270B. 270C. -90D.908.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A. 甲B. 乙C.丙D.丁9.已知函数 f ( x ) 的部分图象如图所示,则 f ( x ) 的解析式可以是( )A. ()222x f x x -=B. ()2cos x f x x= C. ()2cos x f x x = D. ()cos x f x x= 10.设 x ,y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A. -5B. 3C. -5或3D.5或-311. 已知双曲线()222210,0x y a b a b-=>>的两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交l 1 ,l 2 于 A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF 与FB 反向,则该双曲线的离心率为( )5212. 在锐角三角形ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .若2sin a b C =,则tan A+ tan B+tan C 的最小值是( )A. 4B.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 13.已知抛物线 Γ:y 2 8x 的焦点为 F ,准线与 x 轴的交点为K ,点 P 在 Γ 上且PK =,则PKF ∆的面积为 .14.函数()sin 25sin 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为 . 15. 已知平面向量,a b 的夹角为 120°,且1,2a b ==.若平面向量 m 满足1m a m b ⋅=⋅=,则m = .16.若四面体 ABCD 的三组对棱分别相等,即 AB=CD ,AC =BD ,AD =BC .给出下列结论:①四面体 ABCD 每组对棱相互垂直;②四面体 ABCD 每个面的面积相等;③从四面体 ABCD 每个顶点出发的三条棱两两夹角之和大于90而小于180;④连接四面体 ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体 ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长.其中正确结论的序号是 .(写出所有正确结论的序号)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 1=9 ,a 2为整数,且5.n S S ≤(1)求{a n }的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:4.9n T ≤18.(本题满分12分)如图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面 SAB 为等边三角形,AB=BC=2,CD=SD=1 .(Ⅰ)证明:SD ⊥平面 SAB ;(Ⅱ)求 AB 与平面 SBC 所成角的正弦值.18.(本题满分12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准 x (吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5) ,[0.5,1) ,…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中 a 的值;(Ⅱ)若该市政府希望使 85﹪的居民每月的用水量不超过标准 x (吨),估计 x 的值,并说明理由;(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x =3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)20.(本题满分12分)已知椭圆的中心在坐标原点,()()2,0,0,1A B 是它的两个顶点,直线()0y kx k =>与AB 相交于点D ,与椭圆相交于E,F 两点.(1)若6ED DF =,求k 的值;(2)求四边形AEBF 面积的最大值.21.(本题满分12分)已知函数()()211ln .2f x x a x a x =+-- (1)讨论()f x 的单调性;(2)设0a >,证明:当0x a <<时,()()f x a f a x +<-;(3)设12,x x 是()f x 的两个零点,证明:120.2x x f +⎛⎫>⎪⎝⎭请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2017年湖北省武汉市武昌区高三元月调考数学试卷与解析word(理科)

2017年湖北省武汉市武昌区高三元月调考数学试卷与解析word(理科)

2017年湖北省武汉市武昌区高三元月调考数学试卷与解析word(理科)2017年湖北省武汉市武昌区高三元月调考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设A,B是两个非空集合,定义集合A﹣B={x|x∈A且x?B}.若A={x ∈N|0≤x≤5},B={x|x2﹣7x+10<0},则A﹣B=()A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}2.(5分)已知复数(i 为虚数单位)的共轭复数在复平面内对应的点在第三象限,则实数a的取值范围是()A.B.C.(﹣∞,﹣2)D.3.(5分)执行如图所示的程序框图,若输入的x=2017,则输出的i=()A.2 B.3 C.4 D.54.(5分)已知函数f (x)=2ax﹣a+3,若?x0∈(﹣1,1),f (x0)=0,则实数a 的取值范围是()A.(﹣∞,﹣3)∪(1,+∞)B.(﹣∞,﹣3)C.(﹣3,1)D.(1,+∞)5.(5分)小赵、小钱、小孙、小李到4 个景点旅游,每人只去一个景点,设事件A=“4 个人去的景点不相同”,事件B=“小赵独自去一个景点”,则P(A|B)=()A.B.C.D.6.(5分)中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2 B.1.6 C.1.8 D.2.47.(5分)若的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是()A.﹣270 B.270 C.﹣90 D.908.(5分)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁9.(5分)已知函数f (x)的部分图象如图所示,则f (x)的解析式可以是()A.f(x)=B.f(x)=C.f(x)=D.f(x)=。

2016-2017武汉元调数学试题含解答解析

2016-2017武汉元调数学试题含解答解析

2016-2017武汉元调数学试卷含答案解析考试时间120分钟,总分120分一、选择题1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.12.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,33.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.127.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P 是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.48.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x% B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2016-2017学年山东省日照市五莲县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分)1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形;中心对称图形.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵四张卡片中任取一张既是轴对称又是中心对称图形的有2张,∴卡片上的图形既是轴对称又是中心对称图形的概率是=,故选:B.2.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,3【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:移项得:(x﹣1)(x+2)﹣(x﹣1)=0,(x﹣1)[(x+2)﹣1]=0,x﹣1=0,x+2﹣1=0,x=1或﹣1,故选C.3.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小【考点】二次函数的性质;二次函数的最值.【分析】由抛物线解析式可求得其开口方向、对称轴、最值及增减性,可求得答案.【解答】解:∵y=3(x﹣4)2﹣2,∴抛物线开口向上,故A不正确;对称轴为x=4,故B不正确;当x=4时,y有最小值﹣2,故C不正确;当x<3时,y随x的增大而减小,故D正确;故选D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴反比例函数y=的图象必在二、四象限,故A、C错误;∵二次函数的图象经过原点,∴c=0,∴一次函数y=bx+c的图象必经过原点,故B错误.故选D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°【考点】圆周角定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=30°,CA=CD,∴∠CAD=∠CDA==75°,∴∠ABC=∠ADC=75°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=15°,故选A.6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,=3,∴△DEF的面积=S△DEC=12;∴S△BCF故选D.7.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P 是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.4【考点】圆周角定理;轴对称-最短路线问题.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=30°,∴∠A′ON=60°,∠BON=30°,∴∠A′OB=90°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故选B.8.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x% B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%【考点】由实际问题抽象出一元二次方程.【分析】根据平均增长率:a(1+x)n,可得答案.【解答】解:由题意,得(1+10%)(1+6%)=(1+x%)2,故选:C.9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】二次函数解析式令y=0得到关于x的一元二次方程,利用根与系数关系表示出两根之和与两根之积,已知等式变形后代入求出m的值即可.【解答】解:令y=0,得到x2+(2m﹣1)x+m2﹣1=0,∵二次函数图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,∴x1+x2=﹣(2m﹣1),x1x2=m2﹣1,△=(2m﹣1)2﹣4(m2﹣1)≥0,∴(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=33,整理得:m2﹣2m﹣15=0,即(m﹣5)(m+3)=0,解得:m=5或m=﹣3,当m=5时,二次函数为y=x2+9x+24,此时△=81﹣96=﹣15<0,与x轴没有交点,舍去,则m的值为﹣3,故选B10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】先利用线段垂直平分线的性质得到AD=CD=y,AH=CH=AC=2,∠CHD=90°,再证明△CDH∽△ACB,则利用相似比可得到y=(0<x<4),然后利用反比例函数的图象和自变量的取值范围对各选项进行判断.【解答】解:∵DH垂直平分AC,∴AD=CD=y,AH=CH=AC=2,∠CHD=90°,∵CD∥AB,∴∠DCH=∠BAC,∴△CDH∽△ACB,∴=,=,∴y=(0<x<4).故选B.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④【考点】相似三角形的判定与性质;垂径定理;圆周角定理;射影定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.【解答】解:∵在⊙O中,点C是的中点,∴=,∴∠CAD=∠ABC,故①正确;∵≠,∴≠,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴=,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠,∴≠,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个【考点】二次函数图象与系数的关系.【分析】根据对称轴可判断(1);根据当x=﹣2时y<0可判断(2);由图象过点(﹣1,0)知a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,从而得5a+3c=5a﹣15a=﹣10a,再结合开口方向可判断(3);根据二次函数的增减性可判断(4);根据函数的最值可判断(5).【解答】解:∵抛物线的对称轴为x=﹣=2,∴b=﹣4a,即4a+b=0,故(1)正确;由图象知,当x=﹣2时,y=4a﹣2b+c<0,∴4a+c<2b,故(2)错误;∵图象过点(﹣1,0),∴a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下,∴a<0,则5a+3c=﹣10a>0,故(3)正确;由图象知抛物线的开口向下,对称轴为x=2,∴离对称轴水平距离越远,函数值越小,∴y1<y2<y3,故(4)错误;∵当x=2时函数取得最大值,且m≠2,∴am2+bm+c<4a+2b+c,即m(am+b)<2(2a+b),故(5)错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是70°或110°.【考点】切线的性质.【分析】连接OA、OB,可求得∠AOB,再分点C在上和上,可求得答案.【解答】解:如图,连接OA、OB,∵PA,PB分别切⊙O于A,B两点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,当点C1在上时,则∠AC1B=∠AOB=70°,当点C2在上时,则∠AC2B+∠AC1B=180°,∴∠AC2B=110°,故答案为:70°或110°.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为﹣.【考点】扇形面积的计算;中心对称图形.【分析】阴影部分的面积=三角形的面积﹣扇形的面积,根据面积公式计算即可.【解答】解:由旋转可知AD=BD,∵∠ACB=90°,AC=,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=1,∴阴影部分的面积=﹣,故答案为:﹣.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为2.【考点】反比例函数综合题.【分析】设M点坐标为(a,b),而M点在反比例函数图象上,则k=ab,即y=,由点M为矩形OABC对角线的交点,根据矩形的性质易得A(2a,0),C(0,2b),B(2a,2b),利用坐标的表示方法得到D点的横坐标为2a,E点的纵坐标为2b,而点D、点E在反比例函数y=的图象上(即它们的横纵坐标之积为ab),可得D点的纵坐标为b,E点的横坐标为a,利用S矩形OABC=S△OAD+S△OCE+S四边形ODBE,得到2a•2b=•2a•b+•2b•a+6,求出ab,即可得到k的值.【解答】解:设M点坐标为(a,b),则k=ab,即y=,∵点M为矩形OABC对角线的交点,∴A(2a,0),C(0,2b),B(2a,2b),∴D点的横坐标为2a,E点的纵坐标为2b,又∵点D、点E在反比例函数y=的图象上,∴D点的纵坐标为b,E点的横坐标为a,=S△OAD+S△OCE+S四边形ODBE,∵S矩形OABC∴2a•2b=•2a•b+•2b•a+6,∴ab=2,∴k=2.故答案为2.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式可得;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)九年级同学获得第一名的概率是=,故答案为:;(2)画树状图如下:∴九年级同学获得前两名的概率为=.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据总利润=单件利润×销售量列出函数解析式,再结合自变量的取值范围,依据二次函数的性质可得函数的最值情况.【解答】解:(1)根据题意得,解得:,∴一次函数的表达式为y=﹣x+110;(2)W=(x﹣50)(﹣x+100)=﹣x2+160x﹣5500,∵销售单价不低于成本单价,且获利不得高于40%,即50≤x≤50×(1+40%),∴50≤x≤70,∵当x=﹣=80时不在范围内,∴当x=70时,W最大=800元,答:销售单价定为70元时,商场可获得最大利润,最大利润是800元.20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.【考点】反比例函数综合题.【分析】(1)由条件可先求得点D的坐标,代入反比例函数可求得k的值,又由点E的位置可求得E点的横坐标,代入可求得E点坐标;(2)由相似三角形的性质可求得CF的长,可求得OF,则可求得F点的坐标,利用待定系数法可求得直线FB的解析式.【解答】解:(1)在矩形OABC中,∵B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∵E点在AB上,∴E点的横坐标为4,∵y=经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵△FBC∽△DEB,∴=,即=,∴CF=,∴OF=,即点F的坐标为(0,),设直线FB的解析式为y=kx+b,而直线FB经过B(4,6),F(0,),∴,解得,∴直线BF的解析式为y=x+.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【考点】二次函数综合题;待定系数法求一次函数解析式;平行四边形的判定.【分析】方法一:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由根据三角形的面积公式求出S△OBFS四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)利用水平底与铅垂高乘积的一半,可求出△BCF的面积函数,进而求出点F 坐标,因为,所以无解.(3)因为PQ∥DE,所以只需PQ=AC即可,求出PQ的参数长度便可列式求解.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x 轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,∴S△OBFS△OFC=OC•FG=×4×t=2t,=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.∴S四边形ABFC令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,过F点作x轴垂线,交BC于H,设F(t,﹣t2+t+4),∴H(t,﹣t+4),=S△ABC+S△BCF=17,∵S四边形ABFC∴(4+2)×4+(﹣t2+t+4+t﹣4)×4=17,∴t2﹣4t+5=0,∴△=(﹣4)2﹣4×5<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F.(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,∵y=﹣x2+x+4,∴D(1,),∵l BC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).。

(各地真题)2017-2018学年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)

(各地真题)2017-2018学年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)

2017~2018学年度武汉市部分学校九年级调研测试数学试卷考试时间:2018年1月25日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.方程x (x -5)=0化成一般形式后,它的常数项是( )A .-5B .5C .0D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6B .最大值为-6C .最小值为3D .最大值为33.下列交通标志中,是中心对称图形的是( )A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( )A .相离B .相切C .相交D .相交或相切8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )A .1个B .2个C .3个D .4个10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )A .-6B .-2C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_______14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则ABAP =___________16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+x -3=018.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1) 请画树状图,列举所有可能出现的结果(2) 请直接写出事件“取出至少一个红球”的概率20.(本题8分)如图,在平面直角坐标系中有点A(-4,0)、B(0,3)、P(a,-a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=-4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a=___________时,四边形ABCD为正方形21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1) 求证:AC平分∠DAE(2) 若AB=6,BD=2,求CE的长22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1) 如图1,若点C是AB的中点,则∠AED=___________(2) 如图2,若点C不是AB的中点①求证:△DEF为等边三角形②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1) 求抛物线的解析式(2) 若m=3,直线l与抛物线只有一个公共点,求k的值(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

湖北省武昌区高三数学元月调考试题 理

湖北省武昌区高三数学元月调考试题 理

武昌区 2017 届高三年级元月调研考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.设,A B 是两个非空集合,定义集合{}|A B x x A -=∈∈且x B .若{}|05,A x N x =∈≤≤{}2|7100B x x x =--<,则 ()A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}2.已知复数2a iz i +=-(i 为虚数单位)的共轭复数在复平面内对应的点在第三象限,则实数a 的取值范围是( )A.12,2⎛⎫- ⎪⎝⎭B.1,22⎛⎫- ⎪⎝⎭C.(),2-∞-D.1,2⎛⎫+∞ ⎪⎝⎭3.执行如图所示的程序框图,若输入的 x = 2017 ,则输出的i = ( )A .2B .3C .4D .54.已知函数f ( x )=2ax –a +3 ,若0x ∃()1,1∈-, f ( x 0 )=0 ,则实数 a 的取值范围是( )A. ()(),31,-∞-+∞B. (),3-∞-C. ()3,1-D.()1,+∞5.小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A =“4 个人去的景点不相同”, 事件B =“小赵独自去一个景点”,则P ( A |B )=( )A. 29B.13C.49D. 596.中国古代数学名著《九章算术》中记载了公元前 344 年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为 12.6(立方寸),则图中的x =( )A. 1.2B. 1.6C. 1.8D.2.47.若n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是( ) A. -270 B. 270 C. -90 D.908.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A. 甲B. 乙C.丙D.丁9.已知函数 f ( x ) 的部分图象如图所示,则 f ( x ) 的解析式可以是( )A. ()222x f x x -=B. ()2cos x f x x = C. ()2cos x f x x = D. ()cos x f x x= 10.设 x ,y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A. -5B. 3C. -5或3D.5或-311. 已知双曲线()222210,0x y a b a b-=>>的两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交l 1 ,l 2 于 A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF 与FB 反向,则该双曲线的离心率为( )B. D.5212. 在锐角三角形ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .若2sin a b C =,则tan A+ tan B+tan C 的最小值是( )A. 4B.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 13.已知抛物线 Γ:y 2 8x 的焦点为 F ,准线与 x 轴的交点为K ,点 P 在 Γ 上且PK ,则PKF ∆的面积为 .14.函数()sin 25sin 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为 . 15. 已知平面向量,a b 的夹角为 120°,且1,2a b ==.若平面向量 m 满足1m a m b ⋅=⋅=,则m = .16.若四面体 ABCD 的三组对棱分别相等,即 AB=CD ,AC =BD ,AD =BC .给出下列结论:①四面体 ABCD 每组对棱相互垂直;②四面体 ABCD 每个面的面积相等;③从四面体 ABCD 每个顶点出发的三条棱两两夹角之和大于90而小于180;④连接四面体 ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体 ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长.其中正确结论的序号是 .(写出所有正确结论的序号)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 1=9 ,a 2为整数,且5.n S S ≤(1)求{a n }的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:4.9n T ≤18.(本题满分12分)如图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面 SAB 为等边三角形,AB=BC=2,CD=SD=1 .(Ⅰ)证明:SD ⊥平面 SAB ;(Ⅱ)求 A B 与平面 SBC 所成角的正弦值.18.(本题满分12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准 x (吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的 分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5) ,[0.5,1) ,…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中 a 的值;(Ⅱ)若该市政府希望使 85﹪的居民每月的用水量不超过标准 x (吨),估计 x 的值,并说明理由;(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x =3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)20.(本题满分12分)已知椭圆的中心在坐标原点,()()2,0,0,1A B 是它的两个顶点,直线()0y kx k =>与AB 相交于点D ,与椭圆相交于E,F 两点.(1)若6ED DF =,求k 的值;(2)求四边形AEBF 面积的最大值.21.(本题满分12分)已知函数()()211ln .2f x x a x a x =+-- (1)讨论()f x 的单调性;(2)设0a >,证明:当0x a <<时,()()f x a f a x +<-;(3)设12,x x 是()f x 的两个零点,证明:120.2x x f +⎛⎫> ⎪⎝⎭请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2017年武汉市九年级元月调研测试数学试卷分析

2017年武汉市九年级元月调研测试数学试卷分析

2017年武汉市九年级元月调研测试数学试卷分析如火如荼的九年级元月调考在各校紧锣密鼓的组织中顺利拉下帷幕。

本次考试由武汉市教育科学研究院命题,因为这次考试既是对学生这半年来知识结构的查漏补缺,又适当透露出今年中考命题趋势,而且对学生能否入围分配生的选拔,起着重要的参考作用,所以无论是对考生,家长还是我们老师而言,结果都非常重要。

下面我就自己所带九(2)班考试情况作如下分析。

表一:实验中学九年级(02)班单科试卷分数段统计表(班级)(数学)表二:实验中学九年级(02)班单科试卷分数等级统计表(班级)(数学)(1).试题结构稳定考试题型由选择题, 填空题,解答与证明题三个部分构成。

一直是平时我们熟识和训练的题型,因此能够被所有学生和我们老师接受,没有出现偏,难,怪的题目,其中,选择题满分30分,占全卷25%,填空题18分,占全卷15%,解答与证明共8题,共72分,占全卷60%,考试时间120分钟,分值120分。

(2)试题取材课本,回归教材本次数学考试结束后,学生们都有一个感受,比平时训练的题目容易上手,我们老师也有一个感受,很多题目来源课本,如选择题第9题源自数学课本152页综合运用第7题的情境;第19题一元二次方程与应用源自数学课本第22页拓广探索第9题;第20题概率问题中的题1和题2源自课本第139页中的练习和课本140页的拓广探索第7题,所以学生做来很有亲切感,就可以排除考试带来的紧张和压抑的心情,让学生在从容和镇定的最佳状态中应战。

(3)元调反思一、重视双基教学从整份试卷看,大多数题都是教材中常见的一般题型,然而试卷中发现学生做的不尽如人意,甚至有的学生做的很差,说明我们在教学中贪多,贪难,而不重视基础知识和基本技能的培养是不行的,不能眼高手低,所以今后要站在学生的角度加强基础知识基本技能的训练,并注意落实和巩固好。

二、重视数学思想和方法的指导其实每次考试的试题是不定性的,而解题的知识是永恒性的,在以后的教学中我们不能为教知识而教知识,不能处于一种模式化的教学,而要教会学生解题的思想和方法,这样才能使学生掌握数学的精髓,才能真正的提高能力。

湖北省武汉市2017-2018学年度部分学校新高三数学起点调研考试试卷文及答案【word版】.doc

湖北省武汉市2017-2018学年度部分学校新高三数学起点调研考试试卷文及答案【word版】.doc

2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】本题选择C选项.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】由,其中是实数,得:,所以在复平面内所对应的点位于第四象限.本题选择D选项.3. 函数的最小正周期为()A. B. C. D.【答案】C【解析】∴最小正周期.本题选择C选项.4. 设非零向量满足,则()A. B. C. D.【答案】A【解析】∵非零向量满足,本题选择A选项.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或【答案】A【解析】由题意,双曲线离心率∴双曲线的渐近线方程为,即.本题选择A选项.点睛:双曲线的渐近线方程为,而双曲线的渐近线方程为(即),应注意其区别与联系.6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.【答案】D【解析】如图所示,三视图所对应的几何体是长宽高分别为2,2,3的长方体去掉一个三棱柱后的棱柱:ABIE-DCJH,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 9【答案】D【解析】x、y满足约束条件的可行域如图:z=2x+y经过可行域的A时,目标函数取得最小值,由解得A(−6,−3),则z=2x+y的最小值是:−15.故选:A.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8. 函数的单调递增区间是()A. B. C. D.【答案】D【解析】由得:x∈(−∞,−1)∪(5,+∞),令,则y=t,∵x∈(−∞,−1)时,为减函数;x∈(5,+∞)时, 为增函数;y=t为增函数,故函数的单调递增区间是(5,+∞),本题选择D选项.点睛:复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t =g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】由题意得,根据全程命题与存在性命题的否定关系,可知①是正确的;②中,命题的否命题为“若,则”,所以是错误的;③中,若“”或“”是真命题,则命题都是假命题;④中,由函数有零点,则,而函数为减函数,则,所以是错误的,故选A。

2016-2017武汉元调数学试卷含答案解析

2016-2017武汉元调数学试卷含答案解析

2016—2017武汉元调数学试卷含答案解析考试时间120分钟,总分120分一、选择题1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.12.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,33.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.127.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.48.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x%B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC 于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2016—2017学年山东省日照市五莲县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分)1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形;中心对称图形.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵四张卡片中任取一张既是轴对称又是中心对称图形的有2张,∴卡片上的图形既是轴对称又是中心对称图形的概率是=,故选:B.2.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,3【考点】解一元二次方程—因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:移项得:(x﹣1)(x+2)﹣(x﹣1)=0,(x﹣1)[(x+2)﹣1]=0,x﹣1=0,x+2﹣1=0,x=1或﹣1,故选C.3.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小【考点】二次函数的性质;二次函数的最值.【分析】由抛物线解析式可求得其开口方向、对称轴、最值及增减性,可求得答案.【解答】解:∵y=3(x﹣4)2﹣2,∴抛物线开口向上,故A不正确;对称轴为x=4,故B不正确;当x=4时,y有最小值﹣2,故C不正确;当x<3时,y随x的增大而减小,故D正确;故选D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴反比例函数y=的图象必在二、四象限,故A、C错误;∵二次函数的图象经过原点,∴c=0,∴一次函数y=bx+c的图象必经过原点,故B错误.故选D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°【考点】圆周角定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=30°,CA=CD,∴∠CAD=∠CDA==75°,∴∠ABC=∠ADC=75°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=15°,故选A.6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC =9,则S△BCF=()A.6 B.8 C.10 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,=3,∴△DEF的面积=S△DEC=12;∴S△BCF故选D.7.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.4【考点】圆周角定理;轴对称-最短路线问题.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=30°,∴∠A′ON=60°,∠BON=30°,∴∠A′OB=90°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故选B.8.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x%B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%【考点】由实际问题抽象出一元二次方程.【分析】根据平均增长率:a(1+x)n,可得答案.【解答】解:由题意,得(1+10%)(1+6%)=(1+x%)2,故选:C.9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】二次函数解析式令y=0得到关于x的一元二次方程,利用根与系数关系表示出两根之和与两根之积,已知等式变形后代入求出m的值即可.【解答】解:令y=0,得到x2+(2m﹣1)x+m2﹣1=0,∵二次函数图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,∴x1+x2=﹣(2m﹣1),x1x2=m2﹣1,△=(2m﹣1)2﹣4(m2﹣1)≥0,∴(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=33,整理得:m2﹣2m﹣15=0,即(m﹣5)(m+3)=0,解得:m=5或m=﹣3,当m=5时,二次函数为y=x2+9x+24,此时△=81﹣96=﹣15<0,与x轴没有交点,舍去,则m的值为﹣3,故选B10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】先利用线段垂直平分线的性质得到AD=CD=y,AH=CH=AC=2,∠CHD=90°,再证明△CDH∽△ACB,则利用相似比可得到y=(0<x<4),然后利用反比例函数的图象和自变量的取值范围对各选项进行判断.【解答】解:∵DH垂直平分AC,∴AD=CD=y,AH=CH=AC=2,∠CHD=90°,∵CD∥AB,∴∠DCH=∠BAC,∴△CDH∽△ACB,∴=,=,∴y=(0<x<4).故选B.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④【考点】相似三角形的判定与性质;垂径定理;圆周角定理;射影定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.【解答】解:∵在⊙O中,点C是的中点,∴=,∴∠CAD=∠ABC,故①正确;∵≠,∴≠,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴=,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠,∴≠,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A (﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个【考点】二次函数图象与系数的关系.【分析】根据对称轴可判断(1);根据当x=﹣2时y<0可判断(2);由图象过点(﹣1,0)知a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,从而得5a+3c=5a﹣15a=﹣10a,再结合开口方向可判断(3);根据二次函数的增减性可判断(4);根据函数的最值可判断(5).【解答】解:∵抛物线的对称轴为x=﹣=2,∴b=﹣4a,即4a+b=0,故(1)正确;由图象知,当x=﹣2时,y=4a﹣2b+c<0,∴4a+c<2b,故(2)错误;∵图象过点(﹣1,0),∴a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下,∴a<0,则5a+3c=﹣10a>0,故(3)正确;由图象知抛物线的开口向下,对称轴为x=2,∴离对称轴水平距离越远,函数值越小,∴y1<y2<y3,故(4)错误;∵当x=2时函数取得最大值,且m≠2,∴am2+bm+c<4a+2b+c,即m(am+b)<2(2a+b),故(5)错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是70°或110°.【考点】切线的性质.【分析】连接OA、OB,可求得∠AOB,再分点C在上和上,可求得答案.【解答】解:如图,连接OA、OB,∵PA,PB分别切⊙O于A,B两点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,当点C1在上时,则∠AC1B=∠AOB=70°,当点C2在上时,则∠AC2B+∠AC1B=180°,∴∠AC2B=110°,故答案为:70°或110°.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为﹣.【考点】扇形面积的计算;中心对称图形.【分析】阴影部分的面积=三角形的面积﹣扇形的面积,根据面积公式计算即可.【解答】解:由旋转可知AD=BD,∵∠ACB=90°,AC=,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=1,∴阴影部分的面积=﹣,故答案为:﹣.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为2.【考点】反比例函数综合题.【分析】设M点坐标为(a,b),而M点在反比例函数图象上,则k=ab,即y=,由点M为矩形OABC对角线的交点,根据矩形的性质易得A(2a,0),C(0,2b),B (2a,2b),利用坐标的表示方法得到D点的横坐标为2a,E点的纵坐标为2b,而点D、点E在反比例函数y=的图象上(即它们的横纵坐标之积为ab),可得D点的纵坐标为b,E点的横坐标为a,利用S矩形OABC=S△OAD+S△OCE+S四边形ODBE,得到2a•2b=•2a•b+•2b•a+6,求出ab,即可得到k的值.【解答】解:设M点坐标为(a,b),则k=ab,即y=,∵点M为矩形OABC对角线的交点,∴A(2a,0),C(0,2b),B(2a,2b),∴D点的横坐标为2a,E点的纵坐标为2b,又∵点D、点E在反比例函数y=的图象上,∴D点的纵坐标为b,E点的横坐标为a,=S△OAD+S△OCE+S四边形ODBE,∵S矩形OABC∴2a•2b=•2a•b+•2b•a+6,∴ab=2,∴k=2.故答案为2.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式可得;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)九年级同学获得第一名的概率是=,故答案为:;(2)画树状图如下:∴九年级同学获得前两名的概率为=.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据总利润=单件利润×销售量列出函数解析式,再结合自变量的取值范围,依据二次函数的性质可得函数的最值情况.【解答】解:(1)根据题意得,解得:,∴一次函数的表达式为y=﹣x+110;(2)W=(x﹣50)(﹣x+100)=﹣x2+160x﹣5500,∵销售单价不低于成本单价,且获利不得高于40%,即50≤x≤50×(1+40%),∴50≤x≤70,∵当x=﹣=80时不在范围内,,∴当x=70时,W最大=800元答:销售单价定为70元时,商场可获得最大利润,最大利润是800元.20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.【考点】反比例函数综合题.【分析】(1)由条件可先求得点D的坐标,代入反比例函数可求得k的值,又由点E的位置可求得E点的横坐标,代入可求得E点坐标;(2)由相似三角形的性质可求得CF的长,可求得OF,则可求得F点的坐标,利用待定系数法可求得直线FB的解析式.【解答】解:(1)在矩形OABC中,∵B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∵E点在AB上,∴E点的横坐标为4,∵y=经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵△FBC∽△DEB,∴=,即=,∴CF=,∴OF=,即点F的坐标为(0,),设直线FB的解析式为y=kx+b,而直线FB经过B(4,6),F(0,),∴,解得,∴直线BF的解析式为y=x+.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE 于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM ∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【考点】二次函数综合题;待定系数法求一次函数解析式;平行四边形的判定.【分析】方法一:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG ⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF =OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC =S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)利用水平底与铅垂高乘积的一半,可求出△BCF的面积函数,进而求出点F 坐标,因为,所以无解.(3)因为PQ∥DE,所以只需PQ=AC即可,求出PQ的参数长度便可列式求解.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,∴S△OBFS△OFC=OC•FG=×4×t=2t,=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.∴S四边形ABFC令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,过F点作x轴垂线,交BC于H,设F(t,﹣t2+t+4),∴H(t,﹣t+4),∵S四边形ABFC =S△ABC+S△BCF=17,∴(4+2)×4+(﹣t2+t+4+t﹣4)×4=17,∴t2﹣4t+5=0,∴△=(﹣4)2﹣4×5<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F.(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,∵y=﹣x2+x+4,∴D(1,),∵l BC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).第31页(共31页)。

2017年武汉市初三四月调考测试数学试卷(纯手打精校WORD版)

2017年武汉市初三四月调考测试数学试卷(纯手打精校WORD版)

2016-2017学年度武汉市部分学校九年级调研测试数 学 试 卷武汉市教育科学研究院命制 2017.4.20 1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题满分120分.考试时间120分钟.2. 答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3. 答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不得答在“试卷”上..........4. 答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.......... 5. 认真阅读“答题卡”上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1. 计算16的结果为( )A.2B.4-C.4D.82. 若代数式21+x 在实数范围内有意义,则实数x 的取值范围是( )A.2-=xB.2->xC.0≠xD.2-≠x 3. 下列计算的结果为8x 的是( )A.7x x ⋅B.210x x -C.216x x ÷D.44)(x 4. 事件A:射击运动员射击一次,刚好射中靶心;事件B:连续掷两次硬币,都是正面朝上.则( )A.事件A 是必然事件,事件B 是随机事件B.事件A 是随机事件,事件B 是不可能事件C.事件A 和B 都是随机事件D.事件A 和B 都是必然事件 5. 运用乘法公式计算)3)(3(-+a a 的结果是( ) A.962+-a a B.92+a C.92-a D.962+-a a6. 点A )4,1(-关于x 轴对称的点的坐标为( )A.)4,1(B.)4,1(--C.)4,1(-D.)1,4(- 7. 由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置的小正方体的个数,则该几何体的左视图为( )A. B. C. D.A.75.1,70.1B.80.1,70.1C.75.1,65.1D.80.1,65.19.在55⨯的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m ,水平部分线段的长度之和记作n ,则n m -=( ) A.0 B.5.0 C.5.0- D.75.010. 已知关于x 的二次函数3)(2+-=h x y ,当31≤≤x 时,函数有最小值h 2,则h 的值为( ):A.23B.23或2C.23或6D.23或2或6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答卷指定的位置. 11.计算)5(8-+的结果为___________.12.计算111---x x x 的结果为__________. 13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同,随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色相同的概率为_______14.如图,在矩形ABCD 中,E 为边AB 的中点,将CBE ∆,连接AF.若︒=∠70EAF ,那么BCF ∠=__________度.15.有一个内角为︒60的菱形的面积是38,则它的内切圆的半径为__________.16.已知四边形ABCD,︒=∠45ABC ,︒=∠=∠90D C .含︒30角(︒=∠30P )的直角三角板PMN(如图)在图中平移,直角边MN ⊥BC,顶点M,N 分别在边AD,BC 上,延长NM 到点Q,使QM=PB.若BC=10,CD=3,则当点M 从点A 平移到点D 的过程中,点Q 的运动路径长为___________.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题8分)解方程:4)1(316++=+x x18.(本题8分)如图,A,D,B,E 四点顺次在同一条直线上,AC=DF,BC=EF,F C ∠=∠.求证:AD=BE.第16题图第14题图QBE19.(本题8分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(1) 在这次抽样调查中,一共抽取了______名学生; (2) 请把条形统计图补充完整;(3) 请估计该地区九年级学生体育成绩为B 级的人数.20.(本题8分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.(1) 每辆大货车和每辆小货车一次各可以运货多少吨?(2) 现在租用这两种货车共10辆,要求一次运输货物不低于30吨,则大货车至少租几辆?人数各等级人数所占百分比扇形统计图各等级人数条形统计图21.(本题8分)如图,□ABCD 的边AD 与经过A,B,C 三点的⊙O 相切.(1) 求证:弧AB=弧AC;(2) 延长DC 交于点⊙O 于点E,连接BE,1312sin =∠E ,求D ∠tan 的值.22.(本题10分)直线x y 23=与双曲线xky =的交点A 的横坐标为2.(1) 求k 的值;(2) 如图,过点P )0)(3,(>m m 作x 轴垂线交双曲线xky =)0(>x 于点M,交直线OA 于点N.①连接OM,当OA=OM 时,直接写出PN -PM 的值; ②试比较PM 与PN 的大小,并证明你的结论.E23.(本题10分)在正六边形ABCDEF 中,N,M 为边上的点,BM,AN 相交于点P.(1)如图1,若点N 在边BC 上,点M 在边DC 上,BN=CM. 求证:BC BN BM BP ⋅=⋅;(2)如图2,若N 为边DC 的中点,M 在边ED 上,AM ∥BN,求DEME的值;(3)如图3,若N,M 分别为边BC,EF 的中点,正六边形ABCDEF 的边长为2,请直接写出AP 的长.24.(本题12分)平面直角坐标系中,抛物线221x y =经过点A ),(),,(2211y x C y x 其中21,x x 是方程0822=--x x 的两根,且21x x <.过点A 的直线l 与抛物线只有一个公共点.(1) 求A,C 两点的坐标; (2) 求直线l 的解析式;(3) 点B 是线段AC 上的动点,若过点B 作y 轴的平行线BE 与直线l 相交于点E,与抛物线相交于点D,过点E 作DC 的平行线EF 与直线AC 相交于点F,求BF 的长.第23题图2第23题图3第23题图1FC FCFC。

2017年湖北省武汉市高三二月调考数学试卷与解析PDF(理科)

2017年湖北省武汉市高三二月调考数学试卷与解析PDF(理科)

2017年湖北省武汉市高三二月调考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.(5分)若复数(a ∈R )的实部和虚部相等,则实数a 的值为(的值为( )A .1B .﹣1C .D .﹣2.(5分)已知集合A={x |﹣1<x <3},B={x |x <a },若A ∩B=A ,则实数a 的取值范围是(值范围是( ) A .a >3B .a ≥3C .a ≥﹣1D .a >﹣13.(5分)已知函数f (x )=sin (ωx +)﹣cos (ωx ﹣)(ω>0)的最小正周期为2π,则f (﹣)=( ) A . B . C .D .4.(5分)下列函数既是奇函数,又在分)下列函数既是奇函数,又在[[﹣1,1]上单调递增是(上单调递增是( ) A .f (x )=|sinx | B .f (x )=ln C .f (x )=(e x ﹣e ﹣x) D .f (x )=ln (﹣x )5.(5分)执行如图所示的程序框图,若输出的结果为80,则判断框内应填入( )A .n ≤8?B .n >8?C .n ≤7?D .n >7? 6.(5分)若函数f (x )=在区间(0,)上单调递增,则实数a 的取值范围是(值范围是( ) A .a ≤﹣1 B .a ≤2C .a ≥﹣1D .a ≤17.(5分)5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是(排法总数是( )A .40B .36C .32D .248.(5分)已知直线y=2x ﹣3与抛物线y 2=4x 交于A ,B 两点,O 为坐标原点,OA ,OB 的斜率分别为k 1,k 2,则( )A .B .2C .D .9.(5分)如图是某个几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体外接球的直径为(的等腰直角三角形,则该几何体外接球的直径为( )A .2B .C .D .10.(5分)设实数x 、y 满足约束条件,则2x +的最小值为(的最小值为( )A .2B .C .D .11.(5分)已知,为两个非零向量,且为两个非零向量,且|||=2,|+2|=2,则,则|||+|2+|的最大值为(最大值为( ) A .4B .3C .D .12.(5分)已知x 、y 满足x 3+2y 3=x ﹣y ,x >0,y >0.则x 、y 使得x 2+ky 2≤1恒成立的k 的最大值为(的最大值为( ) A .2B .2+C .2+2D .+1二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x 2+1)(x +a )8的展开式中,x 8的系数为113,则实数a 的值为的值为 . 14.(5分)在△ABC 中,角C=60°,且tan +tan =1,则sin •sin = .15.(5分)在平面直角坐标系中,设A 、B 、C 是曲线y=上三个不同的点,且D 、E 、F 分别为BC 、CA 、AB 的中点,则过D 、E 、F 三点的圆一定经过定点三点的圆一定经过定点 . 16.(5分)已知函数f (x )=xe x ﹣ae 2x (a ∈R )恰有两个极值点x 1,x 2(x 1<x 2),则实数a 的取值范围为的取值范围为 .三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列已知数列{{a n }的前n 项和为S n ,a n >0,且满足:(a n +2)2=4S n +4n +1,n ∈N *.(1)求a 1及通项公式a n ;(2)若b n =(﹣1)n •a n ,求数列,求数列{{b n }的前n 项和T n .18.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥平面BB 1C 1C ,∠BCC 1=,AB=BB 1=2,BC=1,D 为CC 1中点.(1)求证:DB1⊥平面ABD;(2)求二面角A﹣B1D﹣A1的平面角的余弦值.19.(12分)某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为和,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求恰好有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.20.(12分)已知椭圆Г:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,F2与椭圆上点的连线的中最短线段的长为﹣1.(1)求椭圆Г的标准方程;(2)已知Г上存在一点P,使得直线PF1,PF2分别交椭圆Г于A,B,若=2,=λ(λ>0),求λ的值.21.(12分)(1)求函数f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤上的最大值;(2)证明:不等式x1﹣x+(1﹣x)x≤在(0,1)上恒成立.[选修4-4:参数方程与极坐标系]22.(10分)以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的方程为,⊙C的极坐标方程为ρ=4cosθ+2sinθ.(1)求直线l和⊙C的普通方程;(2)若直线l与圆⊙C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]23.(1)求函数y=2|x﹣1|﹣|x﹣4|的值域;(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求实数a的取值范围.2017年湖北省武汉市高三二月调考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.(5分)若复数(a ∈R )的实部和虚部相等,则实数a 的值为(的值为( )A .1B .﹣1C .D .﹣【解答】解:复数==+的实部和虚部相等,∴=,解得a=.故选:C .2.(5分)已知集合A={x |﹣1<x <3},B={x |x <a },若A ∩B=A ,则实数a 的取值范围是(值范围是( ) A .a >3B .a ≥3C .a ≥﹣1D .a >﹣1【解答】解:∵集合A={x |﹣1<x <3},B={x |x <a }, A ∩B=A ,∴A ⊂B ,∴a ≥3.∴实数a 的取值范围是a ≥3. 故选:B .3.(5分)已知函数f (x )=sin (ωx +)﹣cos (ωx ﹣)(ω>0)的最小正周期为2π,则f (﹣)=( ) A . B . C .D .【解答】解:函数f (x )=sin (ωx +)﹣cos (ωx ﹣)=sin (ωx +)﹣cos(ωx +)=sin(ωx+)+sin(ωx+)=sin(ωx+)的最小正周期为=2π,∴ω=1. 即f(x)=sin(x+),则f(﹣)=sin=,故选:A.4.(5分)下列函数既是奇函数,又在上单调递增是( ) 分)下列函数既是奇函数,又在[[﹣1,1]上单调递增是(A.f(x)=|sinx| B.f(x)=ln C.f(x)=(e x﹣e﹣x) D.f(x)=ln(﹣x)【解答】解:根据题意,依次分析选项:对于A、f(x)=|sinx|,有f(﹣x)=|sin(﹣x)|=|sinx|=f(x),为偶函数,不符合题意,对于B、f(x)=ln,有>0,解可得﹣2<x<2,即其定义域为(﹣2,2),关于原点对称,又由f(﹣x)=ln=﹣f(x),为奇函数,令t==﹣1+,在区间(﹣1,1)上为减函数,而y=lnt为增函数,而f(x)=ln在区间(﹣1,1)上为减函数,不符合题意,又由f(﹣x)=(e关于原点对称,又由对于C、f(x)=(e x﹣e﹣x),其定义域为R,关于原点对称,﹣x﹣e x)=﹣f(x),为奇函数,函数y=e x为增函数,而函数y=e﹣x为减函数,故函数f(x)=(e x﹣e﹣x)在区间(﹣1,1)上为增函数,符合题意,对于D、f(x)=ln(﹣x),有﹣x>0,解可得x∈R,其定义域为R,关于原点对称,又由f(﹣x)=﹣f(x),为奇函数;令t=﹣x=,在区间(﹣1,1)为减函数,而y=lnt为增函数, 故f(x)=ln(﹣x)在区间(﹣1,1)上为减函数,不符合题意,故选:C.5.(5分)执行如图所示的程序框图,若输出的结果为80,则判断框内应填入( )A .n ≤8?B .n >8?C .n ≤7?D .n >7? 【解答】解:模拟程序的运行,可得 S=0,n=1,a=3执行循环体,S=3,a=5不满足条件,执行循环体,n=2,S=8,a=7 不满足条件,执行循环体,n=3,S=15,a=9 不满足条件,执行循环体,n=4,S=24,a=11 不满足条件,执行循环体,n=5,S=35,a=13 不满足条件,执行循环体,n=6,S=48,a=15 不满足条件,执行循环体,n=7,S=63,a=17 不满足条件,执行循环体,n=8,S=80,a=19由题意,此时满足条件,退出循环,输出的S 结果为80, 则判断框内应填入n >7? 故选:D .6.(5分)若函数f (x )=在区间(0,)上单调递增,则实数a 的取值范围是(值范围是( ) A .a ≤﹣1 B .a ≤2C .a ≥﹣1D .a ≤1【解答】解:函数f (x )= 则fʹ(x )=∵x ∈(0,)上,∴cos 2x >0 要使函数f (x )=在区间(0,)上单调递增, ∴cos 2x +sin 2x +asinx >0在x ∈(0,)上恒成立,即:asinx +1>0在x ∈(0,)上恒成立,∵x ∈(0,)上,sinx ∈(0,1) ∴a ≥﹣1 故选C .7.(5分)5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是(排法总数是( )A .40B .36C .32D .24【解答】解:分类讨论,甲站第2个位置,则乙站1,3中的一个位置,不同的排法有C 21A 33=12种;甲站第3个位置,则乙站2,4中的一个位置,不同的排法有C 21A 33=12种; 甲站第4个位置,则乙站3,5中的一个位置,不同的排法有C 21A 33=12种, 故共有12+12+12=36. 故选:B .8.(5分)已知直线y=2x ﹣3与抛物线y 2=4x 交于A ,B 两点,O 为坐标原点,OA ,OB 的斜率分别为k 1,k 2,则( )A .B .2C .D .【解答】解:直线y=2x ﹣3与抛物线y 2=4x 联立,可得y 2﹣2y ﹣6=0,∴y=1±,∴A(2+,1+),B(2﹣,1﹣),∴=+=,故选A.9.(5分)如图是某个几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体外接球的直径为(的等腰直角三角形,则该几何体外接球的直径为( )A.2 B. C. D.【解答】解:由题意可知三视图复原的几何体如图:四棱锥S﹣BCDE,是正方体的一部分,正方体的棱长为2;所以几何体外接球为正方体外接球,该几何体外接球的直径为2.故选D.10.(5分)设实数x、y满足约束条件,则2x+的最小值为(的最小值为( )A .2B .C .D . 【解答】解:实数x 、y 满足约束条件的可行域如图:可得A (,3),B (,),C (,),目标函数在线段BA 上取得最小值.2x +≥y +≥2,当且仅当y=1,x=时取等号. 故选:A .11.(5分)已知,为两个非零向量,且为两个非零向量,且|||=2,|+2|=2,则,则|||+|2+|的最大值为(最大值为( ) A .4B .3C .D .【解答】解:由解:由||+2|=2,得,即,∴,||==.则||+|2+|=.令f (x )=,则fʹ(x )=(0≤x <),由fʹ(x )=0,得x=.∴当x=时,f (x )有最大值为.故选:D .12.(5分)已知x 、y 满足x 3+2y 3=x ﹣y ,x >0,y >0.则x 、y 使得x 2+ky 2≤1恒成立的k 的最大值为(的最大值为( ) A .2B .2+C .2+2D .+1【解答】解:若x 2+ky 2≤1恒成立,则x 3+2y 3≥(x ﹣y )(x 2+ky 2)=x 3+kxy 2﹣yx 2﹣ky 3, 则(k +2)y 3+yx 2≥kxy 2,k +2>0,∵(k +2)y 3+yx 2≥2xy 2. ∴2≥k ,∴4(k +2)≥k 2, 解得:2﹣2≤k ≤2+2. ∴实数k 的最大值为2+2,故选C .二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x 2+1)(x +a )8的展开式中,x 8的系数为113,则实数a 的值为的值为 ±2 .【解答】解:(x 2+1)(x +a )8=(x 2+1),∴x 8的系数=1+=113,解得a=±2.故答案为:±2.14.(5分)在△ABC 中,角C=60°,且tan +tan =1,则sin •sin = .【解答】解:∵C=60°,可得:+=(180°﹣C )=60°,∵tan+tan=1,可得:+====1,可得:cos•cos=,=cos60°===cos•cos﹣sin•sin=﹣sin•sin,∴cos(+)=cos60°∴可得:sin•sin=.故答案为:.15.(5分)在平面直角坐标系中,设A、B、C是曲线y=上三个不同的点,(1,三点的圆一定经过定点且D、E、F分别为BC、CA、AB的中点,则过D、E、F三点的圆一定经过定点0) .【解答】解:曲线y=的对称中心为(1,0),取过对称中心直线与曲线交于A,B,A,B中点为对称中心(1,0),∴过D、E、F三点的圆一定经过定点(1,0).故答案为(1,0).16.(5分)已知函数f(x)=xe x﹣ae2x(a∈R)恰有两个极值点x1,x2(x1<x2),的取值范围为(0,) .则实数a的取值范围为【解答】解:函数f(x)=xe x﹣ae2x可得fʹ(x)=e x(x+1﹣2ae x),要使f(x)恰有2个极值点,则方程x+1﹣2ae x=0有2个不相等的实数根,令g(x)=x+1﹣2ae x,gʹ(x)=1﹣2ae x;(i)a≤0时,gʹ(x)>0,g(x)在R递增,不合题意,舍,(ii)a>0时,令gʹ(x)=0,解得:x=ln,当x<ln时,gʹ(x)>0,g(x)在(﹣∞,ln)递增,且x→﹣∞时,g(x)<0,x>ln时,gʹ(x)<0,g(x)在(ln,+∞)递减,且x→+∞时,g(x)<0, ∴g(x)max=g(ln)=ln+1﹣2a•=ln>0,∴>1,即0<a<;故答案为:(0,).三、解答题:本大题共5小题,共70分解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列已知数列{{a n}的前n项和为S n,a n>0,且满足:(a n+2)2=4S n+4n+1,n∈N*.(1)求a1及通项公式a n;,求数列{{b n}的前n项和T n.(2)若b n=(﹣1)n•a n,求数列【解答】解:(1)∵(a n+2)2=4S n+4n+1,n∈N*,∴=4a1+5,a1>0,解得a1=1.n≥2时,=4S n﹣1+4(n﹣1)+1,相减可得:=0,a n>0,化为:a n﹣a n﹣1=2.∴数列{{a n}是等差数列,公差为2,首项为1.∴数列∴a n=1+2(n﹣1)=2n﹣1.(2)b n=(﹣1)n•a n=(﹣1)n•(2n﹣1).n=2k(k∈N*)时,b2k﹣1+b2k=﹣(2n﹣1)+(2n+1)=2.∴数列{{b n}的前n项和T n=n.∴数列n=2k﹣1(k∈N*)时,b2k+b2k+1=(2n﹣1)﹣(2n+1)=﹣2.∴数列{{b n}的前n项和T n=﹣1﹣=﹣n.∴数列∴T n=,k∈N*.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1=,AB=BB1=2,BC=1,D为CC1中点.(1)求证:DB1⊥平面ABD;(2)求二面角A﹣B1D﹣A1的平面角的余弦值.【解答】证明:(1)∵BC=B1C1=1,CD=C1D=BB1=1,∠BCC1=,∠B1C1D=π﹣∠BCC1=,∴BD=1,B1D=,∴BB12=BD2+B1D2,∴BD⊥B1D.∵AB⊥平面BB1C1C,BD⊂平面BB1C1C,∴AB⊥B1D,又AB⊂平面ABD,BD⊂平面ABD,AB∩BD=B,∴DB1⊥平面ABD.(2)以B为原点,以BB1,BA所在直线为x轴,z轴建立空间直角坐标系B﹣xyz,如图所示:则A(0,0,2),D(,,0),B1(2,0,0),A1(2,0,2),∴=(,﹣,0),=(﹣2,0,2),=(0,0,2).设平面AB1D的法向量为=(x1,y1,z1),平面A1B1D的法向量为=(x2,y2,z2),则,,即,,令x1=1得=(1,,1),令x2=1得=(1,,0).∴cos<,>===.∵二面角A﹣B1D﹣A1是锐角,∴二面角A﹣B1D﹣A1的平面角的余弦值为.19.(12分)某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为和,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求恰好有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.【解答】解:(1)设恰好有一种新产品研发成功为事件A,则P(A)=(1﹣)×+×(1﹣)=.(2)由题可得设企业可获得利润为ξ,则X的取值有﹣90,50,80,220. 由独立试验的概率计算公式可得,P(X=0)=(1﹣)(1﹣)=,P(X=50)=×=,P(X=80)==,P(X=220)==.∴ξ的分布列如下:X ﹣90 50 80 220P则数学期望E(X)=+50×++220×=121.5万元.20.(12分)已知椭圆Г:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,F2与椭圆上点的连线的中最短线段的长为﹣1.(1)求椭圆Г的标准方程;(2)已知Г上存在一点P,使得直线PF1,PF2分别交椭圆Г于A,B,若=2,=λ(λ>0),求λ的值.【解答】解:(1)由题意可得:=,a﹣c=﹣1,b2=a2﹣c2,解得:a2=2,c=1,b=1.∴椭圆Г的标准方程为+y2=1.(2)设A(x1,y1),B(x2,y2),点P(x0,y0),直线P A的方程:x=my﹣1, 联立,化为:(m2+2)y2﹣2my﹣1=0,∴y0•y1=,x0=my0﹣1,∴m=.∴=﹣=﹣===+2=+2﹣=3+2x0.∴3+2x0=2,解得x0=﹣,∴P.(i)当取P时,==﹣,可得直线PF 2的方程:y=﹣(x﹣1),即x=﹣y+1.代入椭圆方程可得:y2﹣y﹣1=0,∴y2•y0=﹣,而y0=,∴y2=﹣,∴=﹣=﹣=4,即λ=4.(ii)当P时,同理可得:λ=4.综上可得:λ=4.21.(12分)(1)求函数f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤上的最大值;(2)证明:不等式x1﹣x+(1﹣x)x≤在(0,1)上恒成立.【解答】(1)解:fʹ(x)=lnx+ln(1﹣x)+2,令fʹ(x)=0,解得:x=﹣(记为x0),则f(x)在(0,x0)递减,在(x,]递增,x→0+时,fʹ(x)→0,f(π)≤f()=0,即xlnx﹣(1﹣x)ln(1﹣x)≤0, ∴f(x)在(0,]上的最大值是0;(2)证明:∵g(x)=x1﹣x+(1﹣x)x满足:g(x)=g(1﹣x),∴g(x)关于直线x=对称,故只需证明:x1﹣x+(1﹣x)x≤在(0,]恒成立,而gʹ(x)=x1﹣x(﹣lnx+)+(1﹣x)x[ln(1﹣x)﹣],而g()=,只需证明gʹ(x)≥0,①在(0,]恒成立,而﹣xlnx+1﹣x>0,即只需证明:≥②,而由(1)可得0<x≤时,(1﹣x)1﹣x≥x x,即≥1③,要使②式成立,只需证明≤1在(0,]上恒成立,即只需φ(x)=xlnx﹣(1﹣x)ln(1﹣x)+2x﹣1≤0④,由(1)得:xlnx﹣(1﹣x)ln(1﹣x)≤0,而2x﹣1≤0,从而④式成立,综合③④可知②式成立,故①式得证,从而原不等式得证.[选修4-4:参数方程与极坐标系]22.(10分)以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的方程为,⊙C的极坐标方程为ρ=4cosθ+2sinθ.(1)求直线l和⊙C的普通方程;(2)若直线l与圆⊙C交于A,B两点,求弦AB的长.【解答】解:(1)直线l的方程为,可得:ρsinθcos﹣ρcosθsin=﹣⇔﹣y﹣x=即:.⊙C的极坐标方程为ρ=4cosθ+2sinθ.可得:ρ2=4ρcosθ+2ρsinθ,⇔x2+y2=4x+2y即:x2+y2﹣4x﹣2y=0,故得直线l的普通方程为:;⊙C的普通方程为:x2+y2﹣4x﹣2y=0. (2)由x2+y2﹣4x﹣2y=0,可知圆心为(2,1),半径r=,那么:圆心到直线的距离d=,∴|AB|=2故得直线l与圆⊙C交于A,B两点间的弦AB长为.[选修4-5:不等式选讲]23.(1)求函数y=2|x﹣1|﹣|x﹣4|的值域;(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求实数a的取值范围.【解答】解:(1)∵y=2|x﹣1|﹣|x﹣4|==,故函数的值域是[[﹣3,+∞);故函数的值域是(2)f(x)=2|x﹣1|﹣|x﹣a|,①a≥1时,f(x)==,而2a﹣2>1﹣a,此时f(x)的最小值是1﹣a,故只需1﹣a≥﹣1,∴1≤a≤2;②a<1时,f(x)==,此时a<1时,﹣1+a<2﹣2a,f(x)的最小值是a﹣1,只需a﹣1≥﹣1,0≤a<1,的范围是[[0,2].综上,a的范围是赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CE AOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2017武汉市初三数学元调试卷及答案

2017武汉市初三数学元调试卷及答案
所以 x=10. 答:该公司每个周期产销 10 件商品时,利润达到 220 元;………………………………6 分
(3)设每个周期的产销利润为 y 元.则 y=(35-110x)·x-(110 x2+3x+80)=﹣15 x2+32x-80=﹣15 (x-80)2+1200,
因为﹣15 <0,所以,当 x=80 时,函数有最大值 1200. 答:当每个周期产销 80 件商品时,产销利润最大,最大值为 1200 元.………………10 分
C.点 C 和点 D.
D.点 D 和点 A.
A.两实数根的和为-8.
B.两实数根的积为 17.
C.有两个相等的实数根.
D.没有实数根.
7.抛物线 y=-(x-2)2 向右平移 2 个单位得到的抛物线的解析式为
A.y=-x2.
B.y=-(x-4)2. C.y=-(x-2)2+2. D.y=-(x-2)2-2.
∴CE=136 .……………………………………………8 分
22.解:(1)C=110 x2+3x+80;………………………………………………3 分
(2)依题意,得 (35-110x)·x-(110 x2+3x+80)=220; 解之,得
x1=10,x2=150, 因为每个周期产销商品件数控制在 100 以内,
21.(1)过点 D 作 DF⊥BC 于点 F. ∵∠BAD=90°,BD 平分∠ABC, ∴AD=DF. ∵AD 是⊙D 的半径,DF⊥BC, ∴BC 是⊙D 的切线;………………………………………………4 分
(2)∵∠BAC=90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线, ∴AB=FB. ∵AB=5,BC=13, ∴CF=8,AC=12. 在 Rt△DFC 中, 设 DF=DE=r,则 r2+64=(12-r)2, r=130 .

2017武汉元调与圆有关的动点问题(答案)

2017武汉元调与圆有关的动点问题(答案)

1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO =12AB =4,∴点D 运动的路径长为:π×4=4π.2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD =12AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DAC '=30°,∴DC '=12AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3.3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =12AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得:12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365. 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD =12AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD在Rt △CEM 中,∠ECM =60°,∠CME =30°,CEEM,∴CM =2CE,CM +DM =CD+rr =6-第1题解图B第2题解图第3题图D第4题解图AF E CB6.【答案】C 【解析】由题可知=ABC ACD ABCD S S S + 四边形,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F ,如解图,则1=2ABCD S AC BF ∙四边形+12AC DE ∙=12+12DE,当点D 为劣弧 AC 的中点时,DE 取得最大值,此时∠DAC =∠ACD =∠ABD =12∠ABC =30°,在Rt △ADE 中,AE =12AC,DE =12AD ,由勾股定理可得DE =12,∴此时12ABCD S 四边形7.【答案】B 【解析】如解图,作直径BD ,连接CD ,OC ,BM ,CM ,OM ,则∠BCD =90°,则∠BAC =∠D ,∵BC =BD =2OB =4,∴CD2,∴CD =12BD ,∴∠DBC =30°,∴∠BAC =∠D =60°,∴∠BOC =2∠BAC =120°,∠ABC +∠ACB =120°,∵P 点是△ABC 的内心,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=60°,∴∠BPC =120°=∠BOC ,∴点O 在⊙M 上,∴OM =CM ,∵BM =CM ,∴ BM= CM ,∴∠BOM =∠COM =60°,∴△OCM 是等边三角形,∴CM =OC =2,即⊙M 的半径不变等于2.故选B . 8.【答案】B 【解析】如解图,连接OA 、OB ,∵∠ACB =45°,∴∠AOB =90°,又∵OA =OB ,∴△AOB 是等腰直角三角形,∵AB =6,∴OA =OB =6M 、N 分别是AB 、BC 的中点,∴MN 是△ABC 的中位线,∴MN =12AC ,要使MN 最大,即AC 最大,而AC 是⊙O 的弦,故AC 是⊙O 的直径时,值最大,此时AC=2OA MN 长的最大值是12AC =12⨯9.【答案】B 【解析】如解图,将⊙O 补全,延长BO 交⊙O 于点C ,连接AC 交MO 于点P ,连接BP ,∵CB ⊥MN ,OB =OC ,∴BP =CP ,∴PA +PB =PA +PC ,根据两点之间线段最短可知所作点P 即为所求,此时PA +PC =AC .∵CB 为⊙O 的直径,∴∠BAC =90°,在Rt △ABC中,AB =4,BC =2OB=10,∴AC10.【答案】C 【解析】如解图,∵AC 为其直径,∠ACB =30°,∴∠A =60°,∵点A '在AC第5题解图A第6题解图第7题解图第8题解图上运动,∴∠A '=∠A =60°,∵C 'B ⊥A 'B ,∴∠C '=90°-60°=30°,∵∠C '是定值,∴点C '的运动路径是一个圆,当点C '运动到C ''时,C C ''=2BC ,∵⊙O 的半径为7,∴AC =14,AB =7 ,∴BC =C C ''=C '以在C C ''中点M 为圆心,BC '的最大值为11.【答案】A 【解析】连接AE ,如解图①,∵∠BAC =90°,AB =AC ,BC =AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 的上,∵⊙O 的半径为2,∴当点E 为线段OC 与⊙O 的交点时,CE 最小.如解图②,在Rt △AOC 中,∵OA =2,AC =4,∴OCCE =OC -OE=-2.即线段CE长度最小值为2.当点E 为射线CO 与⊙O 的交点时,CE 最大,最大值为+2,∴-2≤CE ≤+2.12.【答案】A 【解析】如解图,连接OQ ,∵MN =OP (矩形对角线相等),⊙O 的半径为2,OQ =12MN =12OP =1,可得点Q 的运动轨迹是以O 为圆心,1为半径的圆.当点P 沿着圆周转过45°时,点Q 也是转过45°.∴Q 运动过的长度为45360︒︒×2π=4π.故选A . 13.【答案】C 【解析】如解图,连接CE ,∵点E 是AD 的中点,A 'E =AE =12AD ,点F 为动点,则随着F 的运动,A '的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的圆弧,则C A '、A 'E 和CE 围成三角形,根据三角形的三边关系,即A 'E + C A '>CE ,当E 、A '、C 在同一直线上时,则A 'E + C A '=CE ,此时C A '最小.在Rt △CDE 中,CD =3,DE =1,则CEC A '1.14.【答案】A 【解析】过点A 、B 作圆P ,且使OA 、OB 交⊙P 于A 、B 两点,如解图,连接第9题解 图第10题解图②图B①图第12题解图CF第13题解图第14题解图第15题解图AP ,BP ,∵OA =OB =AB =4,∴△OAB 是等边三角形,∴∠AOB =60°,∴∠ACB =12∠AOB =30°,∵BD ⊥BC ,∴∠D =60°,∵AB =4,是一个定值,∴点D 在圆P 上,要使△ABD 面积的最大,∴点D 到AB 的距离要最大时,此时D 为圆P 优弧AB 的中点,此时△ABD 为等边三角形,D 到AB 的距离为ABD S ∆=12△ABD 面积的最大值为15.【答案】B 【解析】当点C 运动到A 点处时,点D 在如解图D '的位置处,当点C 运动到B 点处时,点D 与点B 重合,∵△BCD 是等边三角形,∴∠CDB =60°,又∵CO =BO ,∴△CDO ≌△BDO ,∴∠ODB =30°,∴点C 在半圆AB 上运动时,点D 在以BD '为直径的圆上运动,当点O ,D 与BD '的中点M 共线时,线段OD 最长,为⊙M 的直径,∴OD 的长随点C 的运动而变化,最大值为16.【答案】B 【解析】如解图,连接OA 、OB ,∵∠AMB =45°,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵⊙O 的半径是2,∴AB==,∵A M BA NM A N B S S S ∆∆=+四边形,∴要使四边形MANB 面积最大,则需两个三角形的高的和最大,当MN 为直径时,NM 最大,∴由垂径定理可知MN ⊥AB 时,四边形MANB 面积有最大值,∴MANB S 四边形=12·AB ·MN =1217.【答案】C 【解析】如解图,取劣弧 CB的中点D ,连接AD ,BD ,∵∠BCA =90°,AB =2AC =4,∴CA =2,则∠ABC =30°,∴∠BAC =60°,∵D 为劣弧 CB的中点,∴BD =CD ,∴∠BAD =30°,∴BD =12AB =2,∠BPC =60°,∴∠BDC =120°,∵I 为△PBC 的内心,∴∠PBI =∠IBC ,∵BD =CD ,∴∠BPD =∠DBC ,∴∠PBI +∠BPD =∠IBC +∠DBC ,即∠BID =∠IBD ,∴ID =BD ,∵BD =CA =2,∴ID =2,∴动点I 到定点D 的距离为2,即点I 的轨迹是以点D 为圆心,2为半径的弧 CIB (不含C 、B ),弧 CIB的长为1202180π⨯=43π,则l 的取值范围是:0<l <43π18.【答案】A 【解析】如解图,分别作∠A 与∠B 的角平分线,交点为P ,∵△ACD 和△BCE第16题解图第17题解图第18题解图B第19题解图都是等边三角形,∴AP 与BP 为CD 、CE 的垂直平分线.又∵圆心O 在CD 、CE 垂直平分线上,则交点P 与圆心O 重合,即圆心O 是一个定点,连接OC ,若半径OC 最短,则OC ⊥AB .又∵∠OAC =∠OBC =30°,AB =4,∴OA =OB =2OC ,∴AC =BC =2,∴在Rt△AOC 中,2OC =2AO -2AC ,即2OC =42OC -4,解得OC19.【答案】C 【解析】如解图,连接OP ,∵PM ⊥CD ,PN ⊥AB ,∴∠PMO =∠PNO =90°,∴点M 、N 在以OP 为直径的圆上,∴∠MPN =90°,MN 有最大值2.20.【答案】B 【解析】如解图,连接DO 并延长,交⊙O 于点P ′,由圆的性质知,当点P运动到点P ′时,DP 的值最大.∵△ABC 为等腰直角三角形,且AB=∴BC=根据勾股定理得8AC ==,∵点D 、O 分别为AB 、AC 的中点,∴DO为△ABC的中位线,∴12DO BC ==DP ′=DO +OP ′=4,故DP 的最大值为4.第20题解图第22题解图第23题解图 21.C 【解析】如解图,点P 运动的路径是以G 为圆心的劣弧,在⊙G 上取一点H ,连接EH 、FH ,∵四边形AOCB 是正方形,∴∠AOC =90°,∵∠CEA =12∠COA =45°,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠APF =∠AFP =45°,∴∠H =∠APF =45°,∴∠EGF =2∠H =90°,∵EF =4,GE =GF ,∴GE =GF= EF=22.A 【解析】作DH ⊥BC 于H ,如解图,∵四边形ABCD 中,AD ∥BC ,∠ABC =90°,∴AB ⊥AD ,AB ⊥BC ,∴四边形ABHD 为矩形,∴AB 为直径,∴AD 和BC 为⊙O 的切线,∵CD 和MN 为⊙O 切线,∴DE =DA ,CE =CB ,NE =NF ,MB =MF ,∵四边形ABHD 为矩形,∴BH =AD =2,DH =AB =6,设BC =x ,则CH =x -2,CD =x +2,在Rt △DCH 中,∵222CH DH DC +=,∴222(2)6(2)x x -+=+,解得x =92,∴CB =CE =92,∴△MCN 的周长=CN +CM +MN =CN +CM +NF +MF =CE +CB =923.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在以AO 为直径的圆上,当点D 运动C到点C 处时,AE ′=12AC ;当点D 运动到点B 处时,AE ′′=12AB ,∴E ′E ′′为△ABC 的中位线,∴E ′E ′′=12BC =2,∵∠A =45°,∴ E E '''所对的圆心角为90°,点E 所在圆的半径rD 在优弧 BAC上运动,∴点E=.24.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在⊙M 上,点D 运动到D ′处时,D ′、O 、B 、M 共线,此时D ′B 为⊙O 的直径,∵BE =12BD ,∴BM =12BO ,在Rt △ABC 中,∵BC =AB =4,∴AC=BO =AO=BMD 与点A 重合时,点E 运动到E ′′处,∵△ABC 是等腰直角三角形,∴∠C =45°,∴∠BOA =90,∴∠E ′′MB =90°,∴当点D 从点A 运动至点B 时,点E的运动路径长为901802=.第24题解图第25题解图25.C 【解析】如解图,过点P 作PF ⊥OM ,交直线l 同侧的⊙O 于点F ,连接OF ,记OF 的中点为G ,∵CM ⊥直线l ,∴∠MCO =∠OPF =90°,在Rt △CMO 和Rt △POF ,∴∠POF =∠CMO ,OF ⊥直线l ,∵点G 是OF 的中点,∴OG =GP =GF ,∴点P 在以点G 或G ′为圆心,OG 或OG ′长为半径的圆上,当点M 运动一周时,点P 的运动路程是⊙G 周长的2倍,∵OF =OM =10,∴点P 运动路程为2×10π=20π.。

湖北省武昌区2017届高三元月调考数学(文)精彩试题Word版

湖北省武昌区2017届高三元月调考数学(文)精彩试题Word版

武昌区 2017 届高三年级元月调研考试文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}|05,|20A x N x B x x =∈≤≤=-<,则()R A C B =( )A. {}1B. {}0,1C. {}1,2D. {}0,1,2 2. 在复平面内,复数12iz i-+=-(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.若,x y 满足约束条件10,20,220,x y x y x y -+=⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为( ) A. -3 B.12 C. 1 D.324. 执行如图所示的程序框图,若输入的2017x =,则输出的i =( ) A .2 B .3 C .4 D .55.设公比为()0q q >且的等比数列{}n a 的前n 项和为n S , 若224432,32S a S a =+=+,则1a =( ) A. -2 B. -1 C.12 D.236. 已知函数()23f x ax a =-+,若0x ∃()1,1∈-,f ( x 0 )=0 ,则实数 a 的取值范围是( ) A. ()(),31,-∞-+∞ B. (),3-∞-C. ()3,1-D.()1,+∞7.在平行四边形ABCD 中,点M,N 分别在边BC,CD 上,且满足BC=3MC,DC=4NC,若AB=4,AD=3,则AN MN ⋅=A. B. 0D.7 8. 中国古代数学名著《九章算术》中记载了公元前 344 年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为 12.6(立方寸),则图中的x =( ) A. 1.2 B. 1.6 C. 1.8 D.2.49. 一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A. 甲B. 乙C.丙D.丁10. 已知函数f ( x )的部分图象如图所示,则f ( x )的解析式可以是( )A. ()222x f x x -=B. ()2cos xf x x = C. ()2cos x f x x = D. ()cos xf x x=11.已知12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( )12.若()cos 2cos 2f x x a x π⎛⎫=++ ⎪⎝⎭在区间,62ππ⎛⎫⎪⎝⎭上是增函数,则实数a 的取值范围是( )A. [)2,-+∞B. ()2,-+∞C. (),4-∞-D.(],4-∞-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知直线l 将圆22:210C x y x y ++-+=平分,且与直线230x y ++=垂直,则l 的方程为 .14.某射击运动员每次射击击中目标的概率为80%,现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0—9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击记过,敬随机模拟产生了如下20组随机数:据此估计,该射击运动员4次射击至少3次击中目标的概率为 . 15. 等差数列{}n a 的前n 项和为n S 已知129,a a =为整数,且5.n S S ≤则数列11n n a a +⎧⎫⎨⎬⎩⎭的前9项和为 .16.在矩形ABCD 中,现ABD ∆将沿沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确的结论序号为 .(写出所有正确结论的序号)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知13cos 2cos ,tan .2a C c A C ==(1)求B;(2)若5b =,求ABC ∆的面积. 18.(本题满分12分)如图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1 .(Ⅰ)证明:SD ⊥平面 SAB ; (Ⅱ)求四棱锥S ABCD -的高.19.(本题满分12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准 x (吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5) ,[0.5,1) ,…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中 a 的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (Ⅲ)若该市政府希望85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.20.(本题满分12分)已知直线()2y k x =-与抛物线21:2y x Γ=相交于A,B 两点,M 是线段AB 的中点,过M 作y 轴的垂线交Γ于点N.(1)证明:抛物线Γ在点N 处的切线与AB 平行;(2)是否存在实数k 使0NA NB ⋅=?若存在,求k 的值;若不存在,说明理由.21.(本题满分12分) 已知函数()()211ln .2f x x a x a x =+-- (1)讨论()f x 的单调性;(2)设0a <,若对()12,0,x x ∀∈+∞,()()12124f x f x x x -≥-,求a 的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2017元调试卷(二)答案

2017元调试卷(二)答案

;(3 分)
解得:m1=﹣12,m2=2(舍去); 当 m=﹣12 时, ∴此时点 P 的坐标为 综上所述,当点 P 坐标为 两部分.(2 分) = ; 或 时,△PGA 的面积被直线 AC 分成 1:2 ;
解得

∴直线 AC 的解析式为: 设点 则点 N 坐标为 ∵S△PNA:S△GNA=PN:GN; ,
N
O H
M
B
∵OP=OC∴∠OPC=∠OCP∴∠OPC=∠OCP=∠COP∴△POC 也为等边三角形, ∴∠PCO=60° ,PC=OP=OC, 又∵∠OCD=90° ,∴∠PCD=30° ,
1 在 Rt△PCD 中,PD= 2 PC, 1 1 又∵PC=OP= 2 AB,∴PD= 4 AB,即 AB=4PD.
三、解答题(共 72 分) 17、(本题 8 分) x1= 1 x2= 6 18、(本题 8 分)表略 随机抽取 2 张卡片可能出现的结果有 30 个,它们出现 的可能性相等,其中“两张卡片上的数都是偶数”的结果 有 6 个, 1 5 所以 P(两张卡片上的数都是偶数)= ;(2) . 5 12 19、(本题 8 分)1)证明:连接 OE, ∵OA=OE ∴∠OAE=∠OEA,∵∠PAE=∠ADE=∠ABE ∴∠PAE+∠OEA=∠ABE+∠OAE ∵AB 为⊙O 的直径∴∠ABE=90° , ∴∠PEO=90° ∴PE 是⊙O 的切线 (2)解:连接 BD,过 G 作 GM⊥AB 于 M ∵AH=16,BH=9,AB 为⊙O 的直径 ∴DH=12 ∵D 是劣弧 BE 的中点, ∴∠CDB=∠DBE=∠EAD=∠BAD,
2016-2017 学年武汉市九年级元月调研测试 数学模拟试题(二)答案
一、 选择题(每小题 3 分,共 30 分) 题号 选项 1 B 2 D 3 D 4 C 5 C 6 D 7 B 8 D 9 C 10 D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文案2016-2017学年度市九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在数1,2,3和4中,是方程2120x x +-=的根的为A .1B .2C .3D .42. 桌上倒扣着背面图案相同的15扑克牌,其中9黑桃、6红桃,则 A .从中随机抽取1,抽到黑桃的可能性更大B .从中随机抽取1,抽到黑桃和红桃的可能性一样大C .从中随机抽取5,必有2红桃D .从中随机抽取7,可能都是红桃 3. 抛物线()2235y x =++的顶点坐标是A .(3,5)B .(-3,5)C .(3,-5)D .(-3,-5) 4. 在O 中,弦AB 的长为6,圆心O 到AB 的距离为4,则O 的半径为A .10B .6C .5D .45. 在平面直角坐标系中,有A (2,-1),B (-1,-2),C (2,1),D (-2,1)四点,其中,关于原点对称的两点为A .点A 和点B B .点B 和点C C .点C 和点D D .点D 和点A 6.方程28170x x -+=的根的情况是( )A . 两实数根的和为8-B . 两实数根的积为17C . 有两个相等的实数根D . 没有实数根7.抛物线2(2)y x =--向右平移2个单位得到的抛物线的解析式为( )A . 2y x =- B . 2(4)y x =-- C . 2(2)2y x =--+ D . 2(2)2y x =---8.由所有到已知点O 的距离大于或等于3,并且小于等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π9.在50包型号为L 的衬衫的包裹中混入了型号为M 的衬衫,每包20件衬衫.每包中混入的M 号衬衫数如下表:A. M 号衬衫一共有47件B. 从中随机取一包,包中L 号的衬衫数不低于9是随机事件C. 从中随机取一包,包中L 号衬衫不超过4的概率为0.26D. 将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M 号的概率是0.25210.在抛物线223y ax ax a =--上有A (-0.5,1y ),B (2,2y )和C (3,3y )三点,若抛物线与y 轴的交点在正半轴上,则1y ,2y ,3y 的大小关系为( )A .312y y y <<B .321y y y <<C .213y y y <<D .123y y y <<二.填空题(共6小题,每小题3分,共18分)文案11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4,那么,掷一次该骰子,“朝上一面为6点”的概率为12.如图,四边形ABCD 接于○O ,E 为CD 延长线上一点,若∠B =110°,则∠ADE 的度数为13.两年前生产1t 药品成本是6000元,现在生产1t 药品的成本是4860元,则药品成本的年平均下降率是第12题图第15题图14.圆心角为75°的扇形弧长是2.5π,则扇形的半径为15.如图,正三角形的边长为12cm ,剪去三个角后成为一个正六边形,则这个正六边形的部任意一点到各边的距离和为 cm .16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若-5≤m ≤5,则点C 运动的路径长为三.解答题(共8小题,共72分) 17.(本题8分)解方程2530x x -+=18.(本题8分)如图,OA ,OB ,OC 都是☉O 的半径,∠AOB =2∠BO C . (1)求证:∠ACB =2∠BAC(2)若AC 平分∠OAB ,求∠AOC 的度数.第18题图19.(本题8分)如图,要设计一幅宽20cm,长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3,如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm?第19题图20.(本题8分)阅读材料,回答问题.材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转;三辆汽车经过路口,相当于从三个这样的口袋中各随机摸一个球.问题(1)事件“至少有两辆车向左转”相当于”袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案;(3)请直接写出题2的结果.21.(本题8分) 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,(1)求证:BC是圆D的切线;(2)若AB=5,BC=13,求CE的长.文案文案22.(本题10分)某公司产销一种商品,为保证质量,每个周期产销商品件数控制在100以,产销成本C 是商品件数x商品的销售价格(单位:元)为P =35—x 101.(每个周期的产销利润=P x C ⋅-) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值围); (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.23.(本题10分)如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0),B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A,B和O的对应点分别为O,C和D.(1)画出△OCD,并写出点C和点D的坐标;(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°.①若点M在x轴上,则点M的坐标为___________;②若△ACM为直角三角形,求点M的坐标;(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由).文案文案24. (本题12分)已知抛物线y =221x +mx -2m -2(m ≥0)与x 轴交于A ,B 两点,点A 在点B 的左边,与y 轴交于点C .(1)当m =1时,求点A 和点B 的坐标;(2)抛物线上有一点D (—1,n ),若△ACD 的面积为5,求m 的值;(3)P 为抛物线上A ,B 之间一点(不包括A ,B ),PM ⊥x 轴于M ,求PMBMAM ·的值.文案2016-2017学年度市部分学校九年级元月调考数学试卷参考答案10. 又∵∴二. 16.C 点的轨迹是点(-1,0)和点(4,5)之间的一条线段.所以C 点运动的路径长为三.解答题(共8小题,共72分)17.解:a =1,b =﹣5,c =3,∴b 2-4ac =13∴x =5±132∴x 1=5-132 ,x 2=5+13218.(1)证明:在⊙O 中,∵∠AOB =2∠ACB ,∠BOC =2∠BAC , ∵∠AOB =2∠BO C . ∴∠ACB =2∠BA C . (2)解:设∠BAC =x °.∵AC 平分∠OAB ,∴∠OAB =2∠BAC =2x °; ∵∠AOB =2∠ACB ,∠ACB =2∠BAC , ∴∠AOB =2∠ACB =4∠BAC =4x °; 在△OAB 中,∠AOB +∠OAB +∠OBA =180°,第18题图文案所以,4x +2x +2x =180;x =22.5所以∠AOC =6x =135°19.解:设横彩条的宽为2xcm ,竖彩条的宽为3xcm .依题意,得(20-2x )(30-3x )=81%×20×30. 解之,得x 1=1,x 2=19,当x =19时,2x =38>20,不符题意,舍去. 所以x =1.答:横彩条的宽为2 cm ,竖彩条的宽为3 cm .20.解:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率” ,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)1321.(1)证明:过点D 作DF ⊥BC 于点F . ∵∠BAD =90°,BD 平分∠ABC , ∴AD =DF . ∵AD 是⊙D 的半径,DF ⊥BC , ∴BC 是⊙D 的切线(2) 解:∵∠BAC =90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线,∴AB =F B .∵AB =5,BC =13, ∴CF =8,AC =12. 在Rt △DFC 中, 设DF =DE =r ,则 r 2+64=(12-r )2,r =103 .∴CE =16322.解:(1)2138010C x x =++(2) 依题意,得(35-110x )·x -(110x 2+3x +80)=220;解之,得x 1=10,x 2=150,因为每个周期产销商品件数控制在100以, 所以x =10.答:该公司每个周期产销10件商品时,利润达到220元 (3) 设每个周期的产销利润为y 元.则C文案y =(35-110x )·x -(110 x 2+3x +80)=﹣15 x 2+32x -80=﹣15 (x -80)2+1200,因为﹣15<0,所以,当x =80时,函数有最大值1200.答:当每个周期产销80件商品时,产销利润最大,最大值为1200 元23. (1)C (2,4),D (0,4) (2)①M (6,0)②第1种情况:当∠CAM =90°,C (2,4),A (4,0) ∴△CAM 为等腰直角三角形过C 作CH ⊥x 轴于H ,过M 作MG ⊥x 轴于G , ∴△CHA ≌△AGM (AAS )、 ∴AG =CH =4,MG =AH =4-2=2 ∴M (8,2)第二种情况:当∠ACM =90°时,同理可得,M (6,6)(3)N 点在以(5,3)以及以点(1,1).(阴影部分)24. 解:(1)当1m =时,2142y x x =+-令0y =,21402x x +-= ∴124,2x x =-= ∴()4,0,(2,0)A B -(2)令212202x mx m +--=即222244x mx m m m ++=++()()()2212222,2022x m m x m x C m OA OC+=+∴=--=-∴=,-∴直线:22AC y x m =---文案点()1,D n -在抛物线上,∴31,32D m ⎛⎫--- ⎪⎝⎭过点D 作DM ⊥x 轴于点M ,交AC 于点E过点C 作CN ⊥DE 点M .则点()1,21E m ---()()()2123121322112212112252223903;32ACD DE m m m S DE AM DE CNDE AOm m m x m m ⎛⎫∴=-----=+⎪⎝⎭=⋅+⋅=⋅⎛⎫=++= ⎪⎝⎭∴+-=∴==-舍 所以,满足题意m 的值为32(3)设P 点坐标21,222a a am m ⎛⎫+-- ⎪⎝⎭则AM =a +2m +2BM =2-aPM =21222a am m --++()()22222222122224242=122224412222a m a AM BMPM a am m a a m am a a am m a am m a am m ++-⋅=--++-+-+---++--++=--++=(。

相关文档
最新文档