高一必修 三角恒等变换测试题及答案
高中试卷-专题5.5 三角恒等变换(含答案)
专题5.5 三角恒等变换(一)两角和与差的正弦、余弦、正切公式1.C (α-β):cos(α-β)=cos αcos β+sin αsin β;C (α+β):cos(α+β)=cos αcos_β-sin_αsin β;S (α+β):sin(α+β)=sin αcos β+cos αsin β;S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.)4sin(2cos sin πααα±=±(3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=(sin α2±cos α2)2,1+cos α=2cos 2α2,1-cos α=2sin 2α2(4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,(π4+α)+(π4-α)=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.一、单选题1.sin 40sin 50cos 40cos50°°-°°等于( )A .1-B .1C .0D .cos10-°【来源】陕西省西安市莲湖区2021-2022学年高一下学期期末数学试题【答案】C【解析】由两角和的余弦公式得:()()sin 40sin 50cos 40cos50cos 40cos50sin 40sin 50cos 4050cos900°°-°°=-°°-°°=-+=-=o o o 故选:C2.已知()5cos 2cos 22παπαæö-=+ç÷èø,且()1tan 3αb +=,则tan b 的值为( )A .7-B .7C .1D .1-【来源】辽宁省沈阳市第一中学2021-2022学年高一下学期第三次阶段数学试题【答案】D【解析】:因为()5cos 2cos 22παπαæö-=+ç÷èø,所以sin 2cos αα=,所以sin tan 2cos ααα==,又()1tan 3αb +=,所以()()()12tan tan 3tan tan 111tan tan 123αb αb αb ααb α-+-=+-===-éùëû+++´.故选:D3.已知,αb 均为锐角,且1sin 2sin ,cos cos 2αb αb ==,则()sin αb -=( )A .35B .45CD .23【来源】辽宁省县级重点高中协作体2021-2022学年高一下学期期末考试数学试题【答案】A【解析】:因为1sin 2sin ,cos cos 2αb αb ==,所有22221sin cos 4sin cos 14ααb b +=+=,则2153sin 44b =,又,αb均为锐角,所以sin b =cos b =所以sin αα==所以()3sin sin cos cos sin 5αb αb αb -=-=.故选:A.4.已知()1sin 5αb +=,()3sin 5αb -=,则tan tan αb 的值为( )A .2B .2-C .12D .12-【来源】内蒙古自治区包头市2021-2022学年高一下学期期末数学试题【答案】B【解析】()()1sin sin cos cos sin 53sin sin cos cos sin 5αb αb αb αb αb αb ì+=+=ïïíï-=-=ïî,解得2sin cos 51cos sin 5αb αb ì=ïïíï=-ïî,所以tan sin cos 2tan cos sin ααbb αb==-.故选:B5.已知sin sin 13πq q æö++=ç÷èø,则tan 6πq æö+=ç÷èø( )ABC .D .【来源】陕西省汉中市六校联考2021-2022学年高一下学期期末数学试题(B 卷)【答案】D【解析】sin sin(13πq q ++=,则1sin sin 12q q q +=,即312q =,1cos 2q q +=sin 6πq æö+ç÷èøcos 6πq æö+==ç÷èø所以tan 6πq æö+==ç÷èø故选:D6.下面公式正确的是( )A .3sin cos 2πq q æö+=ç÷èøB .2cos212cos q q =-C .3cos sin 2πq q æö+=-ç÷èøD .cos(sin 2πq q-=【来源】陕西省宝鸡市渭滨区2021-2022学年高一下学期期末数学试题【答案】D 【解析】对A ,3sin cos 2πq q æö+=-ç÷èø,故A 错误;对B ,2cos 22cos 1q q =-,故B 错误;对C ,3cos sin 2πq q æö+=ç÷èø,故C 错误;对D ,cos()sin 2πq q -=,故D 正确;故选:D7.已知2tan()5αb +=,1tan(44πb -=,则tan()4πα+的值为( )A .16B .322C .2213D .1318【来源】内蒙古自治区呼伦贝尔市满洲里市第一中学2021-2022学年高一下学期期末数学试题【答案】B【解析】:因为2tan()5αb +=,1tan()44πb -=,所以()tan()tan 44ππααb b éùæö+=+--ç÷êúèøëû()()tan tan 41tan tan 4παb b παb b æö+--ç÷èø=æö++-ç÷èø213542122154-==+´.故选:B 8.设1cos102a =o o,22tan131tan 13b =+oo,c =,则a ,b ,c 大小关系正确的是( )A .a b c <<B .c b a <<C .a c b<<D .b c a<<【来源】湖北省云学新高考联盟学校2021-2022学年高一下学期5月联考数学试题【答案】C【解析】()1cos10cos 6010cos 70sin 202a =°=°+°=°=°o ,2222sin132tan13cos132sin13cos13sin 26sin 131tan 131cos 13b °°°===°°=°°+°+°,sin 25c ===o ,因为函数sin y x =在0,2πæöç÷èø上是增函数,故sin 20sin 25sin 26<<o o o ,即a c b <<.故选:C.9.已知sin()6πα+=2cos(2)3πα-=( )A .23-B .13-C .23D .13【来源】海南省海口市第一中学2021-2022学年高一下学期期中考试数学试题(A )【答案】B【解析】:因为sin()6πα+=,所以2cos 2cos 263παππαéùæöæö-=-ç÷ç÷êúèøë+øèû6cos 2πα÷+æö=-çèø212n 6si παéùæö=--ç÷êúøë+èû21123éùæêú=--=-ççêúèëû故选:B10.若11tan ,tan()72b αb =+=,则tan =α( )A .115B .112C .16D .13【来源】北京市房山区2021—2022学年高一下学期期末学业水平调研数学试题【答案】D【解析】:因为11tan ,tan()72b αb =+=,所以()()()11tan tan 127tan =tan 111tan tan 3127αb b ααb b αb b -+-+-===éùëû+++´.故选:D.11.已知3cos 16πααæö--=ç÷èø,则sin 26παæö+=ç÷è( )A .13-B .13C .D【来源】四川省内江市2021-2022学年高一下学期期末数学理科试题【答案】B【解析】:因为3cos 16πααæö--=ç÷èø,即3cos cos sin sin 166ππαααæö-+=ç÷èø,即13sin 12αααö-+=÷÷ø3sin 12αα-=1cos 123παααöæö=+=÷ç÷÷èøø,所以cos 3παæö+=ç÷èø所以sin 2cos 2662πππααæöæö+=-++ç÷ç÷èøèø2cos 22cos 133ππααéùæöæö=-+=-+-ç÷ç÷êúèøèøëû21213éùêú=--=êúëû.故选:B 12.已知4sin 5α=,π5,π,cos ,213αb b æöÎ=-ç÷èø是第三象限角,则()cos αb -=( )A .3365-B .3365C .6365D .6365-【来源】西藏林芝市第二高级中学2021-2022学年高一下学期第二学段考试(期末)数学试题【答案】A【解析】由4sin 5α=,π,π2αæöÎç÷èø,可得3cos 5α===-由5cos ,13b b =-是第三象限角,可得12sin 13b ===-则()3541233cos cos cos sin sin 51351365αb αb αb æöæöæö-=+=-´-+´-=-ç÷ç÷ç÷èøèøèø故选:A13.若sin 2α=()sin b α-=,4απéùÎπêúëû,3,2b ππéùÎêúëû,则αb +的值是( )A .54πB .74πC .54π或74πD .54π或94π【答案】B【解析】,,2,242ππαπαπéùéùÎ\ÎêúêúëûëûQ ,又∵sin 22,,,242πππααπαéùéù=\ÎÎêúêúëûëû,∴cos2α==又∵35,,,224πππb πb αéùéùÎ\-Îêúêúëûëû,∴()cos b α-==于是()()()()cos cos 2cos 2cos sin 2sin αb αb ααb ααb α+=+-=---éùëûææ==ççççèè5,24αb πéù+Îπêúëû,则74αb π+=.故选:B.14.)sin20tan50=oo ( )A .12B .2C D .1【来源】安徽省宣城市泾县中学2021-2022学年高一下学期第一次月考数学试题【答案】D 【解析】原式()()()2sin 20sin 50602sin 20sin 9020cos50cos 9050++===-oooooooo o 2sin 20cos 20sin 401sin 40sin 40===o o o o o.故选:D.15.若1cos ,sin(),0722ππααb αb =+=<<<<,则角b 的值为( )A .3πB .512πC .6πD .4π【来源】陕西省西安中学2021-2022学年高一下学期期中数学试题【答案】A 【解析】∵0,022ππαb <<<<,0αb π\<+<,由1cos 7α=,()sin αb +=sin α=,11cos()14αb +=±,若11cos()14αb +=,则sin sin[()]b αb α=+-sin()cos cos()sin αb ααb α=+-+1110714=-<,与sin 0b >矛盾,故舍去,若11cos()14αb +=-,则cos cos[()]b αb α=+-cos()cos sin()sin αb ααb α=+++111147=-´+12=,又(0,)2πb ÎQ ,3πb \=.故选:A.161712πα<<,且7cos 268παæö+=-ç÷ø,则αö=÷ø( )A .B .CD .14-【来源】河南省南阳地区2021-2022学年高一下学期期终摸底考试数学试题【答案】A【解析】由27cos 212sin 6128ππααæöæö+=-+=-ç÷ç÷èøèø,得215sin 1216παæö+=ç÷èø.因为7171212ππα<<,所以233122πππα<+<,所以sin 12παææö+Î-çç÷çèøè,所以sin 12παæö+=ç÷èø所以5cos cos sin 1221212ππππαααæöæöæöæö-=-+=+=ç÷ç÷ç÷ç÷èøèøèøèø故选:A17.已知sin cos αα-=π£,则sin 2æçè )A C .D 【来源】湖北省新高考联考协作体2021-2022学年高一下学期期末数学试题【答案】D【解析】:因为sin cos αα-=()22sin cos αα-=,即222sin 2sin cos cos 5αααα-+=,即21sin 25α-=,所以3sin 25α=,又sin cos 4παααæö--=ç÷èø即sin 4παæö-=ç÷èø因为0απ££,所以3444πππα-£-£,所以044ππα<-£,即42ππα<£,所以22παπ<£,所以4cos 25α==-,所以sin 2sin 2cos cos 2sin333πππαααæö-=-ç÷èø314525æö=´--=ç÷èø;故选:D18.若10,0,cos ,cos 224342ππππb αb αæöæö<<-<<+=-=ç÷ç÷èøèøcos 2b αæö+=ç÷èø( )A B .C D .【来源】广东省佛山市顺德区乐从中学2021-2022学年高一下学期期中数学试题【答案】C 【解析】cos cos cos cos sin sin 2442442442b ππb ππb ππb ααααéùæöæöæöæöæöæöæö+=+--=+-++-ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúèøèøèøèøèøèøèøëû,因为0,022ππαb <<-<<所以3,444πππαæö+Îç÷èø,,4242πb ππæö-Îç÷èø,因为1cos 43παæö+=ç÷èø,cos 42πb æö-=ç÷èø所以sin 4παæö+=ç÷èø,sin 42πb æö-=ç÷èø则1cos 23b αæö+==ç÷èøC19.已知πcos sin 6ααæö-+ç÷èø,则2πcos 3αæö+ç÷èø的值是( )A .45-B .45C .D 【来源】广东省汕尾市2021-2022学年高一下学期期末数学试题【答案】A【解析】由πcos sin 6ααæö-+=ç÷èøππ3πcos cossin sin sin sin 6623ααααααæö++=+=-=ç÷èø所以,π4cos 35αæö-=ç÷èø,所以,2πππ4cos cos πcos 3335αααæöæöæöæö+=--=--=-ç÷ç÷ç÷ç÷èøèøèøèø.故选:A.20.已知,2παπæöÎç÷ø,且25,则cos()α-=( )A B C D 【来源】陕西省商洛市2021-2022学年高一下学期期末数学试题【答案】C【解析】因为,2παπæöÎç÷èø,所以35,444πππαæö+Îç÷èø.又2sin 45παæö+=ç÷èø,所以cos 4παæö+==ç÷èøcos()cos cos cos cos sin sin 444444ππππππαααααéùæöæöæö-==+-=+++=ç÷ç÷ç÷êúèøèøèøëû故选:C.二、多选题21.对于函数()sin 22f x x x =,下列结论正确的是( )A .()f x 的最小正周期为πB .()f x 的最小值为2-C .()f x 的图象关于直线6x π=-对称D .()f x 在区间,26ππæö--ç÷èø上单调递增【来源】湖北省部分普通高中联合体2021-2022学年高一下学期期中联考数学试题【答案】AB【解析】()1sin 222(sin 22)2sin(223f x x x x x x π==+=+,22T ππ==,A 正确;最小值是2-,B 正确;()2sin()0633f πππ-=-+=,C 错误;(,)26x ππÎ--时,22(,0)33x ππ+Î-,232x ππ+=-时,()f x 得最小值2-,因此函数不单调,D 错误,故选:AB .22 )A .222cos2sin 1212ππ-B .1tan151tan15+°-°C .cos 75°°D .cos15°°【来源】江西省南昌市第十中学2021-2022学年高一下学期期中考试数学试题【答案】ABC【解析】A :222cos 2sin 2cos12126πππ-==B :1tan15tan 45tan15tan 601tan151tan 45tan15+°°+°==°=-°-°°C :cos 75sin1530°°=°°=°=,符合;D :cos152sin(3015)2sin15°°=°-°=°¹.故选:ABC23.已知函数2()cos sin 222x x xf x =-,则下列结论正确的有( )A .()f x 的最小正周期为4πB .直线23x π=-是()f x 图象的一条对称轴C .()f x 在0,2πæöç÷èø上单调递增D .若()f x 在区间,2m πéù-êúëû上的最大值为12,则3m π³【来源】江苏省南京师范大学附属中学2021-2022学年高一下学期期中数学试题【答案】BD【解析】:()21cos 1cos sin sin 222262x x x x f x x x π-æö=-=-=+-ç÷èø,所以()f x 的最小正周期为2,π故A 不正确;因为2362πππ-+=-,所以直线23x π=-是()f x 图象的一条对称轴,故B 正确;当02x π<<时,2+663x πππ<<,而函数sin y x =在2,63ππæöç÷èø上不单调,故C 不正确;当2x m π-££时,++366x m πππ-££,因为()f x 在区间,2m πéù-êúëû上的最大值为12,即11sin 622x πæö+-£ç÷èø,所以sin 16x πæö+£ç÷èø,所以+62m ππ³,解得3m π³,故D 正确.故选:BD.24.已知函数22()cos cos sin (0)f x x x x x ωωωωω=+->的周期为π,当π[0]2x Î,时,()f x 的( )A .最小值为2-B .最大值为2C .零点为5π12D .增区间为π06éùêúëû,【来源】江苏省徐州市2021-2022学年高一下学期期中数学试题【答案】BCD【解析】22()cos cos sin (0)f x x x x x ωωωωω=+->2cos 2x xωω=+2sin 26x πωæö=+ç÷èø,因为()f x 的周期为π,所以22ππω=,得1ω=,所以()2sin 26f x x πæö=+ç÷èø,当π[02x Î,时,72,666x πππéù+Îêúëû,所以1sin 2126x πæö-£+£ç÷èø,所以12sin 226x πæö-£+£ç÷èø,所以 ()f x 的最小值为1-,最大值为2,所以A 错误,B 正确,由()2sin 206f x x πæö=+=ç÷èø,72,666x πππéù+Îêúëû,得26x ππ+=,解得512x π=,所以()f x 的零点为5π12,所以C 正确,由2662x πππ£+£,得06x π££,所以()f x 的增区间为π06éùêëû,,所以D 正确,故选:BCD25.关于函数()cos 2cos f x x x x =-,下列命题正确的是( )A .若1x ,2x 满足12πx x -=,则()()12f x f x =成立;B .()f x 在区间ππ,63éù-êúëû上单调递增;C .函数()f x 的图象关于点π,012æöç÷èø成中心对称;D .将函数()f x 的图象向左平移7π12个单位后将与2sin 2y x =的图象重合.【来源】广东省佛山市顺德区第一中学2021-2022学年高一下学期期中数学试题【答案】ACD【解析】()1cos 2cos cos 222cos 222f x x x x x x x x æö=-==ç÷ç÷èøπ2cos 23x æö=+ç÷èø,对于A ,若1x ,2x 满足12πx x -=,则()()()1222ππ2cos 2π2cos 233f x x x f x éùæö=++=+=ç÷êúëûèø成立,故A 正确;对于B ,由ππ2π22π2π,3k x k k Z +£+£+Î,得:π5πππ,36k x k k +££+ÎZ ,即()f x 在区间π5π,36éùêúëû上单调递增,故B 错误;对于C ,因为πππ2cos 2012123f æöæö=´+=ç÷ç÷èøèø,所以函数()f x 的图象关于点π,012æöç÷èø成中心对称,故C 正确;对于D ,将函数()f x 的图象向左平移7π12个单位后得到7π7ππ3π2cos 22cos 22sin 2121232y f x x x x éùæöæöæö=+=++=+=ç÷ç÷ç÷êèøèøèøëû,其图象与2sin 2y x =的图象重合,故D 正确.故选:ACD三、解答题26.求下列各式的值(1)cos54cos36sin54sin36×-×o o o o (2)sin7cos37cos(7)sin(37)×+-×-o o o o (3)ππcos sin 1212×(4)22ππsincos 88-【来源】黑龙江省鸡西市第四中学2021-2022学年高一上学期期末考试数学试题【答案】(1)0;(2)12-;(3)14;(4)【解析】(1)cos54cos36sin54sin36cos(5436)cos900×-×=+==o o o o o o o .(2)sin7cos37cos(7)sin(37)sin7cos37cos7sin37×+-×-=×-×o o o o o o o o1sin(737)sin(30)2=-=-=-o o o .(3)ππ1π1cossin sin 1212264×==.(4)22πππsin cos cos 884-=-=27.已知3sin 5α=,其中2απ<<π.(1)求tan α;(2)若0,cos 2πb b <<=()sin αb +的值.【来源】广东省珠海市2021-2022学年高一下学期期末数学试题(A 组)【答案】(1)34-(2)【解析】(1)由3sin 5α=可得4cos 5α==±,因为2απ<<π,故4cos 5α=-,进而sintan cos ααα==(2)π0,cos 2b b <<,故sinb =;()34sin =sin cos cos sin 55αb αb αb ++=28.已知角α为锐角,2πb απ<-<,且满足1tan23=α,()sin b α-(1)证明:04πα<<;(2)求b .【来源】江西省名校2021-2022学年高一下学期期中调研数学试题【答案】(1)证明见解析(2)3.4πb =【解析】(1)证明:因为1tan23α=,所以2122tan332tan 1tan 1441tan 129απαα´===<=--,因为α为锐角且函数tan y x =在0,2πæöç÷èø上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1αααααì==ïíï+=î,结合角α为锐角,解得3sin 5α=,4cos 5α=,因为2πb απ<-<)=所以()cos b α-==()()()sin sinsin cos cos sin b αbααb ααbαéù=+-=-+-ëû3455æ=´+=çè又5224πππαb πα<+<<+<,所以3.4πb =29.已知α,b 为锐角,πsin 3αæö-=ç÷èø()11cos 14αb +=-.(1)求cos α的值;(2)求角b .【来源】江苏省南京市六校联合体2021-2022学年高一下学期期末数学试题【答案】(1)17(2)π3【解析】(1)因为π0,2αæöÎç÷èø,所以ππ336παæö-Îç÷ø-,,又πsin 3αæö-=ç÷èø所以π13cos 314αæö-===ç÷èø所以ππcos =cos +33ααéùæö-ç÷êúèøëûππππ1cos cos sin sin =33337ααæöæö=---ç÷ç÷èøèø(2)因为α,b 为锐角,所以0αb <+<π,则()sin 0αb +>,因为()11cos 14αb +=-,所以()sin αb +==又α为锐角,1cos 7α=,所以sin α==故()()()sin sin sin cos cos sin b αb ααb ααb α=+-=+-+éùû111714=+=因为b 为锐角,所以π3b =.30.已知sincos22αα-=(1)求sin α的值;(2)若αb ,都是锐角,()3cos 5αb +=,求sin b 的值.【来源】湖北省部分市州2021-2022学年高一下学期7月期末联考数学试题【答案】(1)12【解析】(1)解:2221sin cos sin 2sin cos cos 1sin 2222222a ααααααæö-=-+=-=ç÷èø,1sin 2a =.(2)因为αb ,都是锐角,所以0αb <+<π,()4sin 5αb +==,1sin cos 2a a =Þ=,()()()43sin cos c s 1si o 55n sin sin 2αb ααb ααb b α=+=+-=+-=´éùëû31.已知tan ,tan αb 是方程23570x x +-=的两根,求下列各式的值:(1)()tan αb +(2)()()sin cos αb αb +-;(3)()cos 22αb +.【来源】江苏省泰州市兴化市楚水实验学校2021-2022学年高一下学期阶段测试一数学试题【答案】(1)12-(2)54(3)35【解析】(1)由题意可知:57tan tan ,tan tan 33αb αb +=-=-()5tan tan 13tan 71tan tan 213αb αb αb -++===--+(2)()()5sin sin cos cos sin tan tan 537cos cos cos sin sin 1tan tan 413αb αb αb αb αb αb αb αb -+++====-++-(3)()22222211cos ()sin ()1tan ()34cos 221cos ()sin ()1tan ()514αb αb αb αb αb αb αb -+-+-++====++++++。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.已知△ABC的平面直观图△是边长为a的正三角形,则原△ABC的面积为()A.B.C.D.【答案】D【解析】三角形由平面图形转化到直观图形时,位于上的边长不变,位于轴上的长度减半,因此直观图与平面图比较底边长不变,高为平面图高的倍,【考点】平面图形的直观图2.下列函数中,最小正周期为π的偶函数为A.B.C.D.【答案】D【解析】A中函数为奇函数;B中函数最小周期为;C中由函数图像可知函数不具有周期性;D中函数周期为,且为偶函数【考点】三角函数的周期性奇偶性3.(本小题满分12分)在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.【答案】(1);(2).【解析】(1)根据正弦定理,将边化为角,直接求得;(2)因为三边成等差数列,所以,同样根据正弦定理,将边化角得到,第二步,考虑两角和的公式,所以将,两个式子平方相加能够解得,第三步,考虑的大小关系,得到.试题解析:(1)由,根据正弦定理得,所以(2)由已知和正弦定理以及(1)得①设,②①2+②2,得③代入③式得因此【考点】1.正弦定理;2.两角和的余弦公式.4.如果,那么的值为()A.-2B.2C.-D.【答案】C【解析】上下同时除以,得到:,解得.【考点】同角三角函数基本关系式5.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.0D.-【答案】B【解析】平移个单位得到,令知满足,故选B.【考点】三角函数的图像与性质.6.(本小题满分12分)已知.(1)若且=l时,求的最大值和最小值,以及取得最大值和最小值时x的值;(2)若且时,方程有两个不相等的实数根,求b的取值范围及的值.【答案】(1)(2),或【解析】第一问首先利用数量积的坐标运算公式以及倍角公式,两角和的正弦公式化简f(x),再利用得,结合三角函数的图像性质得,第二问要使方程有两个不相等的实数根,须满足,,试题解析:解:当且=l时,当且时,且而,要使方程有两个不相等的实数根,须满足----12分又【考点】向量的数量积公式,倍角公式,两角和的正弦公式,三角函数的图像性质.7.计算的值是.【答案】【解析】【考点】两角和与差的正弦公式8.把函数的图像经过变化而得到的图像,这个变化是()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B【解析】,与比较可知:只需将向右平移个单位即可【考点】三角函数化简与平移9.已知角的终边过点,则的值是()A.1B.C.D.-1【答案】C【解析】,,,所以原式等于.【考点】三角函数的定义10.的最大值为()A.B.C.1D.2【答案】C【解析】函数可化为,显然最大值为1,故选C【考点】•辅助角公式 三角函数求最值11.(本小题满分12分)已知,.(1)求及的值;(2)求满足条件的锐角.【答案】(1),;(2)【解析】(1)由同角三角函数的基本关系及角的范围即可求出,再由倍角公式及角的范围即可求出。
高中数学三角恒等变换习题及答案
第三章 三角恒等变换一、选择题1.函数y =sin α+cos α⎪⎭⎫ ⎝⎛2π < < 0α的值域为( ).A .(0,1)B .(-1,1)C .(1,2]D .(-1,2)2.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则( ). A .a <bB .a >bC .ab <1D .ab >23.若θθtan +2tan 1-=1,则θθ2sin +12cos 的值为( ).A .3B .-3C .-2D .-214.已知 α∈⎪⎭⎫⎝⎛2π3 ,π,并且sin α=-2524,则tan 2α等于( ). A .34 B .43 C .-43 D .-345.已知tan (α+β)=3,tan (α-β)=5,则tan 2α=( ). A .-47B .47 C .-74 D .74 6.在△ABC 中,若cos A cos B >sin A sin B ,则该三角形是( ). A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角或直角三角形7.若0<α<2π<β<π,且cos β=-31,sin (α+β)=97,则sin α 的值是( ).A .271B .275C .31D .2723 8.若cos (α+β)·cos (α-β)=31,则cos 2 α-sin 2 β 的值是( ).A .-32B .31C .-31D .32 9.锐角三角形的内角A ,B 满足tan A -A 2sin 1=tan B ,则有( ). A .sin 2A -cos B =0 B .sin 2A +cos B =0 C .sin 2A -sin B =0D .sin 2A +sin B =010.函数f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -sin 2⎪⎭⎫ ⎝⎛4π-x 是( ).A .周期为 π 的偶函数B .周期为π 的奇函数C .周期为2 π的偶函数D .周期为2π的奇函数二、填空题 11.已知设α∈⎪⎭⎫ ⎝⎛2π,0,若sin α=53,则2cos ⎪⎭⎫ ⎝⎛+4πα= . 12.sin 50°(1+3tan 10°)的值为 . 13.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=534,则sin ⎪⎭⎫ ⎝⎛+6π7α的值是 . 14.已知tan ⎪⎭⎫ ⎝⎛α + 4π=21,则ααα2cos +1cos -2sin 2的值为 .15.已知tan α=2,则cos ⎪⎭⎫⎝⎛2π3+2α的值等于 . 16.sin ⎪⎭⎫ ⎝⎛α + 4πsin ⎪⎭⎫ ⎝⎛α - 4π=61,α∈⎪⎭⎫⎝⎛ π,2π,则sin 4α 的值为 .三、解答题17.求cos 43°cos 77°+sin 43°cos 167°的值.18.求值:①(tan10°-3)︒︒50sin 10cos ; ②︒︒︒20cos 20sin -10cos 2.19.已知cos ⎪⎭⎫ ⎝⎛x + 4π=53,127π<x <47π,求x x x tan -1sin 2+2sin 2的值.20.若sin α=55,sin β=1010,且α,β 均为钝角,求α+β 的值.参考答案一、选择题 1.C解析:∵ sin α+cos α=2sin (α+4π),又 α∈(0,2π),∴ 值域为(1,2]. 2.A解析:∵ a =2sin (α+4π),b =2sin (β+4π),又4π<α+4π<β+4π<2π. 而y =sin x 在[0,2π]上单调递增,∴ sin (α+4π)<sin (β+4π).即a <b .3.A 解析:由θθtan +2tan 1-=1,解得tan θ=-21,∴ θθ2sin +12cos =222sin + cos sin - cos )(θθθθ=θθθθsin + cos sin - cos =θθ tan + 1 tan - 1=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛21 - + 121 - - 1=3. 4.D解析:sin α=-2524,α∈(π,2π3),∴ cos α=-257,可知tan α=724. 又tan α=2tan - 12tan22αα=724. 即12 tan 22α+7 tan 2α-12=0. 又 2α∈⎪⎭⎫ ⎝⎛4π ,2π,可解得 tan 2α=-34. 5.C解析:tan 2α=tan [(α+β)+(α-β)]=)-()+(-)-()++(βαβαβαβαtan tan 1tan tan =-74.6.C解析:由cos A cos B >sin A sin B ,得cos (A +B )>0⇒cos C <0, ∴ △ABC 为钝角三角形. 7.C解析:由0<α<2π<β<π,知2π<α+β<23 π 且cos β=-31,sin (α+β)=97,得sin β=322,cos (α+β)=-924. ∴ sin α=sin [(α+β)-β]=sin (α+β)cos β-cos (α+β)sin β=31.8.B解析:由cos (α+β)·cos (α-β)=31,得cos 2α cos 2 β-sin 2α sin 2 β=31,即cos 2 α(1-sin 2 β)-(1-cos 2 α)sin 2 β=31,∴ cos 2 α-sin 2 β=31.9.A解析:由tan A -A 2sin 1=tanB ,得A 2sin 1=tan A -tan B ⇒A A cos sin 21=BA B A cos cos -sin )(⇒cos B =2sin A sin (A -B )⇒cos [(A -B )-A ]=2sin A sin (A -B ) ⇒cos (A -B )cos A -sin A sin (A -B )=0,即cos (2A -B )=0.∵ △ABC 是锐角三角形, ∴ -2π<2A -B <π, ∴ 2A -B =2π⇒sin 2A =cos B ,即sin 2A -cos B =0. 10.B解析:由sin 2⎪⎭⎫ ⎝⎛4π-x =sin 2⎪⎭⎫ ⎝⎛x -4π=cos 2⎪⎭⎫⎝⎛x +4π,得f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -cos 2⎪⎭⎫ ⎝⎛x +4π=-cos ⎪⎭⎫ ⎝⎛2π+2x =sin 2x .二、填空题 11.15. 解析:由α∈⎪⎭⎫ ⎝⎛2π,0,sin α=53得cos α=54,2cos ⎪⎭⎫ ⎝⎛+4πα=cos α-sin α=51. 12.1.解析:sin50°(1+3tan10°) =sin50°·︒︒︒10cos 10sin 3+10cos=sin50°·︒⎪⎪⎭⎫ ⎝⎛︒︒10 cos 10sin 23+10 cos 212=sin50°·︒︒10cos 50cos 2=︒︒10cos 100sin =︒︒10cos 10cos =1. 13.-45. 解析:cos ⎪⎭⎫⎝⎛-6πα+sin α=23cos α+21sin α+sin α =23( cos α+3sin α)=534, 所以cos α+3sin α=58. sin ⎪⎭⎫ ⎝⎛+6π7α=sin αcos6π7+cos αsin 6π7 =-23sin α-21cos α=-21(3sin α+cos α)=-54. 14.-65. 解析:由tan ⎪⎭⎫ ⎝⎛α + 4π=ααtan 4πtan -1tan +4πtan =ααtan -1tan +1=21,解得tan α=-31,∴ ααα2cos +1cos -2sin 2=αααα22cos 2cos -cos sin 2 =αααcos 2cos -sin 2=tan α-21 =-31-21=-65. 15.45. 解析:tan α=ααcos sin =2,sin α=2cos α.又sin 2 α+cos 2 α=1, 所以sin 2 α=54,又cos ⎪⎭⎫ ⎝⎛+2π32α=sin 2α=2sin αcos α=sin 2α=54. 16.-924. 解析:∵ sin ⎪⎭⎫⎝⎛α - 4π=sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛α + 4π - 2π=cos ⎪⎭⎫ ⎝⎛α + 4π,∴ sin ⎪⎭⎫ ⎝⎛α + 4πsin ⎪⎭⎫ ⎝⎛α - 4π=61⇒sin ⎪⎭⎫ ⎝⎛α + 4πcos ⎪⎭⎫ ⎝⎛α + 4π=61⇒sin ⎪⎭⎫ ⎝⎛α2 + 2π=31.∴ cos 2α=31,又 α∈(2π,π),∴ 2α∈(π,2π).∵ sin 2α=-α2cos -12=-322, ∴ sin 4α=2sin 2αcos 2α=-924. 三、解答题17.解:cos 43°cos 77°+sin 43°cos 167°=cos 43°cos 77°-sin 43°sin 77° =cos (43°+77°)=cos 120°=-21. 18.①解法1: 原式=(tan 10°-tan 60°)︒︒50sin 10cos =⎪⎭⎫ ⎝⎛︒︒︒︒cos60sin60 - cos10sin10︒︒50sin 10cos =︒︒︒60cos 10cos 50-sin )(·︒︒50sin 10cos=-2. 解法2:原式=⎪⎭⎫ ⎝⎛︒︒3 - cos10sin10︒︒50sin 10cos =⎪⎪⎭⎫ ⎝⎛︒︒︒cos10cos103-sin10︒︒50sin 10cos =︒⎪⎪⎭⎫ ⎝⎛︒︒50 sin 10 cos 23-10 sin 212 =︒︒︒50sin 60-10sin 2 )(=-2. ②解:原式=︒︒︒︒20cos 20sin -20-30cos 2 )(=︒︒︒︒︒︒20cos 20sin -20sin 30sin 2+20cos 30cos 2=︒︒︒20cos 20cos 30cos 2=3.19.解:∵127π<x <47π,∴ 65π<4π+x <2π.又cos ⎪⎭⎫ ⎝⎛x + 4π=53>0,∴ 23π<4π+x <2π,∴ sin ⎪⎭⎫ ⎝⎛x + 4π=-54,tan ⎪⎭⎫⎝⎛x + 4π=-34.又 sin 2x =-cos ⎪⎭⎫ ⎝⎛x 2 + 2π=-cos 2⎪⎭⎫ ⎝⎛x + 4π=-2cos 2⎪⎭⎫⎝⎛x + 4π+1=257,∴ 原式=xx xx cos sin -1sin 2+2sin 2=x x x x x x sin -cos cos sin 2+cos 2sin 2=xx x x x sin -cos sin +cos 2sin )(=xx x tan -1tan +12sin )(=sin 2x ·tan (4π+x ) =-7528.20.解:∵ α,β 均为钝角且sin α=55,sin β=1010, ∴ cos α=-α2sin 1-=-552,cos β=-β2sin 1-=-10103, ∴ cos (α+β)=cos αcos β-sin αsin β=⎪⎪⎭⎫ ⎝⎛-552×⎪⎪⎭⎫ ⎝⎛-1010355-×1010=22.又 2π<α<π, 2π<β<π,∴ π<α+β<2π,则α+β=4π7.。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.(12分)(1)求的值.(2)若,,,求的值.【答案】(1)1(2)【解析】(1)原式……6分(2),①②①-②得,. ……12分【考点】本小题主要考查利用和差角公式、同角三角函数基本关系式等求三角函数值,考查学生的运算求解能力.点评:解决给值求值问题时,要尽量用已知角来表示未知角.2.设-3π<α<-,则化简的结果是()A.sin B.cosC.-cos D.-sin【答案】C【解析】∵-3π<α<-π,∴-π<<-π,∴cos<0,∴原式==|cos|=-cos.3.已知cos2α-cos2β=a,那么sin(α+β)·sin(α-β)等于()A.-B.C.-a D.a【答案】C【解析】法一:sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a,故选C.法二:原式=-(cos2α-cos2β)=-(2cos2α-1-2cos2β+1)=cos2β-cos2α=-a.4.若cos2α=m(m≠0),则tan=________.【答案】【解析】∵cos2α=m,∴sin2α=±,∴tan===.5.求sin42°-cos12°+sin54°的值.【答案】【解析】sin42°-cos12°+sin54°=sin42°-sin78°+sin54°=-2cos60°sin18°+sin54°=sin54°-sin18°=2cos36°sin18°=====.6.给出下列三个等式f(xy)=f(x)+f(y),f(x+y)=f(x)·f(y),f(x+y)=,下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin xC.f(x)=logx D.f(x)=tan x2【答案】B【解析】对选项A,满足f(x+y)=f(x)·f(y),对选项C,满足f(xy)=f(x)+f(y),对选项D,满足f(x+y)=,故选B.7.的值为()A.2+B.C.2-D.【答案】C【解析】sin6°=sin(15°-9°)=sin15°cos9°-cos15°sin9°,cos6°=cos(15°-9°)=cos15°cos9°+sin15°sin9°,∴原式=tan15°=tan(45°-30°)==2-,故选C.8.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为()A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.9.已知sinα=,α为第二象限角,且tan(α+β)=1,则tanβ的值是() A.-7B.7C.-D.【答案】B【解析】由sinα=,α为第二象限角,得cosα=-,则tanα=-.∴tanβ=tan[(α+β)-α]===7.10.若a=tan20°,b=tan60°,c=tan100°,则++=()A.-1B.1C.-D.【答案】B【解析】∵tan(20°+100°)=,∴tan20°+tan100°=-tan60°(1-tan20°tan100°),即tan20°+tan60°+tan100°=tan20°·tan60°·tan100°,∴=1,∴++=1,选B.11.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.12.若π<α<,化简+.【答案】-cos【解析】∵π<α<,∴<<,∴cos<0,sin>0.∴原式=+=+=-+=-cos.13. cos75°cos15°-sin255°sin15°的值是()A.0B.C.D.-【答案】B【解析】原式=cos75°·cos15°+sin75°sin15°=cos(75°-15°)=cos60°=.14.已知0<α<<β<π,cosα=,sin(α+β)=-,则cosβ的值为() A.-1B.-1或-C.-D.±【答案】C【解析】∵0<α<, <β<π,∴<α+β<π,∴sinα=,cos(α+β)=-,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=-,故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.=________.【答案】【解析】=cos cos-sin sin=cos cos+sin sin=cos=cos=.17.已知α、β为锐角,且tanα=,tanβ=,则sin(α+β)=________.【答案】【解析】∵α为锐角,tanα=,∴sinα=,cosα=,同理可由tanβ=得,sinβ=,cosβ=.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.18.函数y=cos x+cos的最大值是________.【答案】【解析】法一:y=cos+cos=cos·cos+sin sin+cos=cos+sin==cos=cos≤.法二:y=cos x+cos x cos-sin x sin=cos x-sin x==cos,当cos=1时,y=.max19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。
三角恒等变换(测试题及答案)
三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。
A。
0.B。
1/2.C。
1/4.D。
1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。
1/2.B。
2/3.C。
3/4.D。
4/53.函数y=sin(x)+cos(x)的最小正周期为:A。
π。
B。
2π。
C。
4π。
D。
π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。
-2/3.B。
-1/3.C。
1/3.D。
2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。
-7/24.B。
-1/8.C。
1/8.D。
7/247.函数y=sin(x)+cos(x)的值域是:A。
[0,1]。
B。
[-1,1]。
C。
[-1/2,1/2]。
D。
[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。
向右平移π/4个单位。
B。
向左平移π/4个单位C。
向右平移π/2个单位。
D。
向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。
x=π/4.B。
x=π/6.C。
x=π/2.D。
x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。
12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,则【答案】【解析】由,因此,.【考点】(1)诱导公式的应用;(2)同角三角函数的基本关系.2.已知0<β<<α<π,且,,求cos(α+β)的值.【答案】.【解析】(1)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围;(2)利用两角和正弦公式和降幂公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(3)求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围.试题解析:解:,,∴==,sin==,∴==+sin sin=×+×=,∴(α+β)=2-1=2×-1=-.【考点】根据三角函数值求值.3.若,则,则的值为()A.B.C.D.【答案】D【解析】,因为,所以,平方得:,故选择D.【考点】三角恒等变换中的求值.4.已知,,且为锐角,则___________.【答案】【解析】由,两式平方相加得:,即有,由为锐角,且,知,从而得,因此,所以,观察式子的结构特点,注意解题技巧的积累.【考点】三角恒等变换之一:求值.5.设且则()A.B.C.D.【答案】C【解析】由,又,,故,即.故选C.【考点】二倍角公式的应用.6.已知,且.(1)求的值;(2)求的值.【答案】(1);(2)【解析】(1)=;(2)因为,由已知易求出,,则.试题解析:(1)原式=,则【考点】1.三角恒等变换;2.三角函数的和角公式与差角公式7.已知向量,,,.(Ⅰ)若,求函数的值域;(Ⅱ)若关于的方程有两个不同的实数解,求实数的取值范围.【答案】(Ⅰ)函数的值域为;(Ⅱ)实数的取值范围为.【解析】(Ⅰ)将向量语言进行转换,将问题转化为三角问题,通过换元进一步将问题转化为二次函数在给定区间上的值域问题,从而得以解决;(Ⅱ)通过换元将问题转化为一元二次方程根的分布问题,通过数形结合,最终归结为解一个不等式组的问题.试题解析:(Ⅰ) 1分,,, 2分,,, 3分,, 4分,又,, 6分(Ⅱ)由得,令,,则,关于的方程有两个不同的实数解,,在有两个不同的实数解, 8分令,则应有11分解得 14分【考点】三角恒等变换及三个二次的综合应用.8.设a=(sin56°-cos56°), b=cos50°·cos128°+cos40°·cos38°,c= (cos80°-2cos250°+1),则a,b,c的大小关系是 ( ).A.a>b>c B.b>a>c C.c>a>b D.a>c>b【答案】B.【解析】因为,,,又因为在内余弦函数单调递减,所以,即c<a<b.【考点】辅助角公式(化一公式),诱导公式,两角和的余弦公式,二倍角的余弦公式,余弦函数单调性.9.求值: ___________.【答案】.【解析】.【考点】三角恒等变形.10. (cos- sin) (cos+sin)= ()A.B.C.D.【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.11. 4 sin.cos =_________.【答案】1【解析】根据正弦二倍角公式,可得.【考点】正弦二倍角公式.12.已知,(1)求;(2)求。
高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知2tan 5α=-,则1sin 2cos 2αα+=( ) A .1318B .522 C .37-D .372.若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-BC .78D .3.已知sin cos αβ+=cos sin αβ+sin()αβ+=( )A .12B C .12- D .4.sin cos 44ππαβ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭化为和差的结果是( )A .11sin()cos()22αβαβ++-B .11cos()sin()22αβαβ++-C .11sin()sin()22αβαβ++- D .11cos()cos()22αβαβ++-5.已知()11cos 3cos cos 42πππαα⎛⎫⎛⎫+=-+ ⎪⎪⎝⎭⎝⎭,则cos2=α( )A B .13- C .23- D .136.0000cos80cos130sin100sin130-等于A B .12C .12-D .7.已知25cos2cos αα+=,()4cos 25αβ+=与0,2πα⎛⎫∈ ⎪⎝⎭和3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A .45- B .44125C .44125-D .458.已知π2cos()33α+=,则πsin()6α-=( )A B . C .23-D .139.图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =二、填空题10.数列{}n a 的通项公式为[]2log n a n n =+,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为__________.11.已知,2παπ⎛⎫∈ ⎪⎝⎭,且()23cos sin 210απα++=,则tan α=__________.12.已知1sin 3α=,cos()1αβ+=-则sin(2)αβ+=______.13.已知sin 2πααπ<<,则tan α=______________. 14.已知角0,2πθ⎛⎫∈ ⎪⎝⎭对任意的x ∈R ,()()2213cos 4sin 122x x x θθ+≥⋅恒成立,则θ的取值范围是_____.三、解答题15.已知函数()()1tan cos f x x x =+⋅(1)若44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,求tan x ;(2)若,02πα⎛⎫∈- ⎪⎝⎭时,则()f α=,求cos2α.16.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2A C =.(1)若a c =,求cos B 的大小; (2)若1b =,3c =求sin A .17.已知函数22π()sin 2cos sin ,6f x x x x x ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 求函数的最小正周期及对称中心. (2)求函数()y f x =在π0,2x ⎡⎤∈⎢⎥⎣⎦值域.18.ABC 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+ (1)求B ;(2)若6b AB CB =⋅=,求ABC 的周长19.已知向量(sin ,cos 1)a x x =-,(3cos ,cos 1)b x x =+和1()2f x a b =⋅+. (1)求函数的最小正周期T 及单调递增区间; (2)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.四、双空题 20.已知4sin 5α,且α是第二象限角,则cos α=______;sin 2α=_______. 参考答案与解析1.D【分析】结合二倍角公式,将所求表达式转化为只含tan α的式子,由此求得正确答案. 【详解】原式222222cos sin 2sin cos 1tan 2tan cos sin 1tan ααααααααα++++==-- 4491932552542121712525+-====-. 故选:D 2.C【分析】利用诱导公式和二倍角公式可得解.【详解】1sin 84x π⎛⎫-= ⎪⎝⎭sin 2sin 2cos 2cos 244248x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2712sin 88x π⎛⎫=--= ⎪⎝⎭故选:C . 3.A【分析】将两个已知等式两边平方相加,再根据两角和的正弦公式可求出结果.【详解】由sin cos αβ+=225sin cos 2sin cos 4αβαβ++⋅=由cos sin αβ+=227cos sin 2cos sin 4αβαβ++⋅=两式相加得22(sin cos cos sin )3αβαβ++=,得1sin()2αβ+=.故选:A 4.B【分析】利用积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤=++-⎣⎦化简即可. 【详解】解:原式1sin sin()22παβαβ⎡⎤⎛⎫=+++- ⎪⎢⎥⎝⎭⎣⎦11cos()sin()22αβαβ=++-. 故选:B .【点睛】本题考查积化和差公式的应用,属于基础题. 5.B【分析】首先根据诱导公式以及同角三角函数的基本关系求得tan α=再根据二倍角公式以及“1”的代换求得cos2α.【详解】由诱导公式化简原式,得cos 2αα-=,故tan α=所以22222222cos sin 1tan 1cos 2cos sin sin cos tan 13ααααααααα--=-===-++. 故选:B . 6.D【详解】试题分析:原式3cos80cos130sin 80sin130cos(80130)cos(18030)2=-=+=+=-. 考点:三角恒等变换. 7.B【解析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果.【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题. 8.C【分析】利用诱导公式化简变形可得结果【详解】解:因为π2cos()33α+=所以π2sin()sin cos cos 662633ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=---=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故选:C 9.A【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论.【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A . 10.631【分析】由[]22log [log ]n a n n n n =+=+,分析n 的不同取值对应的2[log ]n 的取值情况,分组求和即得解 【详解】由题意[]22log [log ]n a n n n n =+=+ 当1n =时,则2[log ]0n =; 当2,3n =时,则2[log ]1n =; 当4,5,6,7n =时,则2[log ]2n =; 当8,9,10,...,15n =时,则2[log ]3n =; 当16,17,18,...,31n =时,则2[log ]4n =; 当32n =时,则2[log ]5n =; 故{}n a 的前32项和为:3212...32102142831645S =++++⨯+⨯+⨯+⨯+⨯+(132)321035281036312+⨯=+=+= 故答案为:631 11.-7【详解】22221tan 131cos 232tan 31tan cos sin(2)sin 21021021tan 10αααααπααα-+++++=∴-=∴-=∴+ tan 7,tan 1αα=-= (舍).12.13-【分析】先由cos()1αβ+=-,得sin()0αβ+=,再由sin(2)sin()sin cos()+cos sin()αβααβααβααβ+=++=⋅+⋅+即可求出结果.【详解】因cos()1αβ+=-,得sin()0αβ+=所以1sin(2)sin()sin cos()+cos sin()3αβααβααβααβ+=++=⋅+⋅+=-.【点睛】本题主要考查三角函数的两角和差化积公式,熟记公式即可,属于常考题型. 13.-2【分析】利用同角的三角函数中的平方和关系求出cos α,再利用同角的三角函数关系中的商关系求出tan α即可.【详解】2sin sin cos tan 22cos παααπααα=<<∴===-. 【点睛】本题考查了同角三角函数关系中的平方和关系和商关系,考查了角的余弦值的正负性的判断,考查了数学运算能力. 14.5,1212ππ⎡⎤⎢⎥⎣⎦【分析】根据题意转化为22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立,利用基本不等式求得2234()cos ()sin sin 243x x θθθ+≥,得到1sin 22θ≥,结合三角函数的性质,即可求解.【详解】由()()2213cos 4sin 122x x x θθ+≥⋅,即()()2213cos 4sin 324x xx x θθ+≥⋅⋅即22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立又由2234()cos ()sin 2sin cos sin 243x x θθθθθ+≥=所以1sin 22θ≥又因为0,2πθ⎛⎫∈ ⎪⎝⎭,可得()20,θπ∈,所以5266ππθ≤≤,解得51212ππθ≤≤即θ的取值范围是5[,]1212ππ.故答案为:5[,]1212ππ.15.(1)tan 1x =(2)9【分析】(1)根据同角三角函数的关系、两角和正弦公式、诱导公式化简即可求解; (2)根据角的变换及两角差的正弦公式,二倍角的余弦公式计算即可求解. (1) ()sin cos 4f x x x x π⎛⎫=++ ⎪⎝⎭由44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2x x π⎛⎫=+ ⎪⎝⎭即有sin cos x x =,所以tan 1x =. (2)由()43f παα⎛⎫=+= ⎪⎝⎭1sin 43πα⎛⎫+= ⎪⎝⎭∵,02πα⎛⎫∈- ⎪⎝⎭∴,444πππα⎛⎫+∈- ⎪⎝⎭∴cos 4πα⎛⎫+= ⎪⎝⎭∴4sin sin 446ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦故22cos 212sin 12αα=-=-⨯=⎝⎭16.(1;(2. 【分析】(1)由正弦定理求出cos C ,进而求得sin C 、sin A 及cos A ,再利用和角公式即可得解;(2)由(1)结合余弦定理求得a ,进而求得cos C 及sin C 即可得解. 【详解】(1)ABC 中由正弦定理可得sin sin 22cos sin sin a A CC c C C===所以cos C =,sin C =和sin 2sin cos A C C ==221cos cos sin 3A C C =-=-所以cos cos()B A C =-+cos cos sin sin A C A C =-+13= (2)由(1)可知2cos aC c=,所以2cos 6cos a c C C ==由余弦定理可知222cos 2a b c C ab +-=282a a -=,于是2862a a a a -=⋅⇒=则cos C =,sin C =所以sin 2sin cos A C C =2==17.(1)π ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)由三角恒等变换可得正弦型三角函数,据此求周期、对称中心即可; (2)利用整体代换法求正弦函数的值域即可. (1)1()2co πs 2cos 2sin 226f x x x x x ⎛⎫=+-=- ⎪⎝⎭ 所以函数的最小正周期为2ππ2= ()sin 26πf x x ⎛⎫=- ⎪⎝⎭,令π2π6x k -=解得ππ212k x =+ ∴()f x 的对称中心是ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)令π26t x =-由π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,666t x ⎡⎤=-∈-⎢⎥⎣⎦则1()12f x ≤-≤所以()y f x =的值域是1,12⎡⎤-⎢⎥⎣⎦.18.(1)3B π=;(2)【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ⋅=求得ac 代入即可. 【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+ 所以()sin sin cos cos cos 2cos a A B A B c A b B -+= 所以cos()cos 2cos a A B c A b B -++= 所以cos cos 2cos a C c A b B +=由正弦定理得sin cos sin cos 2sin cos A C C A B B += 整理得()sin 2sin cos sin A C B B B +== 因为在ABC 中所以sin 0B ≠,则2cos 1B = 所以3B π=(2)由余弦定理得 2222cos b a c ac B =+-即()2312a c ac +-=因为1cos 62AB CB BA BC ac B ac ⋅=⋅=== 所以12ac = 所以()23612a c +-=解得a c +=所以ABC 的周长是【点睛】方法点睛:在解有关三角形的题目时,则要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则则考虑用正弦定理;以上特征都不明显时,则则要考虑两个定理都有可能用到. 19.(1)πT = πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)根据平面向量数量积的坐标表示公式,结合降幂公式、辅助角公式、二倍角公式、正弦型函数的最小正周期公式以及单调性进行求解即可;(2)利用换元法,结合正弦型函数的最值性质进行求解即可. (1)由211()3sin cos cos 22f x a b x x x =⋅+=+-1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭ 故函数()f x 的最小正周期πT = 当πππ2π22π(Z)262k x k k -≤+≤+∈时,则函数单调递增 解得ππππ36k x k -+≤≤+ Z k ∈函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭,ππ,63x ⎡⎤∈-⎢⎥⎣⎦令π26t x =+,则sin y t =,π5π,66t ⎡⎤∈-⎢⎥⎣⎦所以当π6t =-即π6x =-时,则min 1()2 f x =-当π2t =即π6x =时,则min ()1 f x =故函数()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.352425-【分析】根据正余弦恒等式求出cos α,再利用二倍角的正弦公式求出sin 2α. 【详解】因为4sin 5α,且α是第二象限角所以3cos 5α==-4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故答案为:352425-。
高中数学必修三角恒等变换测试题含答案(1)
三角恒等变换练习题一、选择题1.已知 x(,0) , cos x 4 ,则 tan 2 x () 52A .7B .7 C . 24D .24 2424772.函数 y3sin x4cos x 5 的最小正周期是()A.B.C. D.25 23.在△ ABC 中, cos A cos Bsin A sin B ,则△ ABC 为()A .锐角三角形B .直角三角形C .钝角三角形D .没法判断4.设 asin14 0 cos140 , b sin16 0 cos160, c6,则 a,b,c大小关系()2A . a b cB . ba c C . cb a D . ac b5.函数 y2 sin(2 x )cos[2( x )] 是()A. 周期为的奇函数 B.周期为的偶函数44C. 周期为的奇函数 D.周期为的偶函数226.已知 cos 22 ,则 sin 4 cos 4 的值为()3A .13B .11C .7D . 118 18 97.设 a1cos63sin 6 , b2tan13 , c 1cos50, 则有()221 tan2 132A. a b cB. a b cC. a c bD. b c a8.函数 y1tan 2 2x 的最小正周期是 ( )1 tan2 2xA .B .2C .D .249. sin163 sin 223sin 253 sin313()A .11 C .3 3B .22D .2210.已知 sin(4 x) 3, 则 sin 2x 的值为()519 1614D.7A.B. 25C.252525 1.若 (0, ),且cossin,则 cos2 ( )113A .17 B . 17 C . 17 D . 1799 9312.函数 ysin 4 x cos 2 x 的最小正周期为()A .B .C .D . 242二、填空题1.求值: tan200 tan 4003 tan200 tan400_____________。
三角恒等变换测试题
三角恒等变换测试题1、下列哪个选项是正确的?A. sin(2π - α) = sinαB. cos(π - α) = - cosαC. tan(3π - α) = - tanαD. tan(4π - α) = - tanα答案:C. tan(3π - α) = - tanα2、下列哪个选项是正确的?A. sin(-π - α) = - sinαB. cos(-π - α) = - cosαC. tan(-π - α) = - tanαD. tan(-π - α) = tanα答案:A. sin(-π - α) = - sinα3、下列哪个选项是正确的?A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = secαD. tan(π/2 + α) = cscα答案:A. sin(π/2 + α) = cosα4、下列哪个选项是正确的?A. sin(3π/2 - α) = cosαB. cos(3π/2 - α) = sinαC. tan(3π/2 - α) = secαD. tan(3π/2 - α) = cscα答案:A. sin(3π/2 - α) = cosα二、填空题1、请填写下列空白:sin(π - α) = ______;cos(π - α) = ______;tan(π - α) =______。
答案:sinα;-cosα;-tanα2、请填写下列空白:sin(2π - α) = ______;cos(2π - α) = ______;tan(2π - α) = ______。
答案:sinα;cosα;-tanα一、选择题1、下列哪个选项正确描述了正弦函数的角度和其相对应的数值?A.当角度增加时,正弦函数的值也增加B.当角度增加时,正弦函数的值减少C.当角度减少时,正弦函数的值增加D.当角度减少时,正弦函数的值减少答案:D.当角度减少时,正弦函数的值减少。
高一数学必修四三角恒等变换试卷及答案详解
三角恒等变换(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.函数f (x )=sin 2(2x -π4)的最小正周期是______. 2.sin 15°cos 75°+cos 15°sin 105°=________.3.已知α∈(π2,π),sin α=35,则tan(α+π4)=__________. 4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是________.5.化简:sin (60°+θ)+cos 120°sin θcos θ的结果为______. 6.已知sin αcos β=1,则sin(α-β)=________.7.若函数f (x )=sin(x +π3)+a sin(x -π6)的一条对称轴方程为x =π2,则a =________. 8.函数y =12sin 2x +sin 2x ,x ∈R 的值域是______. 9.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于______.10.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为________.11.若cos θ2=35,sin θ2=-45,则角θ的终边一定落在直线________上. 12.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________. 13.函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________.14.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的所有θ的集合为______.二、解答题(本大题共6小题,共90分)15.(14分)已知sin(α+π2)=-55,α∈(0,π). (1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值; (2)求cos(2α-3π4)的值.16.(14分)已知函数f (x )=2cos x sin x +23cos 2x - 3.(1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值和最小值及相应的x 的值;(3)求函数f (x )的单调增区间.17.(14分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),且x ∈[-π3,π4]. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -|a +b |,求f (x )的最大值和最小值.18.(16分)已知△ABC 的内角B 满足2cos 2B -8cos B +5=0,若BC →=a ,CA →=b 且a ,b满足:a ·b =-9,|a |=3,|b |=5,θ为a ,b 的夹角.(1)求角B ;(2)求sin(B +θ).19.(16分)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴的间距为3π2. (1)求ω的值;(2)设α是第一象限角,且f (32α+π2)=2326,求sin (α+π4)cos (4π+2α)的值.20.(16分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),其图象过点(π6,12). (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[0,π4]上的最大值和最小值.三角恒等变换1.π2解析 ∵f (x )=12[1-cos(4x -π2)] =12-12sin 4x ∴T =2π4=π2. 2.1解析 原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.3.17解析 ∵α∈(π2,π),sin α=35, ∴cos α=-45, tan α=sin αcos α=-34. ∴tan(α+π4)=1+tan α1-tan α=1-341+34=17. 4.[-π6,0] 解析 f (x )=sin x -3cos x =2sin(x -π3). 令2k π-π2≤x -π3≤2k π+π2(k ∈Z ), 得2k π-π6≤x ≤2k π+5π6(k ∈Z ), 令k =0得-π6≤x ≤5π6. 由此可得[-π6,0]符合题意. 5.32解析 原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32. 6.1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1,∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1.7. 3解析 f (x )=sin(x +π3)-a sin(π6-x ) =sin(x +π3)-a cos(π3+x )=1+a 2sin(x +π3-φ) ∴f (π2)=sin 5π6+a sin π3=32a +12=1+a 2. 解得a = 3.8.⎣⎢⎡⎦⎥⎤1-22,1+22 解析 y =12sin 2x +sin 2x =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22sin(2x -π4)+12, ∵x ∈R , ∴-1≤sin(2x -π4)≤1, ∴y ∈[-22+12,22+12]. 9.75解析 ∵3sin θ=cos θ,∴tan θ=13. cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ=cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ =1+2tan θ-tan 2θ1+tan 2θ=1+2×13-191+19=75. 10.-4解析 3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0,∴2sin(α+β)sin α=-8cos(α+β)cos α, ∴tan(α+β)tan α=-4. 11.24x -7y =0 解析 cos θ2=35,sin θ2=-45,tan θ2=-43, ∴tan θ=2tan θ21-tan 2θ2=-831-169=247. ∴角θ的终边在直线24x -7y =0上.12.429解析 cos β=-13,sin β=223, sin(α+β)=13,cos(α+β)=-223, 故cos α=cos [(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=(-223)×(-13)+223×13=429. 13.1解析 令x +10°=α,则x +40°=α+30°,∴y =sin α+cos(α+30°)=sin α+cos αcos 30°-sin αsin 30°=12sin α+32cos α =sin(α+60°).∴y max =1.14.⎩⎨⎧⎭⎬⎫θ|θ=2k π+2π3,k ∈Z 解析 ∵f (x )为奇函数,∴f (0)=sin θ+3cos θ=0.∴tan θ=- 3.∴θ=k π-π3,(k ∈Z ). ∴f (x )=2sin(2x +θ+π3) =2sin(2x +k π).当k 为偶数时,f (x )=2sin 2x ,不合题意;当k 为奇数时,f (x )=-2sin 2x ,函数在⎣⎡⎦⎤-π4,0上为减函数. ∴f (x )=-2sin 2x ,∴θ=2π3+2k π,k ∈Z . 15.解 (1)sin(α+π2)=-55,α∈(0,π) ⇒cos α=-55,α∈(0,π)⇒sin α=255. sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)=-cos α-sin αsin α-cos α=-13. (2)∵cos α=-55,sin α=255⇒sin 2α=-45, cos 2α=-35. cos(2α-3π4)=-22cos 2α+22sin 2α=-210. 16.解 (1)原式=sin 2x +3cos 2x =2(12sin 2x +32cos 2x ) =2(sin 2x cos π3+cos 2x sin π3) =2sin(2x +π3). ∴函数f (x )的最小正周期为π.(2)当2x +π3=2k π+π2,即x =k π+π12(k ∈Z )时,f (x )有最大值为2. 当2x +π3=2k π-π2,即x =k π-5π12(k ∈Z )时,f (x )有最小值为-2. (3)要使f (x )递增,必须使2k π-π2≤2x +π3≤2k π+π2(k ∈Z ), 解得k π-5π12≤x ≤k π+π12(k ∈Z ).∴函数f (x )的递增区间为[k π-5π12,k π+π12](k ∈Z ). 17.解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos 2x , |a +b |=(cos 3x 2+cos x 2)2+(sin 3x 2-sin x 2)2 =2+2cos 2x =2|cos x |,∵x ∈[-π3,π4],∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2(cos x -12)2-32. ∵x ∈[-π3,π4].∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1. 18.解 (1)2(2cos 2B -1)-8cos B +5=0,即4cos 2B -8cos B +3=0,得cos B =12. 又B 为△ABC 的内角,∴B =60°.(2)∵cos θ=a ·b |a |·|b |=-35, ∴sin θ=45. ∴sin(B +θ)=sin B cos θ+cos B sin θ=4-3310. 19.解 (1)由题意,得m ·n =0,所以 f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos 2ωx 2+3sin 2ωx 2=sin(2ωx +π6)+12. 根据题意知,函数f (x )的最小正周期为3π.又ω>0,所以ω=13. (2)由(1)知f (x )=sin(2x 3+π6)+12,所以f (32α+π2)=sin(α+π2)+12=cos α+12=2326. 解得cos α=513. 因为α是第一象限角,故sin α=1213. 所以sin (α+π4)cos (4π+2α)=sin (α+π4)cos 2α=22sin α+22cos αcos 2α-sin 2α=22(cos α-sin α)=-13214. 20.解 (1)因为f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π), 所以f (x )=12sin 2x sin φ+1+cos 2x 2cos φ-12cos φ =12sin 2x sin φ+12cos 2x cos φ =12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). 又函数图象过点(π6,12),所以12=12cos(2×π6-φ),即cos(π3-φ)=1, 又0<φ<π,所以φ=π3. (2)由(1)知f (x )=12cos(2x -π3),将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos(4x -π3), 因为x ∈[0,π4],所以4x ∈[0,π], 因此4x -π3∈[-π3,2π3], 故-12≤cos(4x -π3)≤1. 所以y =g (x )在[0,π4]上的最大值和最小值分别为12和-14.。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,化简+=A.-2cos B.2cos C.-2sin D.2sin【答案】C【解析】因为,所以,,从而===--()=-2sin,故选C。
【考点】本题主要考查二倍角的正弦公式。
点评:此类问题是高考考查的重点内容之一。
本题中注意“1”的代换,讨论角的范围,确定得到是化简的关键。
2.已知sin=,cos=-,则角是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】因为sin=,cos=-<0,所以是第二象限角,且,所以,角是第四象限角,选D。
【考点】本题主要考查任意角的三角函数、象限角。
点评:的终边所在位置与的终边所在位置,存在一定结论,根据函数值进一步缩小角的范围,是解题的关键。
3.若是方程的两个根,则之间的关系是( )A.B.C.D.【答案】B【解析】由题意可知:所以选B。
【考点】本题主要考查两角和的正切公式。
点评:首先利用韦达定理将表示出来,再由两角差的正切公式对其进行化简,从而得出结论。
4.求【答案】【解析】。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意“1”的代换,配凑公式。
5.求【答案】【解析】由两角和的正切公式可得,,所以=。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。
6.已知,求证:【答案】【解析】1.解:,在区间内正切值为的角只有1个即,所以【考点】本题主要考查两角和的正切公式。
点评:应用两角和的正切公式先求,结合角的范围及正切函数单调性进一步求角。
此类问题,要特别注意角的范围。
7.若,则_________;=___________.【答案】3,【解析】因为,所以,,所以3【考点】本题主要考查“倍半公式”的应用点评:解题过程中,注意观察已知与所求的差异,灵活选用公式,通过变名、变角、变式,达到解题目的。
8.已知为第四象限角,求的值.【答案】(1)当为第二象限角时,,,(2)当为第四象限角时,,,.【解析】由为第四象限角,得为第二或第四象限角.(1)当为第二象限角时,(2)当为第四象限角时,,,.【考点】本题主要考查“倍半公式”的应用点评:牢记公式是灵活地将进行三角恒等变形的基础。
(完整版)高一必修4三角恒等变换测试题及答案
5山东省莱州一中高一数学试题-三角恒等变换测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)4.已知 tan 3,tan44A-B — C775.,都是锐角,且sin513 3316 A 、 B— 65651 3A 0,1B 1,1C 丄,32 21、cos 24 cos36 cos66 cos54 的值为(3 2. cos 5 ,,sin 212 13是第三象限角,则 cos (33 6563 6556 6516 653. tan 20 tan 40 • 3tan20 tan 40 的值为(5,则 tan 2的值为()11— D — 8 4 8则sin 的值是(55663 C 、 D 、 — 6565C - 3D .3)6., x (34 ,)且 cos x 3 —则cos2x 的值是 54 472424A 、 —B 、 —C 、25 2525251,144 7.函数y sin x cos x 的值域是(8.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()J10 V10 3J10 3J10AB C D10 10 10 109.要得到函数y 2sin 2x的图像,只需将y , 3sin 2x cos2x的图像()A、向右平移一个单位B、向右平移一个单位C向左平移—个单位D向左平移—个单位6 12 6 12 10. 函数y .x sin 、3 cos的图像的一条对称轴方程是( )2 2A、1 5 5x B 、x C 、x D 、x —3 3 3 311. 已知1cosx sin x2,则tanx的值为( )1 cosx sin xA、4B4 3 3、-- C 、 D 、3 34 412若0,—0, 且ta n 「tan -,则2 ( )4 2 7A、5 2 7 3B 、C 、D 、6 3 12 4二、填空题(本大题共 4 小题,每小题5分,共20分.请把答案填在题中的横线上)13. .在ABC中,已知tanA ,tanB是方程3x2 7x 2 0的两个实根,则tanC _______________3sin 2x 2cos 2x 砧14. 已知tanx 2,贝U 的值为_____________________cos2x 3sin 2x15. 已知直线IJ/12, A是"J之间的一定点,并且A点到「J的距离分别为0山2 , B是直线I?上一动点,作AC AB,且使AC与直线|1交于点C,则ABC面积的最小值为___________________ 。
高中数学必修三角恒等变换测试题含答案(2)
3 3 6、选择题1 设 a !cos6° 逅sin6°,b ^4^,c J 1^,则有()2 2 1 ta n 213V 2A. a b cB. a b cC. a c bD. b c a1 tan2 2x2 •函数y 1 唧严的最小正周期是()1 ta n 22xA . —B • -C •D • 2 4 23• sin 163o sin 223° sin253o sin313o( )A . —B • —C •D • 2 4 2二、填空题1 .已知在 ABC 中,3si nA 4cos B 6,4s in B 3cos A 1,则角 C 的大小为. 前65^ sin15osin1°o的值为sin 25o — cos15o cos80o2x2x3•函数y sin cos()的图象中相邻两对称轴的距离是.三角恒等变换4 .已知si n( x)4 ,则sin 2x 的值为( )19厂 1 14 7A B. C. D25 225 255•若 (0,),且cossin1 ,则 cos2()3A .17B . 卫C ..万 D..1799931 A.B21 C • 2仝D226 .函数y42sin x cos x 的最小正周期为()2 •计算:12 / 54•函数f(x) cosx cos2x(x R)的最大值等于.2.. n5 •已知f(x) Asin( x )在同一个周期内,当x 时,f (x)取得最大值为 2,当3x 0时,f(x)取得最小值为2,则函数f(x)的一个表达式为 ____________________ .三、解答题1.求值:(1)sin60sin 420sin 660 sin 780 ; (2)sin 2 200 cos 2 50° sin 200cos50°。
,求证:(1 ta nA)(1 tanB) 2 44 .已知函数 f (x) a(cos 2 x sinxcosx) b(1 )当a 0时,求f (x)的单调递增区间;(2)当a 0且x [0,]时,f (x)的值域是[3,4],求a,b 的值. 22 .已知A B3 .求值:log 2 cos — 9log 2 coslog 2 cos3 / 5参考答案sin(A B) LsinC 丄,事实上 A 为钝角,2 21.Ca sin 300 cos6ocos300 sin 6osi n 240,b si n 260,csin 250,1 tan2 2x22.By2cos4x, T一1 tan 2x 423.Bsin 17o (:sin43o)(sin 73o)( sin47o)cos17ocos43osin17o sin 43o274.Dsin 2x cos(— 2x) cos 2(— x) 1 2sin (-x)244255.A(cossin ) 2 1 . ,sin cos4 而sin 0,cos、选择题 9 9cos6006.Bcoscos2 sincos2 2y (sin x)> (cossin 2sin(cos2 2 2cos x (sin x))2 4sin cossin )(cos・2sin sinx 1 (sin 2xi)22小cos 2x 4二、填空题3 13 (1 cos4x)4 841.严A2 24cos B) (4sin B 3cos A)37,25 24si n(AB) 374/5x . 2x sin sin — cos cos — 3 6 362'2化n(15。
2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)
一、选择题(每小题 5 分,共 40 分)
1.cos2π-1的值为( B ) 84
A. 2-1 B. 2+1 C. 2 D. 2
4
4
4
2
解析:cos2π-1=1+cosπ4-1= 2+1.
84
2
44
2.若sinα+cosα=1,则 tan2α等于( B ) sinα-cosα 2
第3页共6页
9.化简 cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°)=0.
解析:原式=cos[(36°+α)-(α-54°)]=cos90°=0.
10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆
交于
A,B
两点,如果点
A
的纵坐标为3,点 5
B
的横坐标为 5 ,则 13
3- 2. 2
解析:由题可得
f(x)=
22sin
2x-π4
+3,所以最小正周期 2
T=π,
最小值为3- 2. 2
三、解答题(共 45 分)
12.(15 分)求证:ta1ncαo-s2tαanα2=14sin2α. 2
第4页共6页
cos2α
cos2α
cos2α
证明:左边=
1 sinα
-1-cosα sinα
2sin10°cos10°
1cos10°- 3sin10°
2
2
=
4sins3in02°-0°10°=14.
4.tan13°+tan32°+tan13°tan32°等于( D )
A.- 2 B. 2 C.-1 D.1 22
第1页共6页
(完整版)高一必修4三角恒等变换测试题及答案
17. 已知 0
, tan
2
2
1 tan
2
5 ,试求 sin
2
的值.( 12 分)
3
3 tan120 3
18. 求 sin120 (4 cos2 120
的值.( 12 分)
2)
3
19. 已知α为第二象限角,且
sinα = 15 ,求
sin(
) 4
的值 .(12分)
4 sin 2 cos2 1
20.已知函数 y sin2 x sin 2x 3cos 2 x ,求 ( 1)函数的最小值及此时的 x 的集合。
65
56
C、
65
16
D、
65
3. tan 20 tan 40 3 tan 20 tan 40 的值为(
)
)( )
A1
3
B
3
C -3
D3
4. 已知 tan
3,tan
5 ,则 tan 2 的值为(
)
4
A
7
4
B
7
1
C
8
1
D
8
5. , 都是锐角,且 sin
5 , cos
13
4
,则 sin 的值是(
)
5
33
A、
3 cos x 的图像的一条对称轴方程是 2
()
A 、 x 11 3
B 、x 5
C 、x
5
D 、x
3
3
3
1 cos x sin x
11. 已知
1 cos x sin x
2 ,则 tan x 的值为
()
A、 4 3
B
高一三角恒等变换典型练习及答案
一.解答题(共20小题)1.已知函数f(x)=(1)求f(x)的对称中心(2)若x,f(x)=,求cos2x的值2.已知函数.(1)求f(x)的对称轴;(2)当α∈[0,π]时,若f(α)=1,求α的值.3.已知的最大值为.(Ⅰ)求实数a的值;(Ⅱ)若,求的值.4.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.5.已知函数(x∈R).(1)求f(x)的最小正周期与单调递增区间;(2)求满足的x的集合.6.已知函数.(1)求函数f(x)的最小正周期及图象的对称轴方程;(2)△ABC中,角A,B,C所对的边分别为a,b,c,若a≤b≤c,则求函数的值域.7.已知函数.(1)求的值.(2)求函数f(x)在上的值域.8.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.9.已知函数f(x)=sin2x+a cos2x的图象关于直线对称.(1)求实数a的值;(2)若对任意的,使得m[f(x)+8]+2=0有解,求实数m的取值范围;10.已知函数f(x)=x sinθ﹣cosθ,其中θ∈[0,2π).(1)若f(2)=0,求sin2θ的值;(2)求f(1)+sin2θ的最大值.11.已知函数f(x)=2cos x(sin x+cos x)﹣1.(Ⅰ)求函数f(x)在区间[0,]上的最小值;(Ⅱ)若f(x)=,x∈[]求cos2x的值;(Ⅲ)若函数y=f(ωx)(ω>0)在区间[]上是单调递增函数,求正数ω的取值范围.12.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的值域.13.已知函数.(1)求函数f(x)的最小正周期;(2)若函数在的最大值为2,求实数a的值.14.已知.(1)求f(x)在的值域;(2)若,求的值.15.已知函数.(1)求y=f(x)的单调增区间;(2)当时,求f(x)的最大值和最小值16.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.17.已知函数.(1)求函数f(x)单调递增区间;(2)若f(x)<m在内有解,求m的取值范围.18.已知f(x)=2sin x cos x+(cos2x﹣sin2x).(1)求函数y=f(x)的最小正周期和对称轴方程;(2)若x∈[0,],求y=f(x)的值域.19.已知函数.(1)求函数f(x)的最小正周期及其对称中心;(2)若,求f(x)的最值.20.已知函数f(x)=cos(2x+)+sin2x﹣cos2x+2sin x cos x.(1)化简f(x);(2)若f(α)=,2α是第一象限角,求sin2α.一.解答题(共20小题)1.已知函数f(x)=(1)求f(x)的对称中心(2)若x,f(x)=,求cos2x的值【分析】(1)利用倍角公式降幂,再由辅助角公式化积,由相位终边落在y轴上求得x值,则答案可求;(2)由f(x)=求得sin(2x﹣)=,分类求出cos(2x﹣),再由cos2x=cos[(2x﹣)+],展开两角和的余弦求解.【解答】解:(1)f(x)=====.由,得x=,k∈Z.∴f(x)的对称中心为(,0),k∈Z;(2)由f(x)=,得,∴sin(2x﹣)=,∵x,∴2x﹣∈[﹣,],则cos(2x﹣)=±.当cos(2x﹣)=时,cos2x=cos[(2x﹣)+]=cos(2x﹣)cos﹣sin(2x﹣)sin==;当cos(2x﹣)=﹣时,cos2x=cos[(2x﹣)+]=cos(2x﹣)cos﹣sin(2x﹣)sin=.【点评】本题考查三角函数的恒等变换与化简求值,考查计算能力,是中档题.2.已知函数.(1)求f(x)的对称轴;(2)当α∈[0,π]时,若f(α)=1,求α的值.【分析】(1)利用倍角公式降幂,再由辅助角公式化积,则函数的对称轴方程可求;(2)由f(α)=1,得sin()=,结合α的范围求得α的值.【解答】解:(1)===.由,得,k∈Z.∴f(x)的对称轴为,k∈Z;(2)由f(α)=1,得,∴sin()=,∵α∈[0,π],∴∈[,],则=或,即或.【点评】本题考查三角函数的恒等变换应用,考查y=A sin(ωx+φ)型函数的图象与性质,训练了利用三角函数值求角,是基础题.3.已知的最大值为.(Ⅰ)求实数a的值;(Ⅱ)若,求的值.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换求出结果.(Ⅱ)利用三角函数的关系式的变换和同角三角函数及倍角公式的应用求出结果.【解答】解:(Ⅰ)===,由于函数的最大值为,故,解得a=﹣.(Ⅱ)由于f(x)=,所以,整理得.所以,所以=.=或,所以或,故==,所以当时..当时,,所以原式=.【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.(Ⅱ)利用正弦型函数的性质的应用求出结果.【解答】解:(Ⅰ)由已知,有,=,=,所以f(x)的最小正周期:.由得f(x)的单调递减区间是.(Ⅱ)由(1)知,因为,所以.要使f(x)在区间上的最小值为1,即在区间上的最小值为﹣1.所以,即.所以m的最小值为.【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.5.已知函数(x∈R).(1)求f(x)的最小正周期与单调递增区间;(2)求满足的x的集合.【分析】(1)利用倍角公式降幂,再由辅助角公式化积,由周期公式求周期,再由复合函数的单调性求函数的单调增区间;(2)直接求解三角不等式得答案.【解答】解:(1)∵==.∴T=.由,解得,k∈Z.∴f(x)的单调增区间为[,],k∈Z;(2)由>﹣,得<<,∴kπ<x<,k∈Z.∴满足的x的集合为{x|kπ<x<,k∈Z}.【点评】本题考查三角函数的恒等变换与化简求值,考查y=A sin(ωx+φ)型函数的图象与性质,是中档题.6.已知函数.(1)求函数f(x)的最小正周期及图象的对称轴方程;(2)△ABC中,角A,B,C所对的边分别为a,b,c,若a≤b≤c,则求函数的值域.【分析】(1)利用两角和与差的三角函数公式将f(x)化简,利用正弦函数的性质可求f(x)的对称轴方程及单调递增区间;(2)△ABC中由a≤b≤c∴A≤B≤C⇒3A≤π,得出角A的取值范围,化简g(A),利用配方法求得g (A)的值域.【解答】解:(1)==.所以最小正周期.由得.函数图象的对称轴方程为.(2)=.∴a≤b≤c∴A≤B≤C⇒3A≤π⇒当时,g(A)取得最小值;当时,g(A)有最大值;故g(A)的值域为.【点评】本题考查两角和与差的正弦与余弦公式,考查三角变换与辅助角公式的应用,强调数形结合,属于中档题.7.已知函数.(1)求的值.(2)求函数f(x)在上的值域.【分析】利用二倍角的余弦把已知函数解析式变形.(1)把x=代入函数解析式即可求得的值;(2)令t=cos(),把原函数化为关于t的一元二次函数,再由二次函数求最值得答案.【解答】解:===.(1)f()=;(2)设t=cos(),∴x∈,∴t∈[,1],则原函数化为g(t)=,t∈[,1],∴f(t)∈[,2].【点评】本题考查三角函数的恒等变换应用,考查三角函数值的求法,训练了利用换元法求函数的值域,是中档题.8.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【分析】利用倍角公式降幂,再由辅助角公式化积.(1)直接利用周期公式求周期;(2)由x的范围求得相位的范围,则函数值域可求.【解答】解:f(x)===.(1)f(x)的最小正周期为;(2)由x∈,得2x+∈[,],∴f(x)∈[﹣1,2].即f(x)在区间上的值域为[﹣1,2].【点评】本题考查三角函数的恒等变换应用,考查三角函数的周期性与值域的求法,是中档题.9.已知函数f(x)=sin2x+a cos2x的图象关于直线对称.(1)求实数a的值;(2)若对任意的,使得m[f(x)+8]+2=0有解,求实数m的取值范围;【分析】(1)利用辅助角公式化简,结合题意可得|﹣+a|=,求解即可得到a值;(2)把m[f(x)+8]+2=0化为:m[sin(2x﹣)+8]+2=0.讨论m=0和m≠0,分离参数m,得sin(2x﹣)+8=﹣.由x的范围求得sin(2x﹣)的范围,转化为关于m的不等式求解.【解答】解:(1)f(x)=sin2x+a cos2x=sin(2x+θ)(tanθ=a).∵图象关于直线x=﹣对称,∴|f(﹣)|=|﹣sin+a•cos|=|﹣+a|=,两边平方得,(a+1)2=0,即a=﹣1;(2)m[f(x)+8]+2=0可化为:m[sin(2x﹣)+8]+2=0.当m=0时,等式不成立;当m≠0时,化为sin(2x﹣)+8=﹣.∵x∈[0,],2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,],∴sin(2x﹣)+8∈[7,9].即7≤﹣≤9,解得﹣≤m≤﹣.【点评】本题考查根的存在性及根的个数判断,考查y=A sin(ωx+φ)型函数的图象和性质,考查一元二次方程根的分布应用,是中档题.10.已知函数f(x)=x sinθ﹣cosθ,其中θ∈[0,2π).(1)若f(2)=0,求sin2θ的值;(2)求f(1)+sin2θ的最大值.【分析】(1)由f(2)=0,求得tanθ的值,再利用二倍角公式、同角三角函数的基本关系求得sin2θ的值.(2)设t=sinθ﹣cosθ,化简f(1)+sin2θ为g(t)=t+1﹣t2,再利用二次函数的性质得它的最大值.【解答】解:(1)由f(2)=2sinθ﹣cosθ=0,tanθ=∴sin2θ=;(2)f(1)+sin2θ=(sinθ﹣cosθ)+2sinθcosθ,设t=sinθ﹣cosθ=sin(θ﹣),则t∈[﹣,],∴2sinθcosθ=1﹣t2,∴g(t)=t+1﹣t2=,∴当t=时,,∴f(1)+sin2θ的最大值为:.【点评】本题主要考查三角恒等变换,二次函数的性质,考查了转化思想和整体思想,属基础题.11.已知函数f(x)=2cos x(sin x+cos x)﹣1.(Ⅰ)求函数f(x)在区间[0,]上的最小值;(Ⅱ)若f(x)=,x∈[]求cos2x的值;(Ⅲ)若函数y=f(ωx)(ω>0)在区间[]上是单调递增函数,求正数ω的取值范围.【分析】(Ⅰ)化简f(x),利用整体法求出f(x)的最小值即可;(Ⅱ)由f(x)=可得,然后再由cos2x=求值即可;(Ⅲ)由条件可得,k∈Z,然后求出的范围即可.【解答】解:(Ⅰ)==.∵x∈[0,],∴,故;∴函数f(x)在区间上的最小值为﹣1;(Ⅱ)∵,∴,又∵x∈,∴,故,∴cos2x===;(Ⅲ)当x∈时,,于是,k∈Z.∴,k∈Z.∵ω>0,∴ω的取值范围为.【点评】本题考查了三角恒等变换及化简求值和三角函数的图象与性质,考查了整体法和数形结合思想,属中档题.12.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的值域.【分析】(1)先由诱导公式及差角余弦公式对已知函数进行化简,然后结合正弦函数的单调性可求f(x)的单调递增区间;(2)结合正弦函数的值域及函数图象可求.【解答】解:(1),=,=,==,=,令,k∈z解可得,,∴f(x)的单调递增区间为;(2)由得,故.∴f(x)在区间上的值域为[1,]【点评】本题主要考查了诱导公式,差角的余弦公式及辅助角公式在三角化简中的应用,正弦函数的性质的应用,属于中档试题.13.已知函数.(1)求函数f(x)的最小正周期;(2)若函数在的最大值为2,求实数a的值.【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用分类讨论思想和二次函数的性质的应用求出结果.【解答】解:(1),=(2+2sin x)sin x+1﹣2sin2x﹣1=2sin x.∴T=2π.(2).令sin x﹣cos x=t,则sin2x=1﹣t2.∴,=.∵,由,得,∴.①当,即时,在处.由,解得(舍去).②当,即时,,由,得a2﹣2a﹣8=0,得a=﹣2或a=4(舍去).③当,即a>2时,在t=1处,由,得a=6.综上,a=﹣2或a=6为所求.【点评】本题考查的知识要点:三角函数关系式的恒等变换的应用,正弦型函数的性质的应用,二次函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.14.已知.(1)求f(x)在的值域;(2)若,求的值.【分析】(1)先利用诱导公式及二倍角公式对已知函数进行化简,然后结合正弦函数的性质即可求解;(2)由f(x)=,可求sin(x+)及cos(x+),然后由二倍角的正弦公式即可求解.【解答】解:(1),=,==,∵,∴,∴,∴函数的值域为(2)∵f(x)=,∴sin(x+)=,∴cos(x+)=±,又,∴,∵,∴,或(舍),∴cos(x+)=,∴sin(2x+)=2sin(x+)cos(x)=.【点评】本题主要考查了诱导公式,辅助角公式及同角平方关系和正弦函数的图象及性质的综合应用,属于中档试题15.已知函数.(1)求y=f(x)的单调增区间;(2)当时,求f(x)的最大值和最小值【分析】(1)利用三角恒等变换化简函数为正弦型函数,利用正弦函数的单调性即可得解;(2)求出时f(x)的值域,即可得出f(x)的最大、最小值.【解答】解:(1)=2sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得:kπ≤x≤kπ+,k∈Z,可得y=f(x)的单调递增区间为:;(2)当时,2x+∈[﹣,],∴当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1;当2x+=时,即x=时,f(x)取得最小值2.即f(x)的最大值为2,最小值为﹣1.【点评】本题考查了三角恒等变换以及三角函数的图象与性质的应用问题,属于基础题.16.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,得出结论.(2)根据y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域,得到结果.【解答】解:(1)f(x)=cos x(sin x+cos x)+=cos x sin x+cos2x+=cos2x+1=,∴f(x)的周期T=,由﹣+2kπ(k∈Z),得﹣+kπ(k∈Z),∴f(x)的单调增区间为;(2)函数f(x)的图象向右平移个单位后,得g(x)==,∵x∈,∴2x﹣,∴,∴g(x)∈,∴g(x)的值域为:.【点评】本题主要考查三角恒等变换,正弦函数的单调性,y=A sin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属基础题.17.已知函数.(1)求函数f(x)单调递增区间;(2)若f(x)<m在内有解,求m的取值范围.【分析】(1)由三角函数恒等式、二倍角公式,推导出f(x)=sin(2x+),令,能求出函数f(x)的单调递增区间.(2)由,从而,由f(x)<m在内有解,由此能求出m的取值范围.【解答】解:(1)由=,令,解得∴函数f(x)的单调递增区间为.(2)由,∴,由f(x)<m在内有解,∴m>f(x)min,则m>0,∴m的取值范围为(0,+∞).【点评】本题考查实三角函数的增区间、实数的取值范围的求法,考查三角函数的性质等基础知识,考查运算求解能力,是中档题.18.已知f(x)=2sin x cos x+(cos2x﹣sin2x).(1)求函数y=f(x)的最小正周期和对称轴方程;(2)若x∈[0,],求y=f(x)的值域.【分析】(1)将f(x)化简,利用整体法求出f(x)的对称轴和周期即可;(2)根据正弦函数的单调性,求出f(x)的最大值和最小值即可.【解答】解:(1)f(x)=2sin x cos x+(cos2x﹣sin2x)=令,则f(x)的对称轴为,最小正周期;(2)当x∈[0,]时,,因为y=sin x在单调递增,在单调递减,在取最大值,在取最小值,所以,所以f(x)∈[﹣1,2].【点评】本题考查了三角函数的图象与性质和三角函数的化简求值,属基础题.19.已知函数.(1)求函数f(x)的最小正周期及其对称中心;(2)若,求f(x)的最值.【分析】(1)化简f(x),然后利用整体法求出周期和对称轴即可;(2)由条件可得,因此,然后求出f(x)的值域即可.【解答】解:(1)===∴最小正周期为T=,对称中心为;(2)∵,∴,∴,∴,f(x)max=2,∴f(x)的值域为[].【点评】本题考查了三角函数的图象与性质,考查了整体思想,属基础题.20.已知函数f(x)=cos(2x+)+sin2x﹣cos2x+2sin x cos x.(1)化简f(x);(2)若f(α)=,2α是第一象限角,求sin2α.【分析】(1)利用三角函数恒等式、二倍角公式能化简f(x).(2)由f(α)=sin(2)=,2α是第一象限角,即2kπ<2α<+2kπ(k∈Z),从而cos(2)=,再由sin 2α=sin[(2)+],能求出结果.【解答】解:(1)f(x)=cos 2x﹣sin 2x﹣cos 2x+sin 2x=sin 2x﹣cos2x=sin(2x﹣).(2)f(α)=sin(2)=,2α是第一象限角,即2kπ<2α<+2kπ(k∈Z),∴2kπ﹣<2α﹣<+2kπ(k∈Z),∴cos(2)=,∴sin 2α=sin[(2)+]=sin(2)•cos+cos(2)•sin=×+×=.【点评】本题考查三角函数的化简.考查三角函数恒等式、二倍角公式等基础知识,考查运算求解能力,是中档题.。
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知sin(α+45°)sin2α等于( ) A .-45B .-35C .3 5D .4 52.已知13a =,4log 3b =和sin 210c =︒,则( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<3.()sin cos f x x x =最小值是 A .-1B .12-C .12D .14.关于函数sin cos y x x =+,以下说法正确的是( ) A .在区间0,2π⎛⎫⎪⎝⎭上是增函数B .在区间0,2π⎛⎫⎪⎝⎭上存在最小值C .在区间,02π⎛⎫- ⎪⎝⎭上是增函数D .在区间,02π⎛⎫- ⎪⎝⎭上存在最大值5.函数()22f x cos x sinx =+ 的最小值和最大值分别为( ) A .3,1-B .2,2-C .332-,D .322-,6.将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是A .[2,2]-B .[3,4]C .[0,3]D .[0,4]7.sin15sin 75的值为( )A .14B .12C D 8.已知tan α和tan 4πα⎛⎫- ⎪⎝⎭是方程20ax bx c ++=的两个根,则,,a b c 的关系是( )A .b a c =+B .2b a c =+C .c b a =+D .c ab =9.设sin18cos44cos18sin 44a =︒︒︒+︒,2sin 29cos29b =︒︒和cos30c =︒,则有( ) A .c a b <<B .b c a <<C .a b c <<D .b a c <<二、填空题10.若sin 2α=()sin βα-=π,π4α⎡⎤∈⎢⎥⎣⎦和3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是________.11.已知角α的终边经过点(3,1)P t ,且3cos()5πα+=,则tan α的值为_________.12.函数44cos sin y x x =-的最小正周期是______ 13.22sin 20cos 50sin 20cos50︒+︒+︒︒=______.14.已知α为第二象限角,sinα+cosαcos2α=________. 15.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin(2)12πα+的值为____________.16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,其图象的对称轴与对称中心之间的最小距离为4π,3x π=-是函数()f x 的一个极小值点.若把函数()f x 的图象向右平移()0t t >个单位长度后,所得函数的图象关于点,03π⎛⎫⎪⎝⎭对称,则实数t 的最小值为___________.三、解答题17.已知函数()()sin 2(0),,04f x x πϕϕπ⎛⎫=+<< ⎪⎝⎭是该函数图象的对称中心(1)求函数()f x 的解析式;(2)在ABC 中角,,A B C 的对边分别为,,a b c ,若()1,23f C C π=->和1c =,求2+a b 的取值范围.18.函数()cos()f x A x ωφ=+(其中 0A >,0>ω和||2ϕπ<)的部分图象如图所示,先把函数 ()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),把得到的曲线向左平移4π个单位长度,再向上平移1个单位,得到函数()g x 的图象.(1)求函数()g x 图象的对称中心.(2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则求 ()g x 的值域.(3)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则方程 ()()2()230g x m g x m +-+-=有解,求实数m 的取值范围.19.在ABC 中角A ,B ,C 所对边分别为a ,b ,c ,且1b c -=,2cos 3A =和ABC S =△(1)求边a 及sinB 的值;(2)求cos 26C π⎛⎫- ⎪⎝⎭的值.20.求444sin 10sin 50sin 70︒︒︒++的值.21.已知函数()222cos 36f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ x ∈R .(1)求()6f π的值及()f x 的最小正周期;(2)当[0,]x π∈时,则求函数()f x 的零点所构成的集合.参考答案与解析1.B【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【详解】sin(α+45°)=(sin α+cos α∴sin α+cos α. 两边平方,得1+sin2α=25,∴sin2α=-35.故选B【点睛】本题目是三角函数正弦函数的题目,掌握同角三角函数的二倍角公式是解题的关键. 2.A【分析】根据诱导公式求出c ,再根据对数函数的单调性比较,a b 的大小,即可得出答案. 【详解】解:()1sin 210sin 18030sin 302c =︒=︒+︒=-︒=-113244441log 4log 4log 2log 33a ==<=<所以c a b <<. 故选:A. 3.B【详解】试题分析:∵()sin cos f x x x =1sin 22x =,∴当sin2x=-1即x=()4k k Z ππ-∈时,则函数()sin cos f x x x =有最小值是12-,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题 4.C【分析】将原式化简为)4y x π=+,再结合正弦函数的性质,即可求解.【详解】解:sin cos )4y x x x π=++∴令22,242k x k k Z πππππ-+++∈ ∴322,44k x k k Z ππππ-++∈即函数的单调递增区间为32,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦故选项A 错误,选项C 正确 当2,42x k k Z πππ+=-+∈,即32,4x k k Z ππ=-+∈时,则y 取得最小值,故在区间(0,)2π上不存在最小值,故选项B 错误 当2,42x k k Z πππ+=+∈,即2,4x k k Z ππ=+∈时,则y 取得最大值,故在区间(,0)2π-上不存在最大值,故选项D 错误. 故选:C . 5.C 【详解】()112sin22sin 2sin 2f x x x x ⎛⎫- ⎪⎝⎭=-+=-232+. ∴当1sin 2x =时,则()3max ?2f x =,当1sinx =- 时则()3min f x =- ,故选C. 6.D【分析】按照图象的平移规律,写出()g x 的表达式,利用正弦函数的图象,求出()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【详解】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++230,(2)[,]sin((2)[1,1]3662)[0,4]6x x x g x πππππ∈⎡⎤∴+∈∴+∈-∴⎢⎥⎣⎦∈,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键. 7.A【分析】利用诱导公式结合二倍角的正弦公式化简可得结果.【详解】()11sin15sin 75sin15sin 9015sin15cos15sin 3024=-===.故选:A. 8.C【分析】根据根与系数的关系以及两角和的正切公式可得结果. 【详解】由题意可知,tan tan ,tan tan 44b ca aππαααα⎛⎫⎛⎫+-=--= ⎪ ⎪⎝⎭⎝⎭tantan 44ππαα⎛⎫∴=+- ⎪⎝⎭tan tan 4111tan tan 4b a ca πααπαα⎛⎫+--⎪⎝⎭===⎛⎫--- ⎪⎝⎭1b ca a∴-=- b a c ∴-=- c a b ∴=+. 故选:C .【点睛】本题考查了根与系数的关系,考查了两角和的正切公式,属于基础题. 9.B【分析】先利用两角和的正弦公式对a 化简,利用二倍角公式对b 化简,然后利用正弦函数的单调性即可比较大小【详解】解:sin18cos 44cos18sin sin(1844)sin 4624a ︒︒=︒+︒==︒︒+︒ 2sin 29cos29sin58b =︒︒=︒ cos30sin60c =︒=︒ 因为sin y x =在(0,90)︒︒上为增函数,且586062︒<︒<︒ 所以sin58sin60sin62︒<︒<︒,即可b c a << 故选:B【点睛】此题考查两角和的正弦公式和二倍角公式的应用,考查正弦函数的单调性,属于基础题 10.74π【分析】依题意,可求得ππ,42α⎡⎤∈⎢⎥⎣⎦,进一步可知π5,π24βα⎡⎤-∈⎢⎥⎣⎦,于是可求得()cos βα-与cos2α的值,再利用两角和的余弦公式及角βα+的范围即可求得答案. 【详解】因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦因为sin 2α=π2,π2α⎡⎤∈⎢⎥⎣⎦,即ππ,42α⎡⎤∈⎢⎥⎣⎦所以cos 2=α因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦所以π5,π24βα⎡⎤-∈⎢⎥⎣⎦因为()sin βα-=所以()cos βα-==所以()()cos cos 2βαβαα+=-+()()=cos cos2sin sin 2βααβαα---=⎛⎛⨯ ⎝⎭⎝⎭因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,所以5π,24βαπ⎡⎤+∈⎢⎥⎣⎦所以7=4παβ+. 故答案为:74π 11.43-【解析】先计算出3cos 5α=-,再点的坐标特征可得角的终边的位置,从而可求tan α的值.【详解】因为3cos()5πα+=,故3cos 5α=-,故角α的终边在第二象限或第三象限又P 的纵坐标为1,故角α的终边在第二象限,所以sin 0α>所以sin 4tan cos 35ααα====--. 故答案为:43-【点睛】方法点睛:(1)角的终边的位置可根据三角函数值的正负来确定,也可以根据终边上的点的坐标特征来确定;(2)三个三角函数值,往往是“知一求二”,这里利用方程的思想. 12.π【分析】逆用二倍角公式将原式降幂,原式化简为cos()y A x ωϕ=+形式,利用2T ωπ=即可求得函数最小正周期. 【详解】()()442222cos sin cos sin o s =c s +in y x x x x x =--22cos sin cos 2x x x =-=22==2T πππω=T π∴=故答案为:π.【点睛】本题考查二倍角的余弦公式的应用、余弦三角函数最小正周期公式2T ωπ=,属于基础题. 13.34【分析】)(1cos 203020sin 202︒+︒︒-︒,化简计算即可得出结果. 【详解】原式)()(22sin 20cos 2030sin 20cos 2030=︒+︒+︒+︒︒+︒2211sin 2020sin 20sin 2020sin 2022⎫⎫=︒+︒-︒+︒︒-︒⎪⎪⎪⎪⎭⎭⎝⎝2222311sin 20cos 20sin 20sin 20442=︒+︒+︒-︒34=. 故答案为:3414【详解】∵sinα+cosα∴(sinα+cosα)2=13∴2sinαcosα=-23,即sin2α=-23.∵α为第二象限角且sinα+cosα∴2kπ+2π<α<2kπ+34π(k ∈Z),∴4kπ+π<2α<4kπ+32π(k ∈Z),∴2α为第三象限角,∴cos2α15【分析】利用二倍角公式,同角三角函数的基本关系式、两角差的正弦公式求得所求表达式的值.【详解】α为锐角2663πππα<+<3sin 65πα⎛⎫+== ⎪⎝⎭.sin(2)sin(2)22123433πππππαααα⎛⎫⎛⎫+=+-=++ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1666πππααα⎤⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎣⎦234421555⎤⎛⎫=⨯⨯-⎥ ⎪⎝⎭⎢⎥⎣⎦.16.512π##512π 【分析】对称轴与对称中心之间的最小距离为4π,可求得函数的周期,从而可求出2ω=,再由3x π=-是一个极小值点,可求得6π=ϕ,从而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,进而可得()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,再由()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,可得5212k t ππ=-+,从而可求出实数t 的最小值【详解】因为对称轴与对称中心之间的最小距离为4π,所以44T π=,所以T π= 22πωπ== 因为3x π=-是一个极小值点所以()2232k k z ππϕπ-+=-+∈,又因为02πϕ<<,所以6π=ϕ()sin 26f x x π⎛⎫+ ⎝=⎪⎭.把函数()f x 的图象向右平移()0t t >个单位长度后得函数()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,则()2236t k k z πππ-+=∈ 5212k t ππ=-+ 因为0t >,当0k =时,则实数t 的最小值为512π. 故答案为:512π17.(1)()cos2f x x = (2)()1,2【分析】(1)由题意得2,Z 4k k πϕπ⨯+=∈,则可求出2ϕπ=,从而可求出函数()f x 的解析式;(2)由()12f C =-可求出23C π=,由正弦定理得,a A b B ==,从而可表示出2+a b ,化简后利用三角函数的性质可求得结果 (1) 由题知2,Z 4k k πϕπ⨯+=∈因为0ϕπ<<,所以2ϕπ=所以函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭即为()cos2f x x =. (2)由题知()12f C =-,即1cos22C =-因为3C ππ<<,所以2223C ππ<<,所以423C π= 即21,33C A B ππ=+=.所以由正弦定理得sin sin sin a b c A B C === 所以,a Ab B == 2a b A B +=+)sin 2sinA B =+sin 2sin3B B π⎤⎛⎫=-+ ⎪⎥⎝⎭⎦sin cos cos sin 2sin33B B B ππ⎫=-+⎪⎭3sin2B B ⎫=+⎪⎪⎭2sin 6B π⎛⎫=+ ⎪⎝⎭因为10,3B π<<所以662B πππ<+<所以1sin 126B π⎛⎫<+< ⎪⎝⎭,所以12sin 26B π⎛⎫<+< ⎪⎝⎭ 所以2+a b 取值范围为()1,2.18.(1)(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)30,2⎡⎤⎢⎥⎣⎦;(3)3310⎡⎤⎢⎥⎣⎦.【分析】(1)观察图象,由函数最值求出A ,由周期求出ω,再将7,112π⎛⎫- ⎪⎝⎭代入得出 ϕ,即可求出函数()f x 的解析式,进而得出函数()g x 的解析式以及对称中心; (2)由x 的范围结合余弦函数的性质可得()g x 的值域;(3)将已知方程参变分离,利用对勾函数的性质求出值域,可得实数m 的取值范围. 【详解】(1)根据图象可知1A = 174123T ππ=- ∴T π=,∴22Tπω== ()()cos 2f x x φ=+ 将7,112π⎛⎫-⎪⎝⎭代入得 7cos 16πϕ⎛⎫+=- ⎪⎝⎭ 即726k πϕππ+=+,解得 26k πϕπ=- k Z ∈ ∵2πϕ<,∴0k = 6πϕ=-∴()cos 26f x x π⎛⎫=- ⎪⎝⎭.函数()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),可得 cos 46y x π⎛⎫=- ⎪⎝⎭,曲线再向左平移4π个单位长度,再向上平移1个单位得()5cos 416g x x π⎛⎫=++ ⎪⎝⎭令54,62x k k Z πππ+=+∈,解得 124k x ππ=-+ ∴此函数图象的对称中心为(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z . (2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则 54514,cos 41,63362x x ππππ⎡⎤⎛⎫⎡⎤+∈⇔+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦()53cos 410,62g x x π⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦,即 ()g x 的值域为30,2⎡⎤⎢⎥⎣⎦. (3)()()()2230g x m g x m +-+-=()()()2231g x g x m g x ⇔++=+⎡⎤⎣⎦()()()2231g x g x m g x ++⇔=+令()1s g x =+,由(2)知51,2s ⎡⎤∈⎢⎥⎣⎦2223310s m s s s +⎡⎤==+∈⎢⎥⎣⎦因此m 的取值范围为3310⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题考查三角函数图象的应用,考查余弦函数的性质,考查有解问题的应用,解决本题的关键点是将已知方程化简,参变分离,利用对勾函数的性质求出对应函数的值域,进而得出参数的取值范围,考查学生计算能力,属于中档题.19.(1)a = sin 1B =【分析】(1)先由cos A 求得sin A ,结合三角形面积公式可得6bc =,根据条件可得b ,c 的值,再利用余弦定理求得a ,利用正弦定理求得sin B ;(2)由(1)可知2B π=,则2sin cos 3C A == cos sin C A ==. (1)因为2cos 3A =,()0,A π∈所以sin A =因为1sin 2ABCS bc A =6bc = 又1b c -=,所以3b = 2c =所以a ==因为sin sin a b A B =3sin B =,所以sin 1B =. (2)在ABC 中由(1)可知2B π=,则2A C π+=所以2sin cos 3C A == cos sin C A ==则sin 22sin cos C C C ==221cos 2cos sin 9C C C =-=所以cos 2cos 2cos sin 2sin 666C C C πππ⎛⎫-=+= ⎪⎝⎭20.98【分析】先将题中正弦值利用诱导公式转化为余弦值,再用降次公式将式子中高次转化为1次,再观察题中角度与特殊角的联系,再用两角和差公式展开化简求值.【详解】444sin 10sin 50sin 70︒︒︒++444cos 80cos 40cos 20︒︒︒=++2221cos1601cos801cos40222︒︒︒⎛⎫⎛⎫⎛⎫+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222132cos1602cos802cos40cos 160cos 80cos 404︒︒︒︒︒︒=++++++ ()3111cos401cos1601cos80cos20cos80cos40424222︒︒︒︒︒︒⎛⎫+++=+-+++++ ⎪⎝⎭ ()95cos80cos40cos2088︒︒︒=++- ()()95cos 6020cos 6020cos2088︒︒︒︒︒⎡⎤=+++--⎣⎦ ()952cos60cos20cos2088︒︒︒=+-98=. 【点睛】本题考查了三角恒等变换,运用降次公式,两角和与差公式进行化简求值,注意观察角度间的联系及与特殊角的联系,还考查了学生的分析观察能力,运算能力,难度较大.21.(1)()16f π=,最小正周期为π; (2)0,,3ππ⎧⎫⎨⎬⎩⎭【分析】(1)利用三角恒等变换化简函数()f x 的解析式,利用正弦函数的性质即可求解;(2)令()0f x =,可得266x ππ+=或56π或136π,即可求解x 的值.(1)解:因为()222cos 2cos 213633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2sin 212sin 21366x x πππ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2sin 1162f ππ⎛⎫=-= ⎪⎝⎭,最小正周期为 22T ππ==. (2)令()0f x =,则1sin 262x π⎛⎫+= ⎪⎝⎭,因为[0,]x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以266x ππ+=或56π或136π,即0x =或3π或π,所以函数()f x 的零点所构成的集合为0,,3ππ⎧⎫⎨⎬⎩⎭.。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知函数,,且求的值;设,,,求的值.【答案】(1);(2).【解析】(1)利用公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(2)求解较复杂三角函数的时,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围;;(3)要注意符号,有时正负都行,有时需要舍去一个;(4)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:解:(1),解得. 5分(2),即,,即. 8分因为,所以,,所以. 12分【考点】(1)三角函数给值求值,(2)诱导公式的应用.2.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.3.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.4.已知、、是△的三内角,向量,且,,求.【答案】.【解析】首先运用内角和定理将问题转化为,这样只要研究、的三角函数值即可,由条件可以建立两个关于、的方程,可解出关于、的三角函数值,进而求出的值.试题解析:由,得,即 1分而∴∴, 3分7分∴ 9分∴为锐角,∴ 10分13分【考点】三角恒等变换中的求值问题.5.已知,则 .【答案】【解析】两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.【考点】三角恒等变换.6. (cos- sin) (cos+sin)= ()A.B.C.D.【答案】【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.7.已知=2,则的值为;的值为_____.【答案】【解析】,又,,。
高一必修4三角恒等变换测试题及答案
高一数学试题必修4第三章测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)A. 2B.C.2D.44.已知tan3,ta n5,则 tan 2的值为()4411A—B -C—D—7784 85.,都是锐角, 且 sin◎,cos则sin的值是()13533165663 A— B 、C—D 、 —656565656., x3( -,)且 3 cosx则cos2x 的值是 ()4 445724247A 、—B 、C 、 —D 、252525257.函数y・4sin x 4cos x 的值域是()0,11,1C1 31ABD -,12 228.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()5A 0B1C1 D-2222. cos31,sin12是第三象限角, 则 cos()()521333635616A 、 一B 、 —C— D 、— 656565651、cos 24 cos36 cos66 cos54 的值为()3.函数 y sinx cosx 的最小正周期为()12••在 ABC 中,已知tanA ,tanB 是方程3x 2 13. 若角 的终边经过点 P(1,— 2),则sin23sin 2x 2cos 2x 砧14. 已知tanx 2,贝U的值为 _________cos2x 3sin 2x15.关于函数f x cos2x 2 3sin xcosx ,下列命题:③ 函数f x 的图像关于点 一,0成中心对称图像;125④ 将函数f x 的图像向左平移 —个单位后将与y 2sin2x 的图像重合.12其中正确的命题序号 ____________ (注:把你认为正确的序号都填上)第II 卷-13、_______________ 14、 ________________ 15、 ______________________ 16、 _________________710 A10■10 103.10 C103 J10D109.要得到函数y 2sin 2x 的图像,只需将 y , 3sin 2x cos2x 的图像(A 、向右平移 10.函数y—个单位B 、向右平移一个单位C 向左平移 6 .x sin 212—个单位D 向左平移一个单位6 1211 3二、填空题(本大题共\ 3 cos-的图像的一条对称轴方程是2 5 x 34小题,每小题 5 D3共20分.请把答案填在题中的横线上)11 .已知,为锐角,cos1■ 10,cos的值为7x 20的两个实根,则tanC的值为 ①若存在 X 1 , X 2有 x ix 2 时,f X i f X 2成立;②f X 在区间--上是单调递增;6 3(3)此函数的图像可以由函数y .2 si n2x 的图像经过怎样变换而得到。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省莱州一中高一数学试题
-三角恒等变换测试题
第I 卷
一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54︒
︒
︒
︒
-的值为( )
A 0 B
12 C D 1
2
-
2.3cos 5α=-
,,2παπ⎛⎫
∈ ⎪⎝⎭
,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )
A 、3365-
B 、6365
C 、5665
D 、16
65
-
3. tan 20tan 4020tan 40︒
︒
︒
︒
+的值为( )
A 1 B
C D
4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( )
A 47-
B 47
C 18
D 18
- 5.βα,都是锐角,且5sin 13α=,()4
cos 5
αβ+=-,则βsin 的值是( )
A 、3365
B 、1665
C 、5665
D 、6365
6.,)4,43(ππ-
∈x 且3cos 45x π⎛⎫
-=- ⎪⎝⎭
则cos2x 的值是( )
A 、725-
B 、2425-
C 、2425
D 、7
25
7. 函数4
4
sin cos y x x =+的值域是( )
A []0,1
B []1,1-
C 13,22⎡⎤⎢⎥⎣⎦
D 1,12⎡⎤
⎢⎥⎣⎦
8. 已知等腰三角形顶角的余弦值等于
5
4
,则这个三角形底角的正弦值为( ) A
1010 B 1010- C 10
103 D 10103-
9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( )
A 、向右平移6π个单位
B 、向右平移12π个单位
C 、向左平移6
π
个单位D 、向左平移12π个单
位
10. 函数sin 22
x x
y =的图像的一条对称轴方程是 ( ) A 、x =11
3
π B 、x =
53π C 、53x π=- D 、3x π=- 11. 已知1cos sin 21cos sin x x
x x -+=-++,则x tan 的值为 ( )
A 、34
B 、34-
C 、43
D 、4
3-
12.若0,4πα⎛
⎫
∈ ⎪⎝
⎭()0,βπ∈且()1tan 2αβ-=,1
tan 7
β=-,则=-βα2 ( ) A 、56π-
B 、23π-
C 、 712π-
D 、34
π- 二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上) 13. .在ABC ∆中,已知tanA ,tanB 是方程2
3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则
3sin 22cos 2cos 23sin 2x x
x x
+-的值为
15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ∆面积的最小值为 。
16. 关于函数()cos2cos f x x x x =-,下列命题:
①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤
-⎢⎥⎣
⎦上是单调递增;
③函数()f x 的图像关于点,012π⎛⎫
⎪⎝⎭
成中心对称图像; ④将函数()f x 的图像向左平移
512
π
个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)
第II 卷
一、选择题:(每小题5分共计60分)
二、填空题:(每小题5分,共计20分)
13、______________14、_______________15、____________________ 16、_______________ 三、解答题: 17. 已知02
πα<<
,15tan
2
2tan
2
α
α
+
=
,试求sin 3πα⎛
⎫- ⎪⎝⎭
的值.(12分)
18. 求)
212cos 4(12sin 3
12tan 30
200--的值.(12分)
19. 已知α为第二象限角,且 sin α=,415求1
2cos 2sin )
4sin(+++
ααπ
α的值.(12分)
20.已知函数2
2
sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
(2)函数的单调减区间
(3
)此函数的图像可以由函数2y x =
的图像经过怎样变换而得到。
(12分)
21.已知在△ABC 中,A,B,C 为其内角,若C B A sin cos sin 2=⋅,判断三角形的形状。
(12分)
22.四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商在平地上建造一个两边落在BC与CD上的长方形停车场PQCR.求长方形停车场PQCR面积的最大值与最小值.(14分)
.
三角恒等变换测试题参考答案
一、选择题:(每小题5分共计60分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
二、填空题:(每小题5分,共计20分) 13、-7 14、-5
2
15、21h h 16、①③ 三、解答题: 17.
10
3
34- 18.34- 19.2- 20.(1)最小值为22-
,x的集合为⎭⎬⎫
⎩⎨⎧∈+=Z k k x x ,85|ππ
(2) 单调减区间为)(85,8Z k k k ∈⎥⎦
⎤
⎢⎣⎡++ππππ
(3)先将x y 2sin 2=
的图像向左平移
8
π
个单位得到)42sin(2π+=x y 的图像,然
后将)42sin(2π+=x y 的图像向上平移2个单位得到)4
2sin(2π
+=x y +2的
图像。
21.等腰三角形
22.最小值为950米2,最大值为290014050-米2。