简单线性规划-高中数学知识点讲解
高中数学_线性规划知识复习
高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高中线性规划
高中线性规划引言概述:线性规划是一种数学建模方法,通过建立数学模型来解决实际问题。
在高中数学中,线性规划是一个重要的概念,它可以帮助我们解决一些优化问题。
本文将详细介绍高中线性规划的概念、原理和应用。
一、线性规划的概念1.1 线性规划的定义线性规划是一种数学优化方法,它的目标是找到一组变量的最佳取值,使得目标函数达到最大或最小值,同时满足一组线性约束条件。
1.2 线性规划的基本要素线性规划包含以下基本要素:- 目标函数:表示需要最大化或最小化的数学模型。
- 决策变量:需要确定的变量,它们的取值将影响目标函数的结果。
- 约束条件:限制决策变量的取值范围,通常为一组线性不等式或等式。
1.3 线性规划的解法线性规划可以使用图像法、单纯形法或二次规划等方法进行求解。
其中,图像法适用于二维问题,单纯形法适用于多维问题,而二次规划适用于目标函数为二次函数的问题。
二、线性规划的原理2.1 线性规划的线性性质线性规划的目标函数和约束条件都是线性的,这意味着它们的图像是直线或平面。
这种线性性质使得线性规划问题的求解相对简单。
2.2 线性规划的可行解与最优解线性规划的可行解是指满足所有约束条件的解,而最优解是在可行解集合中使得目标函数取得最大或最小值的解。
线性规划问题可能存在多个最优解,或者无解。
2.3 线性规划的应用领域线性规划广泛应用于生产计划、资源分配、运输问题等领域。
例如,企业可以使用线性规划来确定最佳的生产计划,以最大化利润或最小化成本。
三、线性规划的应用举例3.1 生产计划问题一个工厂需要生产两种产品,每种产品的生产时间、材料成本和利润不同。
通过线性规划,可以确定每种产品的生产数量,以最大化利润。
3.2 运输问题一个物流公司需要将商品从多个仓库运送到多个销售点,每个仓库和销售点之间的运输成本不同。
通过线性规划,可以确定每个仓库和销售点之间的货物运输量,以最小化总运输成本。
3.3 资源分配问题一个学校需要将教师和教室分配给不同的班级,每个班级的人数和课程要求不同。
高中数学线性规划知识总结+练习
(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。
当B <0时, 表示直线下方区域; 表示直线的上方区域。
2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。
(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。
首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。
2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。
4。
最后求得目标函数的最大值及最小值.(三)典例分析:1。
二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。
2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。
高三线性规划知识点
高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。
本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。
一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。
在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。
线性规划通过建立数学模型,帮助我们找到最优解。
二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。
这个函数被称为目标函数,记作Z。
2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。
3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。
4. 可行解:满足所有约束条件的解称为可行解。
可行解的集合称为可行域。
5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。
三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。
2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。
3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。
4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。
四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。
已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。
工厂每天可以使用材料A 600千克,材料B 200千克。
问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。
目标函数Z表示利润的最大值,即Z=1000x+1200y。
约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。
高中线性规划
高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。
在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。
本文将详细介绍高中线性规划的概念、应用以及解题方法。
一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。
1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。
例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。
1.3 可行解和最优解:满足所有约束条件的解称为可行解。
在可行解中,使目标函数达到最大或者最小值的解称为最优解。
二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。
通过考虑资源约束和市场需求,可以确定每种产品的生产量。
2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。
例如,可以确定每一个部门的资源分配,以满足不同项目的需求。
2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。
三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。
通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。
3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。
该方法通过迭代计算,逐步接近最优解。
3.3 整数规划:在某些情况下,变量的值必须是整数。
这种情况下,可以使用整数规划方法来解决问题。
整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。
四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。
高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内
求
z 的最值 3
求
z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y
16, 12,
3
x
0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
高中数学线性规划考点解析及针对练习
专题简单的线性规划考点精要(1)一元二次不等式①会从实际情境中抽象出一元二次不等式模型;②通过函数图像了解一元二次不等式与相应的二次函数,一元二次方程的联系;③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程度框图。
(2)一元一次不等式组与简单线性的规划问题①会从实际情境中抽象出二元一次不等式组;…②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
解一元一次不等式、一元二次不等式是解不等式最重要的基础知识和基本技能;简单的线性规划及其应用也是必考的知识点,这两部分几乎年年考,是必备的基础知识和基本技能。
例题精讲:例 1 已知x,y满足280440x yx yx+-≤⎧⎪-+≤⎨⎪≥⎩,求z=3x+y的最大值与最小值__________________. [例2 不等式组(5)()003x y x yx-++≥⎧⎨≤≤⎩,所表示的平面区域的面积是_________例3 设变量x ,y 满足约束条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z=ax+y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是_____________ 例4 线性规划中的几何问题1、如果点P 在平面区域2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为 。
2、以原点为圆心的圆完全落在区域36020x y x y -+≥⎧⎨+-≤⎩内,则圆的面积的最大值为是 。
3、已知,x y 满足143034230x x y x y ≥⎧⎪-+≤⎨⎪+-≤⎩·(1)求yz x=的取值范围。
(2)求22z x y =+的最大、最小值。
针对训练1.设变量x ,y 满足约束条件0121x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则目标函数z =5x+y 的最大值是( )A .2B .3C .4D .52.设变量x , y 满足3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设y=kx ,则k 的取值范围是( )、A .14,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,2⎡⎫+∞⎪⎢⎣⎭3.如果实数x ,y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么z=2x -y 的最大值为( )A .2B .1C .-2D .-34.在平面直角坐标系中,不等式组20202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域的面积是( )A.B .4 C.D .25.若不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩,表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a≥76.若x ,y 满足约束条件03003x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩,则z=2x -y 的最大值为__________;7.已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么|PO |的最小值等于___,最大值等于___8.已知1102(1)x x y y x ≥⎧⎪-+≤⎨⎪≥-⎩,则x 2+y 2的最小值是_______________答案:例1 14,1 例2.24 例3.{a |a >12} 针对训练1.D 2.C 3.D 4.B 5.C 6.9 78.5)高考链接1(09北京理)若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为__________。
人教B版高中数学必修五课件3.5.2简单线性规划
由53xx+ +25yy= =210500, , 解得xy==7111059900,
.
设点 A 的坐标为2700,970,点 B 的坐标为71090,11590, 则不等式组(※)所表示的平面区域是四边形的边界及其内部 (如图中阴影部分).
令 z=0,得 7x+10y=0,即 y=-170x.
解决简单线性规划的方法为图解法,就是用一组平行直线 与某平面区域相交,研究直线在y轴上截距的最大值或最小值, 从而求某些函数的最值.
2x+y≤40 1.若变量 x,y 满足xx+≥20y≤50
y≥0
,则 z=3x+2y 的最大
值是( ) A.90 C.70
B.80 D.40
【解析】 由题意,满足二元一次不等式组的解的可行域 如图所示.
高中数学课件
(金戈铁骑 整理制作)
3.5.2 简单线性规划
1.在平面直角坐标系中,所有的点被直线x+y-1=0分成 三类:即点在直线上,点在直线的区域,上点方在直线的区域.
2下.方二元一次不等式组表示的平面区域是其中的每个二元一
次不等式表示的平面区域的. 公共部分
线性规划中的基本概念
名称
目标函 数
由 z=3x+2y,得 y=-32x+2z.要求 z 的最大值,可求2z的 最大值,即求斜率为-32的直线在可行域内在 y 轴上截距的 最大值.
如上图,显然直线过 A 点时,在 y 轴上截距最大. 联立2x+x+2yy==4500 ,得xy= =1200 , ∴A(10,20),∴z=3x+2y 的最大值为 z=3×10+2×20 =70. 【答案】 C
x≥1
,所表示的平面区
域如图所示(阴影部分)
当直线 z=2x+y 经过可行域上的点 A 时,截距最大,即 z 最大, 解方程组x3-x+4y5=y=-235 ,得 A 的坐标为(5,2). 所以 zmax=2×5+2=12. 当直线 z=2x+y 经过可行域上的点 B 时,截距最小,即 z 最小. 解方程组xx- =41y=-3 ,得 B 的坐标为(1,1). 所以 zmin=2x+y=2×1+1=3.
高中数学线性规划知识点汇总
高中数学线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
高中数学课件:简单的线性规划
应该注意的几个问题:
1、若不等式中不含等号,则边 界画成虚线,否则画成实线。 2、画图时应非常准确,否则将
得不到正确结果。
作业: P65 第1、3、7、8题
制作人:诸慧
xx2yy4100或
x2y1 0 x y40
y x -y + 4 = 0
4
-4
-1 o
1 2
Back
x x + 2y + 1 = 0
变题二:由直线 x + y + 2 = 0,x + 2y + 1 = 0 和
2x + y + 1 = 0 围成的三角形区域(包括边界)用
x y20
x
2
y
1
0
不等式可表示为 ___2_x___y___1__0__
x 0
变题三:求不等式组
y
0
表示的平
4x 3 y 12
面区域的面积及平面区域内的整点坐标。
3
x
4x + 3y -1 2 = 0
x y 1 ( x 0, y 0) x y 1 ( x 0, y 0) x y 1 ( x 0, y 0) x y 1 ( x 0, y 0)
y
∴ S=2
1
由图知:平面区 域是边长为 2的 正方形。
x-y+1=0
x-y-1=0
X 思考1:若直线与坐标轴垂
O
直的情况怎样分类?
问题2:一般地,如何画不等式 Ax + By + C > 0 表示的平面区域
y ? Ax + By + C = 0
②
o①
x
二元一次不等式Ax+By+C>0 在平面直角 坐标系中表示直线Ax+By+C=0某一侧所有 点组成的平面区域。
高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件
学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:
高中数学线性规划考点解析及例题辅导.docx
简单的线性规划及实际应用高考要求1了解二元一次不等式表示平面区域2了解线性规划的意义并会简单的应用知识点归纳1 二元一次不等式表示平面区域:在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P( x0, y0)B> 0 时,① Ax0+By0+C> 0,则点 P(x0,y0)在直线的上方;② Ax0+By0+C<0,则点 P( x0,y0)在直线的下方对于任意的二元一次不等式 Ax+By+C>0(或< 0),无论 B 为正值还是负值,我们都可以把 y 项的系数变形为正数当 B> 0 时,① Ax+By+C>0 表示直线 Ax+By+C=0 上方的区域;② Ax+By+C< 0 表示直线Ax+By+C=0 下方的区域2 线性规划 :求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:( 1)根据题意,设出变量x、 y;( 2)找出线性约束条件;( 3)确定线性目标函数z=f( x,y);( 4)画出可行域(即各约束条件所示区域的公共区域);( 5)利用线性目标函数作平行直线系f( x, y) =t(t 为参数);(6)观察图形,找到直线 f(x, y) =t 在可行域上使 t 取得欲求最值的位置,以确定最优解,给出答案题型讲解例 1 求不等式| x - 1| +| y - 1|≤ 2 表示的平面区域的面积分析:依据条件画出所表达的区域,再根据区域的特点求其面积解:| x - 1| +| y - 1|≤ 2 可化为x 1 x 1 x 1x 1 y 1 或 y 1 或 y 1或 y 1x y 4xy 2x y 2xy 0其平面区域如图∴面积 S= 1×4× 4=82点评:画平面区域时作图要尽量准确,要注意边界 例 2某人上午 7 时,乘摩托艇以匀速 v n mi le/h ( 4≤ v ≤ 20)从 A 港出发到距 50 n mi le的 B 港去,然后乘汽车以匀速w km/h (30≤ w ≤ 100)自 B 港向距 300 km 的 C 市驶去 应该在同一天下午 4 至 9 点到达 C 市 设乘汽车、摩托艇去所需要的时间分别是x h 、 y h( 1)作图表示满足上述条件的x 、y 范围;( 2)如果已知所需的经费 p=100+3×( 5- x ) +2×( 8- y )(元),那么 v 、w 分别是多少时走得最经济 ?此时需花费多少元 ?分析:由 p=100+3 ×( 5-x ) +2 ×( 8- y )可知影响花费的是 3x+2y 的取值范围解:( 1)依题意得 v=50, w=300, 4≤v ≤ 20, 30≤ w ≤100yx∴ 3≤ x ≤ 10, 5 ≤ y ≤25①22y由于乘汽车、 摩托艇所需的时间和 x+y 应在149至14个小时之间,9即 9≤x+y ≤ 14②因此,满足①②的点( x ,y )的存在范围是2.5图中阴影部分(包括边界)o 39 10 14 x( 2)∵ p=100+3 ·( 5- x )+2·( 8-y ),∴ 3x+2y=131- p设 131- p=k ,那么当 k 最大时, p 最小 在通过图中的阴影部分区域(包括边界)且斜率为- 3的直线 3x+2y=k 中,使 k 值最大的直线必通过点(10,4),即当 x=10,y=4 时, p 最小2此时, v=12 5, w=30 , p 的最小值为 93 元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式然后分析要求量的几何意义例 3 某矿山车队有 4 辆载重量为 10 t 的甲型卡车和 7 辆载重量为 6 t 的乙型卡车,有9 名驾驶员 此车队每天至少要运 360 t 矿石至冶炼厂 已知甲型卡车每辆每天可往返 6 次,乙型卡车每辆每天可往返 8次 甲型卡车每辆每天的成本费为252 元,乙型卡车每辆每天的成本费为 160 元 问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解解:设每天派出甲型车x 辆、乙型车 y 辆,车队所花成本费为z 元,那么x y 9y106x 6 8 y 360x4, x N7y7, y Nz=252x+160y,作出不等式组所表示的平面区域,如图作出直线l 0:252x+160y=0,把直线 l 移,使其经过可行域上的整点,且使在距最小观察图形,可见当直线5x+4y=30即可行域,x+y=9向右上方平o4xy 轴上的截252x+160y=t 经过点( 2, 5)时,满足上述要求此时, z=252 x+160 y 取得最小值,即x=2, y=5 时, z min=252× 2+160 ×5=1304答:每天派出甲型车 2 辆,乙型车 5 辆,车队所用成本费最低点评:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系 f(x, y) =t 的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点4 x y6例 4设z2x y ,式中变量x, y 满足条件2 x y4求 z 的最大值和最小值解:由已知,变量x, y 满足的每个不等式都表示一个平面区域,因此①所表示的区域为如图中的四边形ABCD当 z2x y 过点C时,z 取最小值,当 z 2 x y 过点 A 时,z取最大值即当 x3, y1时, z min7 ,当 x 5, y 1时, z max11例 5某糖果公司得一条流水线不论生产与否每天都要支付3000 元的固定费用,它生产 1 千克糖果的成本是 10 元,而销售价是每千克 15 元,试问:每天应生产并销售多少糖果,才能使收支平衡,即它的盈亏平衡点是多少?解:设生产x 千克的糖果的成本函数为y( x) 3000 10x ,销售 x 千克的糖果的收益函数为 R(x)15x ,在同一坐标系中画出它们的图像,交点的横坐标就是反映盈亏平衡的产销量,令 y( x) R( x) ,得 3000 10x 15x得 x600. ,即每天必须生产并销售600 千克糖果,这条流水线才能做到盈亏平衡,从图中可以看出,当x600 时,R( x) y( x),表示有盈利,反之则表示亏本例6某人有楼房一幢,室内面积共180m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18,可住游客 5 名,每名游客每天住宿费为40 元,小房间每间面积为15,可住游客 3 名,每名游客每天住宿费为50 元,装修大房间每间需要1000 元,装修小房间每间需要 600 元,如果他们只能筹 8000 元用于装修,且游客能住满客房,它应隔出大房间和小房间各多少间,能获最大利益?解:设应隔出大房间x 间和小房间y 间,则18 x15 y180 且 1000 x600 y8000,x, y Ny目标函数为z 5 40x 350 y ,10作出约束条件可行域:5根据目标函数z 200x150 y ,作出一组平行线200x150 y to5x 当此线经过直线18x15 y 180和直线 1000 x 600 y8000的交点 C(20,60) ,77此直线方程为 200x150y 13000,7由于 ( 20,60) 不是整数,所以经过整点(3,8)时,才是他们的最优解,同时经过整点(0,12) 7 7也是最优解即应隔大房间 3 间,小房间8 间,或者隔大房间0 间,小房间12 间,所获利益最大如果考虑到不同客人的需要,应隔大房间 3 间,小房间8 间小结:简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标学生练习1下列命题中正确的是A 点( 0,0)在区域x+y≥ 0 内B 点( 0, 0)在区域x+y+1<0 内C 点( 1, 0)在区域 y>2x 内D 点( 0, 1)在区域 x- y+1>0 内解析:将( 0, 0)代入 x+y≥ 0,成立答案: A2 设动点坐标( x, y)满足(x-y+1)(x+y- 4)≥ 0,x≥3,则x2+y2的最小值为A 5B10C 17D 10 2解析:数形结合可知当x=3, y=1 时, x2+y2的最小值为 10答案: D3 不等式组 2 x-y+1≥ 0,x- 2y-1≤0, x+y≤1表示的平面区域为A 在第一象限内的一个无界区域B 等腰三角形及其内部C 不包含第一象限内的点的一个有界区域D 正三角形及其内部答案: B4 点(- 2, t)在直线2x- 3y+6=0 的上方,则 t 的取值范围是 ______解析:(- 2,t)在 2x-3y+6=0 的上方,则2×(- 2)- 3t+6<0,解得 t>2答案: t>2 33x0,5 不等式组y0,表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有4x 3 y12____________个解析:( 1,1),( 1,2),( 2,1),共 3 个答案: 36 ( x-1)2+( y- 1)2=1 是| x- 1| +| y- 1|≤ 1 的__________ 条件A 充分而不必要B 必要而不充分C 充分且必要D 既不充分也不必要答案: B7( x+2y+1)(x- y+4 )≤ 0 表示的平面区域为A B C D答案: B8 画出以 A( 3,- 1)、 B(- 1, 1)、 C(1, 3)为顶点的△ ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x- 2y 的最大值和最小值分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组;③求以所写不等式组为约束条件的给定目标函数的最值解:如图,连结点A、B、 C,则直线AB 、BC、 CA 所围成的区域为所求△ABC 区域直线 AB 的方程为x+2y- 1=0 , BC 及 CA 的直线方程分别为x-y+2=0 , 2x+y- 5=0在△ ABC 内取一点P( 1, 1),分别代入 x+2y- 1, x- y+2, 2x+y- 5得 x+2y -1>0 , x -y+2>0, 2x+y - 5<0因此所求区域的不等式组为x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0作平行于直线 3x -2y=0 的直线系 3x - 2y=t ( t 为参数),即平移直线 y=3x ,观察图形2可知:当直线 y= 3x - 1 t 过 A ( 3,- 1)时,纵截距-1 t 最小 此时 t 最大, t max =3× 3- 222 2× (- 1) =11;当直线 y=3x - 1 t 经过点 B (- 1, 1)时,纵截距- 1 t 最大,此时 t 有最小值为 t min =2223×(- 1)- 2× 1=-5因此,函数 z=3x - 2y 在约束条件x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0 下的最大值为 11,最小值为- 59 某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质 6 个单位,含淀粉 4 个单位,售价 0 5 元,米食每 100 g 含蛋白质 3 个单位,含淀粉 7 个单位,售价 0 4 元,学校要求给学生配制盒饭,每盒盒饭至少有 8 个单位的蛋白质和 10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少 ?解:设每盒盒饭需要面食x (百克),米食 y (百克),所需费用为 S=0 5x+0 4y ,且 x 、 y 满足 6x+3y ≥ 8, 4x+7 y ≥ 10, x ≥ 0,y ≥ 0,由图可知,直线 y=- 5x+ 5 S 过 A ( 13,14 )时 , 纵421515截距5S 最小,即 S 最小2故每盒盒饭为面食13百克,米食14百克时既科学又费用最少151510 配制 A 、B 两种药剂,需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 mg ,乙料 5mg ;配一剂 B 种药需甲料 5 mg ,乙料 4 mg 今有甲料 20 mg ,乙料 25 mg ,若 A 、 B 两种药 至少各配一剂,问共有多少种配制方法?解:设 A 、 B 两种药分别配 x 、y 剂( x 、 y ∈N ),则x ≥ 1,y ≥ 1, 3x+5 y ≤ 20, 5x+4y ≤ 25上述不等式组的解集是以直线x=1 ,y=1, 3x+5y=20 及 5x+4y=25 为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、( 1,3)、( 2,1)、( 2,2)、( 3,1)、( 3,2)、(4, 1)所以,在至少各配一剂的情况下,共有8 种不同的配制方法.11 某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大 已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金 单位产品所需资金(百元) 月资金供应量(百元)空调机 洗衣机成 本30 20 300劳动力(工资)5 10 110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少 ?解:设空调机、洗衣机的月供应量分别是x 、 y 台,总利润是 P ,则 P=6x+8 y ,由题意有30x+20y ≤ 300, 5x+10y ≤110,x ≥ 0, y ≥0, x 、 y 均为整数由图知直线 y=- 3 x+ 1P 过 M ( 4,9)时,纵截距最大 这时 P 也取最大值 P max =6× 4+848×9=96 (百元)故当月供应量为空调机4 台,洗衣机 9 台时,可获得最大利润 9600 元12 实系数方程 f ( x )=x 2 +ax+2b=0 的一个根在(0,1)内,另一个根在( 1, 2)内,求:( 1)b 2的值域;a 1 ( 2)( a - 1) 2+(b - 2) 2 的值域;( 3) a +b -3 的值域解:由题意知f ( 0)> 0, f ( 1)< 0, f ( 2)> 0 b >0, a+b+1< 0, a+b+2> 0 如图所示A (- 3, 1)、B (- 2, 0)、C (- 1, 0)又由所要求的量的几何意义知,值域分别为(1)(1 , 1);( 2)( 8, 17);( 3)(- 5,4-4)。
高三数学线性规划知识点
高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
高中线性规划
高中线性规划线性规划是运筹学中的一种数学方法,用于解决最优化问题。
在高中数学中,线性规划是一种重要的应用题型,涉及到线性不等式、线性函数和最大化或者最小化目标函数等概念。
本文将详细介绍高中线性规划的标准格式,以及如何解决该类问题。
一、线性规划的标准格式线性规划的标准格式通常包括以下几个要素:1. 决策变量(Decision Variables):表示问题中需要决策的变量,通常用字母表示。
例如,假设有两种产品A和B需要生产,可以用x表示产品A的产量,用y表示产品B的产量。
2. 目标函数(Objective Function):表示问题的最大化或者最小化目标,通常用线性函数表示。
例如,假设我们希翼最大化总利润,则目标函数可以表示为z = cx + dy,其中c和d分别表示单位产品A和B的利润。
3. 约束条件(Constraints):表示问题中的限制条件,通常用线性不等式或者等式表示。
例如,假设产品A和B的生产需要的资源有限,则约束条件可以表示为:- 2x + 3y ≤ 10 (资源1的限制)- 4x + 2y ≤ 8 (资源2的限制)- x ≥ 0, y≥ 0 (产量不能为负)二、解决高中线性规划问题的步骤解决高中线性规划问题的普通步骤如下:1. 确定决策变量:根据问题描述,确定需要决策的变量,并用字母表示。
2. 建立目标函数:根据问题的最大化或者最小化目标,建立目标函数,并将决策变量代入其中。
3. 建立约束条件:根据问题的限制条件,建立约束条件,并将决策变量代入其中。
4. 绘制可行域:将约束条件转化为不等式的图形表示,并绘制在坐标系中,得到可行域。
5. 确定最优解:在可行域中确定目标函数的最大值或者最小值的点,即为最优解。
6. 检验最优解:将最优解代入目标函数和约束条件中,验证是否满足所有条件。
三、实例分析为了更好地理解高中线性规划的应用,我们以一个实例进行分析。
假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单线性规划
1.简单线性规划
【概念】
线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值.
【例题解析】
푥+2푦≤8
例:若目标函数z=x+y 中变量x,y 满足约束条件
{
0≤푥≤4
.
0≤푦≤3
(1)试确定可行域的面积;
(2)求出该线性规划问题中所有的最优解.
解:(1)作出可行域如图:对应得区域为直角三角形ABC,
其中B(4,3),A(2,3),C(4,2),
则可行域的面积S =1
2퐵퐶⋅퐴퐵
=
1
2×1×2=1.
(2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z,
则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z 得截距最小,此时z 最小为z=2+3=5,
当直线经过点B(4,3)时,直线y=﹣x+z 得截距最大,
此时z 最大为z=4+3=7,
1/ 5
故该线性规划问题中所有的最优解为(4,3),(2,3)
这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值.
【典型例题分析】
题型一:二元一次不等式(组)表示的平面区域
典例 1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k 的值是()
7343
A.3B.7C.3D.
4
4 4
分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平
33
面区域面积的条件即可.
解答:不等式组表示的平面区域如图所示.
由于直线y=kx +44
过定点(0,).因此只有直线过AB 中点时,直线y=kx +
33
4
3
能平分平面区域.
15
因为A(1,1),B(0,4),所以AB 中点D(,).
22
当y=kx +4155
过点(,)时,
3222
=
푘
2
+
4
3
,所以k =
7
3
.
答案:A.
点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.
注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.
题型二:求线性目标函数的最值
2/ 5
典例 2:设x,y 满足约束条件:,求z=x+y 的最大值与最小值.
分析:作可行域后,通过平移直线l0:x+y=0 来寻找最优解,求出目标函数的最值.
解答:先作可行域,如图所示中△ABC 的区域,且求得A(5,2)、B(1,1)、C(1,),作出直线l0:x+y=0,再将直线l0 平移,当l0 的平行线l1 过点B 时,可使z=x+y 达到最小值;当l0 的平行线l2 过点A 时,可使z=x+y
达到最大值.故z min=2,z max=7.
点评:(1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.
(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.
题型三:实际生活中的线性规划问题
典例 3:某农户计划种植黄瓜和韭菜,种植面积不超过 50 亩,投入资金不超过 54 万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:
年产量/亩年种植成本/亩每吨售价
黄瓜 4 吨 1.2 万元0.55 万元
韭菜 6 吨0.9 万元0.3 万元
为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分
别为()
A.50,0 B.30,20 C.20,30 D.0,50
分析:根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化
为线性规划问题.
3/ 5
푥+푦≤50
解析设种植黄瓜x 亩,韭菜y 亩,则由题意可知
{
1.2푥+0.9푦≤54
푥,푦∈푁+
求目标函数z=x+0.9y 的最大值,
根据题意画可行域如图阴影所示.
当目标函数线l 向右平移,移至点A(30,20)处时,目标函数取得最大值,即当黄瓜种植 30 亩,韭菜种植 20 亩时,种植总利润最大.故答案为:B
点评:线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题,再按如下步骤完成:
(1)作图﹣﹣画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条l;
(2)平移﹣﹣将l 平行移动,以确定最优解的对应点A 的位置;
(3)求值﹣﹣解方程组求出A 点坐标(即最优解),代入目标函数,即可求出最值.
题型四:求非线性目标函数的最值
푦
典例 4:(1)设实数x,y 满足,则푥的最大值为.
→(2)已知O 是坐标原点,点A(1,0),若点M(x,y)为平面区域上的一个动点,则|푂퐴+
→
푂푀|的
最小值是.
分析:与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.
푦3
解答:(1)푥表示点(x,y)与原点(0,0)连线的斜率,在点(1,)处取到最大值.
2
4/ 5
→(2)依题意得,푂퐴+
→→
푂푀=(x+1,y),|푂퐴+
→
푂푀| =(푥+1)2+푦2可视为点(x,y)与点(﹣1,0)间的距离,
在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(﹣1,0)向
→
直线x+y=2 引垂线的垂足位于该平面区域内,且与点(﹣1,0)的距离最小,因此|푂퐴+
→
푂푀|的最小值是
|―1+0―2|
2=32
2
.
3
32
故答案为:(1)(2).
2
2
点评:常见代数式的几何意义有
(1)푥2+푦2表示点(x,y)与原点(0,0)的距离;
(2)(푥―푎)2+(푦―푏)2表示点(x,y)与点(a,b)之间的距离;
푦
(3)
푥表示点(x,y)与原点(0,0)连线的斜率;
푦―
푏(4)
푥―푎表示点(x,y)与点(a,b)连线的斜率.
【解题方法点拨】
1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.
푧푧
2.在通过求直线的截距푏的最值间接求出z 的最值时,要注意:当b>0 时,截距푏取最大值时,z 也取最大值;截푧푧푧
距푏取最小值时,z 也取最小值;当b<0 时,截距푏取最小值时,z 取最大值.
푏取最大值时,z 取最小值;截距
5/ 5。