列管式换热器简介

合集下载

列管式换热器的自动控制方案pid

列管式换热器的自动控制方案pid

列管式换热器的自动控制方案pid摘要:一、列管式换热器简介1.列管式换热器的工作原理2.列管式换热器的主要应用领域二、PID 自动控制原理1.PID 控制器的基本原理2.PID 控制器的参数调节3.PID 控制器在列管式换热器中的应用优势三、列管式换热器的PID 自动控制方案1.温度控制方案2.压力控制方案3.流速控制方案4.节能优化方案四、PID 自动控制方案的实施与优化1.系统硬件的选型与安装2.控制参数的整定与优化3.自动控制方案的运行维护五、总结1.PID 自动控制方案在列管式换热器中的重要性2.我国在列管式换热器自动控制技术的发展趋势正文:列管式换热器作为一种高效节能的热交换设备,广泛应用于化工、石油、冶金、船舶等领域。

其工作原理主要是通过内部的列管实现两种流体的热量传递,达到加热或冷却的目的。

然而,在实际运行过程中,列管式换热器的温度、压力、流速等参数会受到诸多因素的影响,导致设备性能不稳定。

因此,采用PID 自动控制技术对列管式换热器进行控制,成为提高设备运行效率和安全性的关键。

PID 控制器是一种基于比例- 积分- 微分(PID)原理的闭环控制系统,主要通过调节比例(P)、积分(I)和微分(D)三个环节的参数,实现对被控对象的稳定控制。

在列管式换热器中,PID 控制器主要对温度、压力、流速等关键参数进行实时监测和调节,保证设备在最佳工况下运行。

为了实现列管式换热器的自动化控制,需要制定针对性的PID 自动控制方案。

首先,根据设备的工作特点和工艺要求,选择合适的温度、压力、流速等控制模式。

例如,在高温高压的工况下,可采用压力控制方案;而在低温低压的工况下,可采用温度控制方案。

其次,通过调整PID 控制器的参数,实现对设备的精确控制。

最后,结合设备运行的实际情况,对自动控制方案进行优化,提高系统的稳定性和可靠性。

在实施PID 自动控制方案的过程中,需要注意以下几个方面:一是选择适合的硬件设备,如PID 控制器、传感器、执行器等;二是对控制参数进行整定和优化,以保证系统具有良好的响应速度和调节精度;三是定期对自动控制方案进行运行维护,以确保设备安全、稳定地运行。

列管式换热器设计说明书

列管式换热器设计说明书

摘要:列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。

参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。

再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。

关键词:列管式换热器,乙醇,水,温度,固定管板式。

Abstract:The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .⨯41510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchangeis9BEM400 2.530 225Ⅰ----, and the diameter of the receiver is400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.目录1前言 (3)2设计条件 (3)3设计方案的确定 (3)3.1设计原则 (3)3.2结构初选 (4)4列管式换热器的设计计算 (10)4.1列管式换热器型号的初选 (10)4.2核算总传热系数: (13)5列管式换热器的初步计算及选型 (15)5.1试算并初选换热器规格 (15)5.2设计校核 (19)6设备尺寸的确定及强度校核 (22)6.1计算圆筒厚度 (22)6.2封头设计 (23)6.3拉杆定距管尺寸 (24)6.4管板 (25)6.5容器法兰 (26)6.6接管与接管补强 (27)6.7管箱的计算 (33)6.8折流挡板 (33)6.9焊接方式 (34)6.10支座 (34)6.11辅助设备 (38)7设计结果概要 (39)8课程设计心得 (40)9参考文献 (42)1前言艰辛知人生,实践长才干。

换热器拆装实习报告

换热器拆装实习报告

通过本次实习,了解换热器的结构、工作原理及拆装方法,提高动手能力,加深对换热器原理的理解。

二、实习时间及地点实习时间:2023年X月X日至2023年X月X日实习地点:XXX公司换热器生产车间三、实习内容1. 换热器简介换热器是一种利用冷热流体之间的热量交换来达到热量传递目的的设备,广泛应用于化工、石油、电力、食品等众多领域。

本次实习主要针对列管式换热器进行拆装。

2. 换热器结构及工作原理列管式换热器主要由壳体、管束、管板、封头等组成。

工作原理是:冷热流体在换热器内进行热量交换,通过管壁将热量传递给另一侧流体,从而实现热量传递。

3. 换热器拆装步骤(1)准备工具:扳手、螺丝刀、钳子等。

(2)拆卸管板:首先,将管板与壳体连接的螺栓拧下;然后,轻轻将管板从壳体中取出。

(3)拆卸管束:将管束从壳体中抽出,注意观察管束与管板、壳体的连接方式,以便后续安装。

(4)拆卸封头:将封头与管板连接的螺栓拧下,然后拆卸封头。

(5)检查管束:检查管束是否有损坏、变形等情况,如有问题,及时更换。

(6)安装管束:按照拆卸的相反顺序,将管束安装到壳体中。

(7)安装管板:将管板安装到壳体中,并拧紧螺栓。

(8)安装封头:将封头安装到管板上,并拧紧螺栓。

(9)检查密封性:检查换热器各部件的密封性,确保无泄漏。

通过本次实习,我深刻了解了换热器的结构、工作原理及拆装方法。

以下是几点体会:1. 换热器拆装过程中,要严格按照操作步骤进行,确保安全。

2. 在拆卸过程中,要观察各部件的连接方式,以便后续安装。

3. 拆卸过程中,要注意对部件的保护,避免损坏。

4. 通过本次实习,提高了自己的动手能力,加深了对换热器原理的理解。

五、总结本次换热器拆装实习,让我对换热器的结构、工作原理及拆装方法有了更加深入的了解。

在今后的工作中,我会将所学知识运用到实际工作中,为我国换热器行业的发展贡献自己的力量。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器

列管式换热器

什么是列管式换热器作者:佚名来源:网络点击数: 2071 日期:2008-7-15列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

在列管式换热器中,管束的表面积即为该换热器所具有的传热面积。

当传热面积较大,管子数目较多时,为了提高管内流体的流速,增大管内一侧流体的传热膜系数,常将全部管子平均分成若干组,流体每次只流经一组管子,即采用多管程结构。

其方法是在封头内装设隔板,在一端的封头内装设一块隔板,便成二管程;在进口端装两块挡板,另一端装一块隔板,便成四管程;如此,还可以设置其他多管程,但过多使流体阻力增大,隔板占有分布管面积,而使传热面积减小。

列管换热器(又名列管式冷凝器),按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。

■列管式换热器型式的选择:列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:1.固定管板式换热器:这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

列管式换热器的典型制造工艺

列管式换热器的典型制造工艺

的圆度 线 度 Dmax-Dmin

线
DN
• 要求更<
表 2- 23。
<4.5mm
1格000)。L 且对壳•体的内<
<6mm
差 00 )L 同 一断面上的直径差列于
表2 - 2 3
壳体同一断面上的直径差
壳体内径过大或圆度误差会引起壳程介质短路而降低换热效率 。壳体的直线 度误差会影响管束的抽装 ,对其要求列于表 2-24。
表 2-24 壳体的直线度要求
2. 管板
管板的作用是固定管子的。一般采用 Q235、20等碳素钢和16Mn、15MnV 等低合 金钢制作;可以用锻件或热轧厚钢板作坯料 ,当管板的厚度较大时 ,原则上使用锻 件 , 因为钢板愈厚 ,其轧压比愈小 ,钢板内部缺陷存在的可能性愈大 。 管板是典型的群孔结构 ,单孔质量会影响管板的整体质量 ,所以孔加工方法的选择 至为重要 。群孔加工有下列方法:
2-26。
3. 折流板
下图为最常用的 20%DN 圆缺高度的弓形折流板,为保证加工精度和效率, 常将圆板 坯以 8~10 块为一叠进行钻孔和切削加工外圆 ,折流板孔的允许 偏差列于表 2-26。
4. 管子
换热器的管表面就是传热面积。常用管子外径 10~57 (mm);其长度一 般用 2000 、 3000 、6000(mm)等 。管子应作下列试验: 以管子数的 5% ,且 不少于 2 根作 力 、硬度 和扩口等抽样检验;进行水压试验(试验压力为 设计压力的(1.5 2)倍 ,合格者才可使用。
列管式换热器的典型制造工艺
制作人:Leo
1
目录
一、列管式换热器简介 1、壳体 2 、管板 3 、折流板 4 、管子
二、列管式换热器组装工艺 三、列管式换热器工艺流程

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器设计⼀、概述1.概述与设计⽅案简介1.1换热器在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中⾄少要有两种温度不同的流体,⼀种流体温度较⾼,放出热量;另⼀种流体则温度较低,吸收热量。

在⼯程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与上述情形并⽆本质上的差别。

换热器是化学⼯业、⽯油⼯业及其它⼀些⾏业中⼴泛使⽤的热量交换设备,它不仅可以单独作为加热器、冷却器等使⽤,⽽且是⼀些化⼯单元操作的重要附属设备,因此在化⼯⽣产中占有重要地位。

由于⽣产中的换热⽬的不同,换热器的类型很多,不同类型的换热器各有优缺点,性能各异。

特别是随着化⼯⼯艺的不断发展,新型换热器不断出现。

在换热器设计中,⾸先应根据⼯艺要求选择适⽤的类型然后计算换热所需传热⾯积,并确定换热器的结构尺⼨。

虽然列管式换热器在传热效率、紧凑性和⾦属耗量等⽅⾯不及某些新型换热器,但它具有结构简单、坚固耐⽤、适应性强、制造材料⼴泛等独特的优点,因⽽在换热设备中仍占有重要的地位。

特别是在⾼温、⾼压和⼤型换热设备中仍占绝对优势。

1.2列管式换热器的选择列管式换热器的应⽤已有很悠久的历史,在化⼯⽣产中主要作为加热(冷却)器,冷凝器、蒸发器和再沸器使⽤。

现在,它被当作⼀种传统的标准换热设备在很多⼯业部门中⼤量使⽤,尤其在⽯油、化⼯、能源设备等部门所使⽤的换热设备中,列管式换热器仍处于主导地位。

按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种。

按结构分为单管程、双管程和多管程,传热⾯积1~500m2。

列管式换热器按结构特点,主要分为以下四种:①固定管板式换热器;②浮头式换热器;③U形管式换热器;④填料函式换热器。

列管换热器主要特点:1.耐腐蚀性:聚丙烯具有优良的耐化学品性,对于⽆机化合物,不论酸,碱、盐溶液,除强氧化性物料外,⼏乎直到100℃都对其⽆破坏作⽤,对⼏乎所有溶剂在室温下均不溶解,⼀般烷、径、醇、酚、醛、酮类等介质上均可使⽤。

列管式换热器

列管式换热器

列管式换热器列管式换热器是一种常见的换热设备,通常用于多种工业领域,如化工、石油、电力、制药等。

它的工作原理是通过将一个或多个管道(称为管子)插入一个外壳中,并使热交换流体通过管子和壳体之间流动,以实现热量的传递。

设计举例:化工厂中的列管式换热器。

工艺要求:1.热源介质为低温烟气(300℃,2000Nm³/h)。

2.冷却介质为水(20℃,1000L/h)。

3.需要达到的换热效果:烟气温度降低到200℃以下。

设计步骤:1.确定换热面积:根据热负荷计算,烟气的热负荷(Q)为:Q = mcΔT其中,m为烟气质量流量,c为烟气比热容,ΔT为烟气温度差。

在本例中,m为2000Nm³/h,c取1000J/(kg·℃),ΔT为300℃。

另外,换热器的换热系数(U)可以根据实际情况选择一个合适的数值。

假设U为1000W/(m²·℃)。

根据换热方程,换热面积(A)可由以下公式计算:Q = UAΔTlm其中,ΔTlm为对数平均温差,可根据进出口温度计算得到。

综上所述,可以计算得到所需的换热面积。

2.确定管子数量和布局:根据换热面积和设计要求,可以确定所需管子的数量和布局。

通常情况下,管子的数量选择为偶数,并且可以采用等间距布置。

3.材料选择:根据介质的性质和工艺要求,选择合适的材料用于制作管子和壳体。

常用的材料有不锈钢、镍合金、铜等。

4.热力设计:根据所需传热量、管子数量和进出口温度等参数,计算出每根管子的传热量。

同时,根据流体的流动参数,确定管子的直径和管道内流速。

一般情况下,可以保持流速在1-3m/s之间。

5.结构设计:根据换热器的实际需求和工艺要求,设计并确定壳体内部的分隔板、支撑杆等结构。

这些结构可以增强换热效果和传热效率,并帮助流体均匀分布。

6.安全设计:在列管式换热器的设计中,需要考虑各种安全因素,如压力、温度和泄漏等。

可以通过安全阀、温度控制器和泄漏检测器等装置来保障设备的安全运行。

什么是列管式换热器

什么是列管式换热器

什么是列管式换热器?列管式换热器主要由壳体、管束、管板(又称花板)和顶盖(又称封头)等部件构成。

管束安装在壳体内,两端用胀接或焊接方式固定在管板上,两种流体分别流经管内外进行换热。

水流经管内的称为管程水冷却器,流经管外的称壳程水冷却器。

为提高流体的流速常在壳程设折流挡板。

常用挡板有两种:圆缺形(也称弓形)和交替排列的环形及圆盘形。

目前广泛使用的列管式换热器主要有以下几种。

(1)固定管板列管式换热器见图5-1-17及图5-1-18。

两端管板是和壳体连为一体的。

其特点是结构简单,适用于管内外温差小、管外物料较清洁、不易结垢的情况。

管内外温差大于50℃时,因壳体和管束的热膨胀程度不同,可能将管子拉弯或拉松,损坏换热器。

这时如壳体承受压力不太高,则可采用在壳体上具有补偿圈(或称膨胀节)的固定管板式换热器。

管内流体通过一程管束就流出的称单程换热器,如图5-1-17。

有时为提高管内流体的流速,可设计成双程、四程或六程换热器。

如图5-1-18为双程换热器,流体通过第一程后,再折回,流过第二程管束后才流出。

(2)浮头列管式换热器见图5-1-19。

该种换热器一端的管板不与壳体相连,便于自由伸缩。

适用于管内外温差较大、需常拆卸清洗的情况。

其结构较复杂。

(3)U形列管式换热器见图5-1-20。

该种换热器只有一端设管板,U形管的两端分别装在管板两侧,封头用隔板隔成两室,管子可以自由伸缩。

其结构比浮头式简单,化工厂中常见。

列管式水冷却器几乎是最常见的型式。

与前几种型式相比,其单位体积所能提供的传热面积要大得多,传热效率高,结构紧凑、坚固、能选用多种材质,可以用于高温、高压的大型装置。

列管式换热器

列管式换热器

列管式也是换热器的一种类型,也是目前化工生产上应用最广的一种换热器。

主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质可分别采用普通碳钢、紫铜、或不锈钢制作。

下面就是对这类设备的详细介绍,希望对大家有所帮助。

在进行换热时,一种流体由封头的连结管处进入,在管中流动,从封头另一端的出口管流出,这称之管程;另一种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。

常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。

列管式换热器的主要结构是在一个圆筒形的壳体内,设置许多平行排列的管子组成的管束所构成。

壳体的两端与端盖装有法兰,利用螺栓将端盖与壳体连接起来。

壳体与端盖上分别设有两种介质的出入口小法兰,以便于相应的管路连接。

列管式换热器在操作时,由于冷、热流体温度不同,使壳体和管壁的温度互有差异。

这种差异使壳体和管子的热膨胀不同,当两者温差较大时可能将管子扭弯,或使管子从花板上拉松,甚至毁坏整个换热器。

对此,就必须结构上考虑热膨胀的影响,采用各种补偿的方法。

南京高和环境工程有限公司由一批北京科技大学、南京工业大学长期从事冶金、石化、化工、电力行业节能环保的专业技术人员组建而成,公司主要依托北京科技大学、南京工业大学等科研院所,主要从事冶金、石化、化工、电力等领域节能环保产品研制、开发、生产、合同能源管理及工程设计总承包,是国家高新技术企业。

公司通过ISO9001质量体系认证,拥有多项专利技术。

列管式换热器

列管式换热器

可以自由伸缩。而与其他管子和壳体均无关。这种换热器 结构比浮头式简单,重量轻,但管程不易清洗,只适用于 洁净而不易结垢的流体,如高压气体的换热。
2、板式换热器
1)夹套式换热器 夹套式换热器式最简单的板式换热器,它是在容器外
壁安装夹套制成,夹套与容器之间形成的空间为加热介质 或冷却介质的通路。这种换热器主要用于反应过程的加热
பைடு நூலகம்
(2)浮头式换热器 浮头式换热器的特点是有一端管板不与外壳连为一体,可以 沿轴向自由浮动。这种结构不但完全消除了热应力的影响, 且由于固定端的管板以法兰与壳体连接,整个管束可以从壳 体中抽出,因此便于清洗和检修。故浮头式换热器应用较为 普遍,但它的结构比较复杂,造价较高。 (3)U型管式换热器
U型管式换热器每根管子都弯成U型,进出口分别安装 在同一管板的两侧,封头用隔板分成两室。这样,每根管子
螺旋板换热器的主要缺点是: (1)操作压强和温度不宜太高:目前最高操作压强不超过 2Mpa,温度不超过300~400℃。 (2)不易检修:因整个换热器被焊成一体,一旦损坏,修理 很困难。 1. 3)平板式换热器
平板式换热器简称板式换热器,是由一组长方形的薄金 属板平行排列,加紧组装于支架上而构成。两相邻板片的边 缘衬有垫片,压紧后板间形成密封的流体通道,且可用垫片
在套管式换热器中,一种流体走管内,另一种流体走环隙
适当选择两管的管径,两流体均可得到较高的流速,且两 流体可以为逆流,对传热有利。另外,套管式换热器构造 较简单,能耐高压,传热面积可根据需要增减,应用方便
缺点:管间接头多,易泄露,占地较大,单位传热面消 耗的金属量大。因此它较适用于流量不大,所需传热面积 不多而要求压强较高的场合。 4)列管式换热器 优点 :单位体积所具有的传热面积大,结构紧凑、紧固传 热效果好。能用多种材料制造,故适用性较强,操作弹性

列管式换热器

列管式换热器

目录:1.概述2.管程结构3.设计步骤4.传热计算主要公式5.列管式换热器的设计计算【概述】换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

英语翻译:heat exchanger换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。

换热器的分类比较广泛:反应釜压力容器冷凝器反应锅螺旋板式换热器波纹管换热器列管换热器板式换热器螺旋板换热器管壳式换热器容积式换热器浮头式换热器管式换热器热管换热器汽水换热器换热机组石墨换热器空气换热器钛换热器换热设备,要求制造换热器的材料具有抗强腐蚀性能。

它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。

但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热器价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。

在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。

为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。

完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。

换热器不得在超过铭牌规定的条件下运行。

应经常对管,壳程介质的温度及压降进行监督,分析换热管的泄漏和结垢情况。

管壳式换热器就是利用管子使其内外的物料进行热交换、冷却、冷凝、加热及蒸发等过程,与其他设备相比较,其余腐蚀介质接触的表面积就显得非常大,发生腐蚀穿孔结合处松弛泄漏的危险性很高,因此对换热器的防腐蚀和防泄漏的方法也比其他设备要多加考虑,当换热器用蒸汽来加热或用水来冷却时,水中的溶解物在加热后,大部分溶解度都会有所提高,而硫酸钙类型的物质则几乎没有变化。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

化工原理课程设计_列管式换热器讲解

化工原理课程设计_列管式换热器讲解
常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。切去 的弓形高度约为外壳内径的10~40%,一般取25%,过高或 过低都不利于传热 。
圆缺形
.圆盘形
两相邻挡板的距离(板间距)h为外壳内径D的 (0.2~1)倍。板间距过小,不便于制造和检修,阻 力也较大。板间距过大,流体就难于垂直地流过 管束,使对流传热系数下降。
5、流体出口温度的确定
若换热器中冷、热流体的温度都由工艺条件所规定,则不存在 确定流体两端温度的问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来确定。例如用冷水冷却一热流体,冷水 的进口温度可根据当地的气温条件作出估计,而其出口温度则 可根据经济核算来确定:为了节省冷水量,可使出口温度提高 一些,但是传热面积就需要增加;为了减小传热面积,则需要 增加冷水量。两者是相互矛盾的。一般来说,水源丰富的地区 选用较小的温差,缺水地区选用较大的温差。不过,工业冷却 用水的出口温度一般不宜高于45℃,因为工业用水中所含的部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)的溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差的污垢,而使传热过程恶化。如果是用加热介质加热 冷流体,可按同样的原则选择加热介质的出口温度。
每程直管阻力; 每程回弯阻力
式中 ΔPi、ΔPr------分别为直管及回 弯管中因摩擦阻力引起的压强降, N/m2
Ft-----结垢校正因数,无因次,对于φ25×2.5mm的管子,取为1.4, 对于φ19×2mm的管子,取为1.5;
Np-----管程数; Ns-----串联的壳程数。
(2) 壳程流体阻力 现已提出的壳程流体阻力的计 算公式虽然较多,但是由于流体的流动状况比较复 杂,使所得的结果相差很多。下面介绍埃索法计算 壳程压强的公式

列管式换热器设计

列管式换热器设计

第一章 列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。

列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大 ,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。

目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。

例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。

1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。

为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。

列管式换热器设备工艺原理

列管式换热器设备工艺原理

列管式换热器设备工艺原理一、概述列管式换热器是一种常用的换热设备,广泛应用于化工、医药、食品、能源等领域。

该设备的工艺原理是利用壁面上的传热孔道将流体中的热量传递给另外一侧的流体,以实现两侧流体温度的变化。

本文将介绍列管式换热器的基本概念、工艺原理以及常见应用。

二、列管式换热器的基本结构列管式换热器由管束、弹板箱和固定管板等组成。

其中管束是由多根金属管子组成的,可以分成U型管、臂式管等几种形式。

弹板箱是指用弹性材料制作的箱子,由弹性材料的自身弹性质量能够使管束与箱体之间处于一定的紧密接触状态。

此外,固定管板用来固定管束,也可以使流体在管束内的传热均匀分布,从而提高传热效率。

三、列管式换热器的工艺原理列管式换热器的工艺原理基于摩尔爵士定律,即两种流体之间的热量传递与其热容量、温度差和传热面积有关。

在列管式换热器中,两种流体通过管束内外流动,而管壁则成为两种流体之间的传热面积。

热量从高温流体向低温流体流动,高温流体温度降低,低温流体温度升高,直到达到热平衡。

此过程中,两种流体之间的换热量可以通过如下公式核算:Q=U×ΔT×S 其中Q表示换热量,U表示总传热系数,ΔT表示两种流体之间的温差,S表示传热面积。

总传热系数U包括内壁传热系数hi、壁的热传递系数λ和外壁传热系数ho三部分,在列管式换热器中,由于管材是金属材料,散热性能足够好,因此λ很小,可以忽略不计。

此外,U值的计算还需要考虑流体的性质、流量、管道材质以及管间距等多种因素。

四、列管式换热器的应用列管式换热器被广泛应用于化工、医药、食品、能源等行业中,常见的应用场景包括:1. 快速冷却定向快速冷却可以提高产品的效率、提升产品的质量。

列管式换热器可以快速将产品内部的热量散发出来,同时保证温度的均匀分布,因此常用于温度敏感的产品冷却。

2. 温度回收列管式换热器还可以用来回收高温流体的热量,将其用于低温流体的加热,以减少能源浪费,提高节能效率。

列管式换热器原理

列管式换热器原理

列管式换热器原理
列管式换热器是一种常用的换热设备,其基本原理是在圆柱形管子内部流动的流体与管外壁之间进行传热。

通过流体在管内壁与管外壁之间的传热,实现了热量的传递和交换。

列管式换热器的主要构成部分包括管壳、管束和管板。

管壳作为容器,将工作流体引入换热器,并将其导入管束中,然后将冷却介质或加热介质引入管壳,通过管束与工作流体进行热量交换。

管板则将管束连接在一起,形成一个整体。

在列管式换热器内部,热量传递主要发生在管外壁和管内壁之间。

工作流体从管束进入管内,流经管内壁,与管内壁接触并传递热量。

同时,冷却介质或加热介质从管壳中进入,包围着管内壁,与管外壁接触并吸收或释放热量。

通过管内壁和管外壁的热量交换,实现了工作流体和冷却介质或加热介质之间的热量传递。

为了增强列管式换热器的热量传递效果,通常在管束内安装一种称为增强片的结构。

增强片具有扰动流体流动的作用,可以增加流体与管内壁的接触面积,提高传热效率。

除了增强片,还可以在管束内设置折流板或分流器等辅助结构。

折流板可以引导流体沿着规定的路径流动,增加流体与管内壁的接触次数,提高传热效果。

分流器则可以将流体分成多个通道,使流体能够均匀地与管内壁进行热量交换。

总的来说,列管式换热器通过工作流体与冷却介质或加热介质
之间的热量交换,实现了热量的传递和交换。

通过增强片、折流板和分流器等辅助结构的应用,可以进一步提高换热效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列管式换热器简介
列管式换热器
[1]
列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程列管式换热器。

列管式换热器的种类
固定管板式换热器
这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。

一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

浮头式换热器
换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称
之为“浮头”,所以这种换热器叫做浮头式换热器。

其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

填料函式换热器
这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

U型管式换热器
U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。

管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

优点是结构简单,质量轻,适用于高温高压条件。

列管式换热器的折流挡板
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。

常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。

列管式换热器的多壳程换热器
列管式换热器必须从结构上考虑热膨胀的影响,采取各种补偿的办法,消除或减小热应力,根据所采取的温差补偿措施。

列管式换热器主要技术参数
列管式换热器渗漏解析
换热器渗漏是换热器使用中最为常见的设备管理问题,渗漏主要是腐蚀造成的,少部分是由于换热器选型和换热器本身的制造工艺缺陷,列管式换热器的腐蚀形式基本有两种:电化学腐蚀和化学腐蚀。

列管式换热器在制作时,管板与列管的焊接一般采用手工电弧焊,焊缝形状存在不同程度的缺陷,如凹陷、气孔、夹渣等,焊缝应力的分布也不均匀。

使用时管板部分一般与工业冷却水接触,而工业冷却水中的杂质、盐类、气体、微
生物都会构成对管板和焊缝的腐蚀。

这就是我们常说的电化学腐蚀。

研究表明,工业水无论是淡水还是海水,都会有各种离子和溶解的氧气,其中氯离子和氧的浓度变化,对金属的腐蚀形状起重要作用。

另外,金属结构的复杂程度也会影响腐蚀形态。

因此,管板与列管焊缝的腐蚀以孔蚀和缝隙腐蚀为主。

从外观看,管板表面会有许多腐蚀产物和积沉物,分布着大小不等的凹坑。

以海水为介质时,还会产生电偶腐蚀。

化学腐蚀就是介质的腐蚀,换热器管板接触各种各样的化学介质,就会受到化学介质的腐蚀。

另外,换热器管板还会与换热管之间产生一定的双金属腐蚀。

一些管板还长期处于腐蚀介质的冲蚀中。

尤其是固定管板换热器, 还有温差应力, 管板与换热管联接处极易泄漏,导致换热器失效。

综上所述,影响换热器管板腐蚀的主要因素有:
(1)介质成分和浓度:浓度的影响不一,例如在盐酸中,一般浓度越大腐蚀越严重。

碳钢和不锈钢在浓度为50%左右的硫酸中腐蚀最严重,而当浓度增加到60%以上时,腐蚀反而急剧下降;
(2)杂质:有害杂质包括氯离子、硫离子、氰离子、氨离子等,这些杂质在某些情况下会引起严重腐蚀
(3)温度:腐蚀是一种化学反应,温度每提升10℃,腐蚀速度约增加1~3倍,但也有例外;
(4)ph值:一般ph值越小,金属的腐蚀越大;
(5)流速:多数情况下流速越大,腐蚀也越大。

列管式换热器渗漏解决
通常大多数企业的做法就是尽量采购质量高的换热器,经过细心维护,让换热器寿命尽可能的延长,不可避免的出现渗漏以后,就会被迫停机堆焊,2~4人需要几天时间才能修复完成,如果企业高薪聘请的高级焊工,还能保证换热器继续使用一段时间,如果焊工的技术一般,那么就会造成更多的漏点甚至报废,企业不得不更换新的换热器,这是由于此种传统方法造成的种种弊端,完全不能保证企业的安全连续性生产,因此,众多企业积极寻求新技术解决换热器渗漏问题,通过引入福世蓝高分子复合材料的耐腐蚀性和抗冲刷性,通过提前对新换热器的保护,这样不仅有效治理了新换热器存在的焊缝和砂眼问题,更避免了使用后化学物质腐蚀换热器金属表面和焊接点,在以后的定期维修时,也可以涂抹福世蓝高分子复合材料来保护裸露的金属;即使使用后出现了渗漏现象,也可以通过福世蓝技术及时修复,避免了长时间的堆焊维修影响生产。

正是由于此种精细化的管理,才使得换热器渗漏问题出现的概率大大降低,不仅降低了换热器的设备采购成本,更保证了产品质量、生产时间,提高了产品竞争力。

相关文档
最新文档