运筹学最优化方法复习
运筹学与最优化方法习题集
一.单纯性法1.用单纯形法求解下列线性规划问题(共 15 分)122121212max 25156224..5,0z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 2.用单纯形法求解下列线性规划问题(共 15 分)12121212max 2322..2210,0z x x x x s t x x x x =+-≥-⎧⎪+≤⎨⎪≥⎩ 3.用单纯形法求解下列线性规划问题(共 15 分)1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+≤⎧⎪-+++≤⎨⎪≥⎩4.用单纯形法求解下列线性规划问题(共 15 分)123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ 5.用单纯形法求解下列线性规划问题(共 15 分)12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++≤⎧⎪+≤⎨⎪≥⎩6.用单纯形法求解下列线性规划问题(共 15 分)121212max 105349..528z x x x x s t x x =++≤⎧⎪+≤⎨7.用单纯形法求解下列线性规划问题(共 16 分)12121212max 254212..3218,0z x x x x s t x x x x =+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分) 12121212max 62..33,0z x x x x s t x x x x =++≥⎧⎪+≤⎨⎪≥⎩ 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)121212212max 3510501..4,0z x x x x x x s t x x x =++≤⎧⎪+≥⎪⎨≤⎪⎪≥⎩ 3.用对偶单纯形法求解下列线性规划问题(共 15 分)1212121212min 232330210..050z x x x x x x s t x x x x =++≤⎧⎪+≥⎪⎪-≥⎨⎪≥⎪⎪≥⎩4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)124123412341234min 26..2335,,,0z x x x x x x x s t x x x x x x x x =+-+++≤⎧⎪-+-≥⎨⎪≥⎩5.运用对偶单纯形法解下列问题(共 16 分)12121212max 24..77,0z x x x x s t x x x x =++≥⎧⎪+≥⎨⎪≥⎩ 6.灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)12121212max 62..33,0z x x x x s t x x x x =++≥⎧⎪+≤⎨⎪≥⎩三.0-1整数规划1.用隐枚举法解下列0-1型整数规划问题(共 10 分)12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-≥⎧⎪+--+≥⎪⎨--+++≥⎪⎪=⎩2.用隐枚举法解下列0-1型整数规划问题(共 10 分)12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+≤⎧⎪++≥⎪⎨+≥⎪⎪=⎩ 3.用隐枚举法解下列0-1型整数规划问题(共 10 分)1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≤⎧⎪++++≤⎪⎨++++≤⎪⎪=⎩或4.用隐枚举法解下列0-1型整数规划问题(共 10 分)12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+≤⎧⎪-+-+≤⎨⎪=⎩或 5.用隐枚举法解下列0-1型整数规划问题(共 10 分)12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++≥⎧⎪-+++≥⎪⎨+-+≥⎪⎪=⎩或6.7.用隐枚举法解下列0-1型整数规划问题(共 10 分)123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++≤⎧⎪+-+≤⎪⎨-+-≥⎪⎪ 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪1.利用库恩-塔克(K -T )条件求解以下问题(共 15 分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+≤⎧⎪+≤⎨⎪≥⎩2.利用库恩-塔克(K -T )条件求解以下非线性规划问题。
运筹学-最优化准备知识
凸函数的性质
2
1
0
-1
-2 -1.5 -1 -0.5 0 0.5 1 1.5
26
凸函数的判断
定理1.1.1 设f(x)定义在凸集D Rn上,x,y∈D. 令F (t)=f (tx+(1-t)y), t ∈ [0,1],则 (i) f(x)是凸集D上的凸函数的充要条件是对任 意的x ∈ D,一元函数F (t)为[0,1]上的凸函数. (ii) f(x)是凸集D上的严格凸函数的充要条件是 对任意的x,y ∈ D(x≠y),一元函数F (t)为[0,1] 上的严格凸函数. 该定理的几何意义是:凸函数上任意两点之间 的部分是一段向下凸的弧线.
29
凸函数
定理4----几何 解释
一个可微函数 是凸函数当且 仅当函数图形 上任一点处的 切线位于曲 线的下方.
凸函数
定理4----几何 解释
一个可微函数 是凸函数当且 仅当函数图形 上任一点处的 切平面位于曲 面的下方.
Байду номын сангаас
二阶条件
设在开凸集D Rn上f(x)可微,则 (i) f(x)是D内的凸函数的充要条件为,在D内任 一点x处, f(x)的Hessian矩阵G(x)半正定,其中
不等式取等号,必须||y||=||z||=a,且( y,z ) =||y||||z||, 容易证明y=z=x,根据定义可知,x为极点.
19
凸 函 数
定义1.1.9 设函数f (x)定义在凸集D Rn上,若
对任意的x,y ∈ D,及任意的a ∈ [0,1]都有
f (a x+(1-a)y) ≤ a f(x)+(1-a) f (y) 则称函数f (x)为凸集D上的凸函数.
运筹学-约束最优化方法汇编
最优性条件 惩罚函数法(包括乘子法) 可行方向法 约束变尺度法
§5.1 约束最优化问题的最优性条件
问 题
在求解问题之前,我们先讨论其最优解的必 要条件,充分条件和充要条件. 这些条件是最优化理论的重要组成部分,对 讨论算法起着关键的作用. 有的算法甚至可以直接用来求解问题.
因此,存在数l1,使得
4
等式约束问题 的最优性条件
如果n=3,l=2,约束曲线在三维 空间中曲面c1(x)=0和曲面 c2(x)=0的交线.
同样可以说明(-)g*与曲线的切线垂直.
因此,曲面在x*处的法向量
与
梯度向量g*共面.
存在数l1, l2,使得
5
等式约束问题的一阶必要条件
定理1.1.1(一阶必要条件)
有
注:此处可行方向的条件比Fritz-John条件中 的证明中的条件多了等号,在此不详细讨论 其中的区别.
26
Kuhn-Tucker必要条件
借助于Farkas引理,可推出存在li*≥0(i∈I*),
使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.
16
根据上述引理1,不存在d∈Rn,使得
即
是这样一组向量,它们不 在过原点的任何超平面的同一侧. 于是我们总可以适当放大或缩小各向量的长 度,使得变化后的各向量的合成向量为零向量. 注:这一结论的依据是Gordan引理.
17
Fritz-John一阶必要条件
证明概要(续)根据Gordan引理,存在不全为零
11
Fritz-John一阶必要条件
运筹学最优化方法复习
第1章 最优化问题的基本概念§1.1最优化的概念最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。
§1.2最优化问题的数学模型1.最优化问题的一般形式⎪⎪⎩⎪⎪⎨⎧===≤q v x x x h p u x x x g t s x x x f x x x find n v n u nn,,2,10),,,(,,2,10),,,(..),,,(min ,,,212121212.最优化问题的向量表达式⎪⎪⎩⎪⎪⎨⎧=≤0)(0)(..)(min X H X G t s X f X find式中:T n x x x X ],,,[21 =T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 =3.优化模型的三要素设计变量、约束条件、目标函数称为优化设计的三要素!设计空间:由设计变量所确定的空间。
设计空间中的每一个点都代表一个设计方案。
§1.3优化问题的分类按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题4按照设计变量的性质不同分为连续变量优化和离散变量优化问题第2章 最优化问题的数学基础§2.1 n 元函数的可微性与梯度一、可微与梯度的定义1.可微的定义设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。
若存在n 维向量L ,对于任意n 维向量P ,都有0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。
2.梯度设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。
运筹学与最优化方法习题集word文档良心出品
运筹学与最优化方法习题集word文档良心出品max z =5x, <156x 十2x^ < 24 X ■X] + 兀 < 5x >0luax Z = +3A\X] - 2 A, > -22x^ + 2x, <10心兀> 0niax z = 2Xj - 4兀 + 5屯-6屯兀+ 4.V, - 2Xj + 8兀 S 2 sjJ -Xj + 2Xy + SXj + 4耳 S1[ 兀,?口,?5,兀>max z = 2x^- x, + .v,+ X. + 屯 < 60片.X' + ZXs<10SjJ ■X] +兀一兀 <20>0luax z = + 2x, + 尽2兀 + X, + Xj < 4兀 + 2兀 <6XpA.,Xj >0niax z = [Qx^ + 5Xy■ 3屯 + 4土S 9 5x^ + 2.V,< 8 -VpA. >0单纯性法1 ?用单纯形法求解下列线性规划问题156?用单纯形法求解下列线性规划问题(共152?用单纯形法求解下列线性规划问题(共15 3?用单纯形法求解下列线性规划问题(共15 4?用单纯形法求解下列线性规划问题15 5?用单纯形法求解下列线性规划间题(共157?用单纯形法求解下列线性规划问题(共16分) max z = 2x^ + 5x, X, <4 2x. <12sJ.i ■3X] +2兀 <18 -Vpj. >0二-对偶单纯性法1?灵活运用单纯形法和对偶单纯形法解下列问题(共15分) max z = \ + 6兀F兀 + X)> 25Z < 兀 + 3-V, < 3心A >02.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共15分)max乙=兀+ 3兀Xv^-lO-r, S50X] + A > 1SJ.<X, <4ApX, >03.用对偶单纯形法求解卜列线性规划问题(共15分) mm Z = 2-Vj + 3兀2x^ + 3x, S 30 舌十2壬210 sJ.< Xj - Xy > 0x^2 5X、2 0■ 4?灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共15分) min z =召+ 2兀-兀召+ X, + “s + 兀 < 65Z- 2x^ -“2 +- 3?口 > 5[ 屯>0 5?运用对偶单纯形法解下列问题(共16分) max z = x^ + -V.2Xi + X. > 4A; +7x^ >7>06?灵活运用单纯形法和对偶单纯形法解下列问题(共15分) luax 乙=齐+ 6兀兀+兀> 25J.<<3 丹A >0max z = + 6x^ + 7x^ + + 9x^3齐-x^+x^ + x^-2Xj >2X + 3儿-X, - 2兀 + 2x, > 0■ S 5-X] -凡 + 3xj + 些 + 耳 > 2 XpX,,X3,A :3,X^,Xj =O(frlnun 2 = 4兀 + 3儿 + 2旺2Xj - 5A + SA J < 44儿 + X. + 3Xs > 3 ?E + 旺 21= Qorlmax 2 = 20兀 + 40牙2+20?9 + 15兀 + 30?5召 + 4%, + 3屯 + + 8x3 < 25 兀 + 7儿 + 9? + 4R + 6x3 < 258叫 + lOx, + 2x 、+ 亠 + 10xj < 25兀心丹耳小=0或1max z = 2?* - A\ + 5X3 — 3耳 + 4屯3兀-2匕 + 7A "J - 5兀 + 4Xj S 6 S 打兀一儿 + 2A "J 一 4?口 + 2-Vj < 0min Z - 2孔 + 5儿 + 3屯 + 4?q-4X| + 召 + M + A '4 > 0■2X1 + 4r + 2X3 + 4q > 4 sJ.\ " -Vj + 心-Xj + E 215七,?丫3,兀=0或167用隐枚举法解下列0」型整数规划问题(共10分)max z = 3?可 + — 5^3 — 2x^ + 3x^X] + r + X3 + 2七 + 尤5 < 47xj + 3*3 —彳£ + 3尤5 < 8 si. \ 11?Y] — 6匕 + 3x^ — 3x^ > 3 兀/"兀3,兀4,心=0或1 1 ?用隐枚举法解下列0?1型整数规划问题三.0-1幣数规划(共10 分)2?用隐枚举法解下列0?1型整数规划问题(共10 分) 3?用隐枚举法解下列0」型整数规划问题(共 10 4?用隐枚举法解下列0」型整数规划问题105?用隐枚举法解下列0」型整数规划问题(共 10 分)uiax z =+5X3 \ + 2兀一旺S2Aj + 4x, + .q S 4 Aj + 兀 S 3 4t + 心 S 61111U /(X) = xf +X ;SJ. X ; + 兀 > 13?利用库恩■塔克(K ?T )条件求解以下非线性规划问题。
最优化复习重点
1/ 2 0 ∴ ∇ f (x ) = 0 1/ 8
2 1 −1
∴ x 2 = x 1 − ∇ 2 f ( x 1 )−1 ∇f ( x 1 ) = [0,0]T
条件。 例 3 试写出下述问题的 K − T 条件。 min
2 2 f ( x ) = 3 x1 − 3 x1 x 2 + 2 x 2 2 2 x1 − 2 x1 + 2 x 2 + x 2 ≤ 3 2 s . t . x1 + 2 x 2 = 4 x 2 + 2 x2 ≥ 0
解:
1 T (1)基变量为 x 2 , x4 , x5 ,基本可行解为 x = ( 。 (2)因为变量 x1 的检验数 σ 1 = 2 > 0 ,所以不是最优单纯 ) 型表。 型表。
x1 − 2 2 2 2 x 2 x 3 x4 x5 0 2 1 0
障碍函数
ϕ ( x , µ ) = ( x1 − 2 x2 ) + 2 x2 + u
2
1
2 2 x2 + 6 − 3 x1
或
2 ϕ ( x , µ ) = ( x1 − 2 x2 )2 + 2 x2 − u ln( 2 x2 + 6 − 3 x1 )
将下面的线性规划问题化为标准型。 例5 将下面的线性规划问题化为标准型。
min z = 2 x1 + x 2 − 3 x 3 x1 + x 2 − 2 x 3 ≤ 4 2 x1 − x 3 ≥ 2 s .t . 2 x2 + x3 ≤ 5 x 1 , x 2 ≥ 0 , x 3 无无无 解: 令 x 3 = x 4 − x 5 . max z = −2 x1 − x2 + 3 x4 − 3 x5 x1 + x 2 − 2 x4 + 2 x5 + x6 = 4 2x − x + x − x = 2 1 4 5 7 s .t . 2 x 2 + x4 − x5 + x8 = 5 x1 , x 2 , x4 , x5 , x6 , x7 , x8 ≥ 0
《最优化方法》课程复习考试
《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。
江苏省考研管理科学与工程复习资料运筹学与优化方法梳理
江苏省考研管理科学与工程复习资料运筹学与优化方法梳理江苏省考研管理科学与工程复习资料——运筹学与优化方法梳理在管理科学与工程考研中,运筹学与优化方法是一个重要且复杂的学科领域。
它涉及到了数学、经济学、计算机科学等多个方面的知识,掌握好这门课程对于考生来说至关重要。
本文将对运筹学与优化方法进行梳理,并提供一些复习资料,帮助考生更好地备考。
一、线性规划线性规划是运筹学与优化方法中的基础部分。
它是一种数学建模和优化方法,广泛应用于决策管理、资源分配等领域。
掌握线性规划的基本概念和常用的解法是考生复习的重点。
1.1 基本概念线性规划主要涉及到目标函数、约束条件、决策变量等概念。
目标函数通常是一个线性函数,表示要最大化或最小化的目标;约束条件是由一系列线性不等式或等式组成,表示问题的限制条件;决策变量是我们需要确定的待求解的变量。
1.2 常用解法对于线性规划问题,常用的解法有单纯形法、对偶法等。
其中,单纯形法是一种基于表格计算的求解方法,通过不断迭代改进目标函数值,直到找到最优解;对偶法则是将原问题转化为对偶问题来求解,通过对偶问题的求解可以得到原问题的最优解。
二、整数规划与0-1规划整数规划和0-1规划是线性规划的扩展形式,它们在实际问题中的应用更为广泛。
掌握整数规划和0-1规划的建模方法和求解技巧,对于考生来说是非常关键的。
2.1 整数规划整数规划是线性规划的一种变种,要求决策变量取整数值。
在实际问题中,有些变量的取值只能是整数,例如物流配送中的车辆数量等。
2.2 0-1规划0-1规划是一种特殊的整数规划,要求决策变量取值只能是0或1。
它经常用于选择最佳的方案或者进行二元决策,例如在项目管理中,选择是否开展某项工作。
三、动态规划动态规划是一种求解决策问题的优化方法,它广泛应用于工程管理、资源分配等领域。
掌握动态规划的基本原理和求解步骤,对于考生来说是非常重要的。
3.1 基本原理动态规划是通过拆分问题,定义状态,确定状态转移方程,从而找到问题的最优解。
运筹学第15讲 约束最优化方法 (1)
第六章 约束最优化方法
6.1 Kuhn-Tucker 条件
一、等式约束性问题的最优性条件: 考虑 min f(x) s.t. h(x)=0 回顾高等数学中所学的条件极值: 问题 求z=f(x,y) 在ф(x,y)=0 条件下的极 值。 即 min f(x,y) S.t. ф(x,y)=0 引入Lagrange乘子:λ
充要条件是
⎧ min ∇ f ( x ) T d ⎪ A 1d ≥ 0 ⎪ ⎨ Ed = 0 ⎪ ⎪ | d j |≤ 1 , j = 1 , L n ⎩ 0。
的目标函数最优值为
第六章
6.2 既约梯度法
显 然 d = 0 是 可 行 解 , 所 以 P1的 最 优 值 必 ≤ 0 。 1 o 若 目 标 函 数 的 最 优 值 < 0 , 则 d 为 ( P )的 下 降 可 行 方 向 ; 2 o 若 目 标 函 数 的 最 优 值 = 0, 则 x 为 K − T 点 。 < 确定一维搜索的步长: 设 x( k )是 可 行 解 , d ( k ) 为 下 降 可 行 方 向 , 求 λ k 使 x( k + 1 ) = x( k ) + λ k d ( k ) . ⎧ m in f ( x( k ) + λ d ( k ) ) ⎪ ⎪ s .t . A ( x( k ) + λ d ( k ) ) ≥ b λk满 足 : ⎨ ⎪ E ( x( k ) + λ d ( k ) ) = e ⎪ ⎩ λ ≥ 0 $ = b − A x( k ) , d $ = A d (k), 显 然 b $ < 0. 令b 2 2 2 利 用 定 理 1可 得 λ 的 上 限 λ m a x $i ⎧ b $ i < 0} ⎪ m in { $ | d = ⎨ di ⎪ +∞ ⎩ $< 0 d $≥ 0 d
运筹学与最优化方法第1章
设第i个货栈的位置为(xi,yi), i=1.2, …,m,第i个货栈供给第j 个市场的货物量为zij , i=1.2, …,m, j=1.2, …,n,第i个货栈到第j
个市场的距离为 由题意有,求
d ij ( xi a j ) 2 ( yi b j ) 2
z
n
且f(x)在S上是二阶可微的,若对任意的x∈S, f(x)的海 赛(Hesse)矩阵 在S上是半正定的,则称f(x)在S上是凸的.
例: 2 2 1) f(x)=x1 +2x1x2+2x2 +10x1 - 4 ; 2 2 2 2) f(x)=-3x1 +x1x2-x2 -2x3 -2x2x3+26 ; 3 3 3) z=x +y -3x-12y
2 f 2 x 1 2 f H ( x) 2 f ( x) x2x1 2 f xn x1 2 f x1x2 2 f x2 2 2 f xn x2 2 f x1xn 2 f x2xn 2 f xn 2
•若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
曲线拟合问题最常用的解法——线性最小二乘法的 基本思路
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x) ( 1)
x(1) , x(2) S
(1) (1) (1) f ( x ) f ( x ) f ( x )T 其中 f ( x(1) ) ( , , , ) x1 x2 xn
运筹学与最优化方法
五、基本概念和符号(续)
2、多元函数及其导数
(2) 梯度(一阶偏导数向量): T n f ( x) = ( f / x1 , f / x2 , … , f / xn ) R . 线性函数:f (x) = cTx + b , f (x) = c 二次函数:f (x) = (1/2) xTQx + cTx + b f (x) = Qx + c m 向量值线性函数:F(x) = Ax + d R F / x = AT
( 1)
,d
(2)
,…,d
(m) m
R, d
(j)
n
(k)
0
记 L( d
(1)
,d
(2)
,…,d
(m)
)={ x = d j j =1
jR }
为由向量d , d , … , d 生成的子空间,简记为L。 n 正交子空间:设 L 为R 的子空间,其正交子空间为 n L ={ x R xTy=0 , y L } n n 子空间投影定理:设 L 为R 的子空间。那么 x R , 唯一 x L , y L , 使 z=x+y , 且 x 为问题 min ‖z - u‖ s.t. u L 的唯一解,最优值为‖y‖。 n 特别, L =R 时,正交子空间 L ={ 0 }(零空间)
d 0 x x+(1/2)d
n
五、基本概念和符号(续)
1、向量和子空间投影定理
(2) 向量运算:x , y R
n
x,y
的内积:xTy
= i =1 xiyi = x1y1+ x2y2+ …+ xnyn
运筹学的优化算法
运筹学的优化算法运筹学是一门研究如何对复杂问题进行优化的学科,通过利用数学、统计学和计算机科学等方法,运筹学可以帮助解决各种决策和优化问题。
在该领域中,存在着许多不同的优化算法,下面将介绍其中几种常见的算法。
1. 线性规划(Linear Programming,LP):线性规划是一种常见的数学规划方法。
它的目标是优化一个线性目标函数,同时满足一组线性约束条件。
通过将问题转化为标准形式(即将约束条件和目标函数都表示为线性等式或不等式),线性规划可以使用诸如单纯形法、内点法等算法进行求解。
2. 整数规划(Integer Programming,IP):整数规划是一种在线性规划的基础上,引入了变量为整数的约束条件。
这样的问题更具挑战性,因为整数约束使得问题成为NP困难问题。
针对整数规划问题,常用的方法包括分支定界法、回溯法、割平面法等。
3. 非线性规划(Nonlinear Programming,NLP):与线性规划不同,非线性规划的目标函数或约束条件至少有一个是非线性的。
非线性规划的求解需要使用迭代算法,例如牛顿法、拟牛顿法、遗传算法等。
这些算法通过逐步优化解来逼近最优解。
4. 动态规划(Dynamic Programming,DP):动态规划通过将问题分解为子问题,并使用递归方式求解子问题,最终建立起最优解的数学模型。
动态规划方法常用于具有重叠子问题和最优子结构性质的问题。
例如,背包问题、最短路径问题等。
5. 启发式算法(Heuristic Algorithm):启发式算法是一种近似求解优化问题的方法,它通过启发式策略和经验知识来指导过程,寻找高质量解而不必找到最优解。
常见的启发式算法包括模拟退火算法、遗传算法、粒子群算法等。
6. 蒙特卡洛模拟(Monte Carlo Simulation):蒙特卡洛模拟是一种基于概率的数值模拟方法,用于评估随机系统中的不确定性和风险。
它通过生成大量随机样本,并使用这些样本的统计特征来近似计算数学模型的输出结果。
运筹学-最优化准备知识
其中xi,yi(i=1,2,…,m)及jj(x)(j=0,1,…,n)为已知.
4
最优化问题
最优化问题的一般形式为:
P:
(1.1)(目标函数) (1.2)(等式约束) (1.3)(不等式约束)
其中x是n维向量. 在实际应用中,可以将求最大值的目标函数取 相反数后统一成公式中求最小值的形式. 我们总是讨论
22
凸函数的几何性质
对一元函数f (x),在几何上a f (x1)+(1-a)f (x2) (0≤a≤1)表示连接(x1,f(x1)),(x2,f (x2))的线段, f(ax1+(1-a)x2)表示在点ax1+(1-a)x2处的函 数值,所以一元凸函数表示连接函数图形 上任意两点的线段总是位于曲线弧的上方.
21
凸函数的例
例. 设f (x)=(x–1)2,试证明f(x)在(–∞,+∞)上是 严格凸函数. 证明:设x,y∈ R,且x≠y, a ∈ (0,1)都有 f (ax+(1-a)y)-(a f (x) +(1-a)f (y)) =(ax+(1-a)y-1)2-a (x-1)2-(1-a) (y-1)2 = –a (1-a)(x-y)2<0 因此f(x)在(–∞,+∞)上是严格凸函数. 例. 线性函数f (x)=cTx=c1x1+c2x2+· · · +cnxn 既是Rn上凸函数也是Rn上凹函数.
(ii) 若在D内G(x)正定,则f(x)在D内是严格凸函数.
32
凸规划
定义1.1.11 设D Rn为凸集,则f(x) 为D上的凸函数, 则称规划问题 min f(x) s.t. x ∈ D 为凸规划问题.
系统工程与运筹学 第6章 图与网络最优化方法
连通图G (V, E)中,内边权值总和最小的部分树为最小部分树( 最小支撑树)。
最大部分树?
6.2 最小部分树问题
6.1.1图的基本概念和术语
1. 最小部分树定理 树的任意一条外边Cij比所对应的链中最长的边还长;即最小部 分树是指内边权总和最小的那棵树 2. 最小部分树算法 【例6.1】 某市区准备在五个社区间架设光纤网络,各社区的位 置如图6.2.1(a),如何架设光纤网络可使各社区间均能通网且光纤线 路最短。
欧拉回路也称一笔圈图,欧拉链也称一笔链图,二者均为一笔画图。
6.3.2 中国邮递员问题
由中国数学家管梅谷先生在1962年提出.
抽象成图的语言就是:给定一个无向的连通图,怎样 才能使每条边至少出现一次并使边长总和最小。这类问 题叫中国邮递员问题或一笔画问题。
中国邮递员问题可以描述为:在一个有奇点的连通图 中,增加一些重复边,使得该图成为一笔圈图,并且要 求重复边的总路长最小。
A
D C
B 图6.3.1 哥尼斯堡七桥问题
【定理1】 若图G的每个顶点所关联的边数是偶数条,则图G是欧拉回路,这
样的图能一笔画出;
【定理2】 若除链的端点以外其余每个顶点所关联的边数是偶数 条(即图中奇点数为2),则图是欧拉链,若想走过该图所有的边而不 走重复路,就只能从一个奇点出发到达另一个奇点。
1736年著名数学家欧拉(Euler)发表了图论方面第一篇论文,解 决了有名的哥尼斯堡七桥难题,欧拉被公认为图论的创始人。
图论以集合元素间某种二元关系生成的拓扑图形为研究对象,任 何一个包含了某种二元关系的系统都可以用图论的方法来分析。
经过200多年的发展,图论已经发展成为一个理论与应用兼有的 数学领域,在自然科学和社会科学研究中有着广泛的应用。
运筹学与最优化方法第3章
1
T
2 f ( x * ) 1 g ( x ) g ( x )0 1 2 3 3 g ( x )0 1 g ( x ) 0 2
min f ( x1 , x2 ) 5 ( x1 x2 )
例3.1.2
2 x12 x2 20 s.t. x1 0 x 0 2
显然它是一个凸规划,它的K-T条件为:
* * * * ( 1, 1) 2 1* ( x1 , x2 ) 2 ( 1,0) 3 (0, 1) 0 * *2 *2 * * * ( x x 1 1 若x1 0, 则显然x2 0, 2 0, 代入 2 2) 0 * * * K T 条件的第一式得2 1 2 x1 0 * x* 0 * * 与2 0矛盾,所以x1 0 3 2 * 同理有x2 0
推广到多元情况,令
L( x, ) f ( x ) i hi ( x ) f ( x ) h( x )
i 1 m
其中 (1,2, ,m ), h( x ) (h1 ( x ),h2 ( x ), ,hm ( x ))T
若x*是(3-2)的l.opt. ,则存在λ*∈ Rm使 * h ( x ) 矩阵形式: * * f ( x ) 0 x 1 1 因为 f ( x ) 2 2( x 2 ) , g1 ( x ) 2x , g 2 ( 2) 2 2
* * 2( x1 2 1 3) 1 2 x1 2 0 * * 2( x 2) 3 2 x 3 2 2 * T 解之得 x ( 2 , 1 ) 是其最优解 *2 *2 x1 x2 5 0 x* 2 x* 4 0 1 2
运筹学与最优化方法 第5章无约束最优化
x(i+1)=x(i)+αid(i) , i=1,2, …,k
精确一维搜索保证方向导数为0:
……②
▽fT(x(i+1))d(i)=0, i=1,2, …,k
……③
在x(i+1)点构造新方向d(k+1)为-▽f(x(k+1)) 与d(1),d(2), …,d(k)的组合:
k
d(k1) f (x(k1)) (jk)d(j) ④
2020/12/2
16
变尺度法
一、变尺度法的基本思路: (f)min f(x), f: R n→ R
1、基本思想:
用对称正定矩阵H(k)近似▽2f(x(k)), 而H(k)的产生从给定H(1)
开始逐步修整得到。
2、算法框图:
x(1),H(1)对称 ε>0, k=1
k=k+1
d(k)=-H(k) ▽ f(x(k))
由⑨式
▽f(x(j+1))T ▽f(x(i))=0 i<j≤k …… ⑩
i1
(由④式 f(x(i))d(i)
) d (i) (h)
h
h1
根据⑧及⑥得: j=1,2, …,k-1
- ▽f(x(k+1))T [▽f(x(j+1)) - ▽ f(x(j))]+βj(k) d(j)T y(j)=0
2020/12/2
qk(x)=f(x(k))+ ▽Tf(x(k))(x-x(k)) +1/2 (x-x(k))T▽2f(x(k)) (x-x(k))
求驻点:
▽2020/q12k/(2x)= ▽f(x(k))+ ▽2f(x(k)) (x-x(k))=0
4
第4章 最优化方法(运筹学)
例题分析5:投资问题
例5 某部门现有资金200万元,今后五年内考虑给以下的项目 投资。已知: 项目A:从第一年到第五年每年年初都可投资,当年末能收回 本利110%; 项目B:从第一年到第四年每年年初都可投资,次年末能收回 本利125%,但规定每年最大投资额不能超过30万元; 项目C:需在第三年年初投资,第五年末能收回本利140%,但 规定最大投资额不能超过80万元; 项目D:需在第二年年初投资,第五年末能收回本利155%,但 规定最大投资额不能超过100万元。 问应如何确定这些项目的每年投资额,使得第五年年末拥 有资金的本利金额为最大?
欧洲的古代城堡为什么建成圆形?
案例:生产计划问题
例1.
某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的 生产,已知生产单位产品所需的设备台时及A、B两 种原材料的消耗、资源的限制,如下表:
Ⅰ
设备 原料 A 原料 B 单位产品获利 1 2 0 50 元
Ⅱ
1 1 1 100 元资源限制 300 来自时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能
使工厂获利最多?
第一节 线性规划
一、在管理中一些典型的线性规划应用 二、线性规划的一般模型
三、线性规划问题的计算机求解
(Excel,lingo)
第一节 线性规划
一、在管理中一些典型的线性规划应用 1、合理利用线材问题:如何在保证生产的条件下, 下料最少 2、配料问题:在原料供应量的限制下如何获取最大 利润 3、投资问题:从投资项目中选取方案,使投资回报 最大 4、产品生产计划:合理利用人力、物力、财力等, 使获利最大 5、劳动力安排:用最少的劳动力来满足工作的需要 6、运输问题:如何制定调运方案,使总运费最小
运筹学解题方法技巧归纳
运筹学解题方法技巧归纳运筹学是一门研究如何进行有效决策和优化问题求解的学科。
在运筹学中,有许多解题方法和技巧,可以帮助我们更好地解决各种实际问题。
本文将对运筹学解题方法技巧进行归纳总结。
1. 线性规划:线性规划是解决线性目标函数和线性约束条件下的最优化问题的方法。
线性规划常用的求解方法有单纯形法和内点法。
在使用单纯形法求解时,我们需要将问题转化为标准形式,并通过迭代的方式逐步逼近最优解。
内点法是一种更加高效的求解方法,它通过迭代算法在可行域的内部寻找最优解。
2. 整数规划:整数规划是在线性规划的基础上,将决策变量的取值限制为整数的一种扩展。
整数规划的求解方法有分支定界法和割平面法。
分支定界法通过不断分割问题的可行域,并对每个子问题进行求解,从而逐步逼近最优解。
割平面法则通过添加一系列割平面约束来缩小可行域,并最终找到最优解。
3. 动态规划:动态规划是一种用于求解具有特定结构的最优化问题的方法。
它适用于那些可以通过子问题的最优解来构造整个问题最优解的情况。
动态规划的求解过程包括问题建模、状态定义、状态转移方程的确定和最优解的推导。
通过动态规划,我们可以高效地解决一些需要考虑历史决策和未来影响的问题。
4. 排队论:排队论是研究顾客到达和排队等待的现象以及如何有效组织排队系统的数学方法。
排队论可以用于优化客户服务水平和资源利用率等问题。
常用的排队论模型有M/M/1队列模型、M/M/c队列模型和M/G/1队列模型等。
在解决排队论问题时,我们需要确定顾客到达的规律、服务的规律以及排队系统的性能指标,从而确定最优的排队策略。
5. 调度问题:调度问题是指在给定约束条件下,合理安排任务的顺序和时间,从而使得整个系统达到某个性能指标的最优化问题。
常用的调度问题模型有单机调度、流水线调度和车间调度等。
解决调度问题时,我们需要考虑任务之间的先后关系、任务执行时间和资源约束等因素,通过建立相应的数学模型,找到最优的调度方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 最优化问题的基本概念§1.1最优化的概念最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。
§1.2最优化问题的数学模型1.最优化问题的一般形式⎪⎪⎩⎪⎪⎨⎧===≤q v x x x h p u x x x g t s x x x f x x x find n v n u nn,,2,10),,,(,,2,10),,,(..),,,(min ,,,212121212.最优化问题的向量表达式⎪⎪⎩⎪⎪⎨⎧=≤0)(0)(..)(min X H X G t s X f X find式中:T n x x x X ],,,[21 =T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 =3.优化模型的三要素设计变量、约束条件、目标函数称为优化设计的三要素!设计空间:由设计变量所确定的空间。
设计空间中的每一个点都代表一个设计方案。
§1.3优化问题的分类按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题4按照设计变量的性质不同分为连续变量优化和离散变量优化问题第2章 最优化问题的数学基础§2.1 n 元函数的可微性与梯度一、可微与梯度的定义1.可微的定义设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。
若存在n 维向量L ,对于任意n 维向量P ,都有0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。
2.梯度设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。
我们把)(X F 在定义域内某点X 处的所有一阶偏导数构成的列向量,定义为)(X F 在点X 处的梯度。
记为:Tn k x F x F x F X F ⎥⎦⎤⎢⎣⎡∂∂∂∂∂∂=∇,,,)(21梯度有3个性质:⑴函数在某点的梯度方向为函数过该点的等值线的法线方向; ⑵函数值沿梯度方向增加最快,沿负梯度方向下降最快; ⑶梯度描述的只是函数某点邻域内的局部信息。
§2.2极小点及其判别条件 一、相关概念1.极小点与最优解设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,若存在D X ∈*及实数0>δ,使得)(),(**X X D X N X ≠⋂∈∀δ都有)()(*X f X f ≤,则称*X 为)(X f 的局部极小点;若)()(*X f X f <,则称*X 为)(X f 的严格局部极小点。
若D X ∈∀,都有)()(*X f X f ≤,则称*X 为)(X f 的全局极小点,若)()(*X f X f <,则称*X 为)(X f 的全局严格极小点。
对最优化问题⎪⎪⎩⎪⎪⎨⎧=≤0)(0)(..)(min X H X G t s X f Xfind 而言满足所有约束条件的向量T n x x x X ],,,[21 =称为上述最优化问题的一个可行解,全体可行解组成的集合称为可行解集。
在可行解集中,满足: )(min )(*X f X f =的解称为优化问题的最优解。
2.凸集和凸函数凸集:设n R D ⊂,若对所有的D X X ∈21、,及]1,0[∈α,都有D X X ∈-+21)1(αα,则称D 为凸集。
凸函数:设1:R R D f n →⊂,D 是凸集,如果对于所有的D X X ∈21、,及]1,0[∈α,都有)()1()(])1([2121X f X f X X f αααα-+≤-+,则称)(X f 为D 上的凸函数。
二、局部极小点的判别条件驻点:设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,*X 是D 的内点,若0)(*=∇X f ,则称*X 为)(X f 的驻点。
局部极小点的判别:设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,具有连续的二阶偏导数。
若*X 是)(X f 的驻点,且)(*2X f ∇是正定矩阵,则*X 是)(X f 的严格局部极小点。
第3章 无约束优化方法§3.1下降迭代算法及终止准则 一、数值优化方法的基本思想基本思想就是在设计空间内选定一个初始点kX ,从该点出发,按照某一方向kS (该方向的确定原则是使函数值下降)前进一定的步长k α,得到一个使目标函数值有所下降的新设计点1+k X ,然后以该点为新的初始点,重复上面过程,直至得到满足精度要求的最优点*X 。
该思想可用下式表示:k k k k S X X α+=+1 二、迭代计算的终止准则工程中常用的迭代终止准则有3种: ⑴点距准则相邻两次迭代点之间的距离充分小时,迭代终止。
数学表达为:ε≤-+k k X X 1 ⑵函数下降量准则(值差准则)相邻两次迭代点的函数值之差充分小,迭代终止。
数学表达为:ε≤-+)()(1k k X f X f ⑶梯度准则目标函数在迭代点处的梯度模充分小时,迭代终止。
数学表达为:ε≤∇+)(1k X f 三、算法的收敛速度对于某一确定的下降算法,其优劣如何评价?人们通常采用收敛速度来评价。
下面给出度量收敛速度的几个概念。
1.P 阶收敛设序列{}k X 收敛于解*X ,若存在常数0≥P 及L 、0k ,使当0k k ≥时下式:pk k X X L X X **1-≤-+成立,则称{}k X 为P 阶收敛。
2.线性收敛设序列{}k X 收敛于解*X ,若存在常数0k 、L 及)1,0(∈θ,使当0k k ≥时下式:k k L X X θ≤-+*1成立,则称{}k X 为线性收敛。
3.超线性收敛设序列{}k X 收敛于解*X ,若任给0>β都存在00>k ,使当0k k ≥时下式:**1X X X X k k -≤-+β成立,则称{}k X 为超线性收敛。
§3.2一维最优化方法 一、确定初始区间的进退法任选一个初始点0x 和初始步长h ,由此可确定两点01x x =和h x x +=12,通过比较这两点函数值)(1x f 、)(2x f 的大小,来决定第三点3x 的位置。
比较这三点函数值是否呈“高——低——高”排列特征,若是则找到了单峰区间,否则向前或后退继续寻求下一点。
进退法依据的基本公式:01x x =h x x +=12 h x x +=23具体步骤为:⑴任意选取初始点0x 和恰当的初始步长h ; ⑵令01x x =,取h x x +=12,计算)(1x f 、)(2x f ;⑶若)()(21x f x f ≥,说明极小点在2x 右侧,应加大步长向前搜索。
转⑷; 若)()(21x f x f <,说明极小点在1x 左侧,应以1x 点为基准反向小步搜索。
转⑹; ⑷大步向前搜索:令h h 2⇐,取h x x +=23,计算)(3x f ;⑸若)()(32x f x f <,则)(1x f 、)(2x f 、)(3x f 呈“高——低——高”排列,说明],[31x x 即为所求的单峰区间;若)()(32x f x f ≥,说明极小点在3x 右侧,应加大步长向前搜索。
此时要注意做变换:舍弃原1x 点,以原2x 点为新的1x 点,原3x 点为新的2x 点。
转⑷,直至出现“高——低——高”排列,则单峰区间可得;⑹反向小步搜索(要注意做变换):为了保证3x 点计算公式的一致性,做变换:将原2x 点记为新1x 点,原1x 点记为新2x 点,令h h 41-⇐,取h x x +=23,转⑸例:用进退法确定函数96)(2+-=x x x f 的单峰区间[a ,b ],设初始点00=x ,1=h 。
解:①100==h x②4)(9)(10211201===+===∴x f x f h x x x x③)()(21x f x f >说明极小点在2x 点右侧,应加大步长向前搜索④令2122=⨯=⇐h h ,取32123=+=+=h x x 则0)(3=x f ⑤)()(32x f x f >说明极小点在3x 点右侧,应加大步长向前搜索 舍弃原01=x 的点,令3121==x x ,则0)(4)(21==x f x f令4222=⨯=⇐h h ,取74323=+=+=h x x 则0)(16)(23=>=x f x f)(1x f 、)(2x f 、)(3x f 呈“高——低——高”排列 ],[31x x ∴为单峰区间,即区间[1,7]即为所求二、黄金分割法黄金分割法是基于区间消去思想的一维搜索方法,其搜索过程必须遵循以下的原则:⑴对称取点的原则:即所插入的两点在区间内位置对称;⑵插入点继承的原则:即插入的两点中有一个是上次缩减区间时的插入点; ⑶等比收缩的原则:即每一次区间消去后,单峰区间的收缩率λ保持不变。
设初始区间为[a ,b],则插入点的计算公式为:)(382.01a b a x -+= )(618.02a b a x -+=黄金分割法的计算步骤如下: ①给定初始区间[a ,b]和收敛精度ε; ②给出中间插值点并计算其函数值:)(382.01a b a x -+= )(1x f )(618.02a b a x -+= )(2x f ;③比较)(1x f 、)(2x f ,确定保留区间得到新的单峰区间[a ,b ]; ④收敛性判别:计算区间[a ,b ]长度并与ε比较,若ε≤-a b ,输出)(21*b a x += 否则转⑤;⑤在保留区间内继承一点、插入一点,转②。
例:使用黄金分割法求解优化问题:2.0532)(m in 2=≤≤-+=εx x x x f ,。
解:①115.0)(056.0)35(382.03)(382.011==+⨯+-=-+=x f a b a x ②667.7)(944.1)35(618.03)(618.022==+⨯+-=-+=x f a b a x③∵)()(12x f x f > ∴舍弃(1.944,5],保留[-3,1.944] ε>--)3(944.1; ④继承原1x 点,即115.0)(056.022==x f x插入987.0)(111.1)3944.1(382.03)(382.011-=-=+⨯+-=-+=x f a b a x∵)()(12x f x f > ∴舍弃(0.056,1.944],保留[-3,0.056] ε>--)3(056.0; 继承原1x 点,即987.0)(111.122-=-=x f x插入306.0)(832.1)3056.0(382.03)(382.011-=-=+⨯+-=-+=x f a b a x∵)()(12x f x f < ∴保留[-1.832,0.056] ε>--)832.1(056.0; 继承原2x 点,即987.0)(111.111-=-=x f x插入888.0)(665.0)832.1056.0(618.0832.122-=-=+⨯+-=x f x∵)()(12x f x f > ∴保留[-1.832,-0.665]如此迭代,到第8次,保留区为[-1.111,-0.940] ε<=---171.0)111.1(940.0 ∴999.0)(0255.1)940.0111.1(21**-=-=+-⨯=x f x§3.3梯度法 一、基本思想 对于迭代式kkkk S X Xα+=+1,当取搜索方向)(k kX f S -∇= 时构成的寻优算法,称为求解无约束优化问题的梯度法。