重大工程场地设计地震动参数选择
gb50011-2010 建筑抗震设计规范

gb50011-2010 建筑抗震设计规范建筑抗震设计规范是我国建筑工程领域的重要标准之一,对于确保建筑物在地震等自然灾害发生时具有一定的抗震能力至关重要。
GB50011-2010《建筑抗震设计规范》是中国地震动安全性评价与设计中的基础性规范,对于设计和建造抗震性能优良的建筑至关重要。
一、抗震设计的背景和意义地震是地球上不可预测的自然灾害之一,其破坏性往往给建筑物带来重大威胁。
抗震设计规范的实施能够显著提高建筑物在地震中的抗震性能,降低地震灾害对人民生命财产的危害,保障人们在灾害中的生命安全。
因此,建筑抗震设计规范的实施对于提高城市抗震标准、提升建筑品质、促进社会经济发展具有非常重要的意义。
二、 GB50011-2010 建筑抗震设计规范的主要内容GB50011-2010《建筑抗震设计规范》包含了地震危害性分区、场地分类、工程地震动参数、结构抗震性能要求、抗震设计原则和规范等一系列内容。
其主要包括:1.地震烈度和场地分类:规范根据地震烈度和场地情况的不同,将地震危险性分为多个等级,并对不同地区进行分类,以满足不同地区的抗震需求。
2.工程地震动参数:规范详细规定了工程地震动参数的确定方法,包括最大可能地震、设计基本地震加速度等,这些参数是进行建筑物抗震设计的基础。
3.结构抗震性能要求:规范明确了建筑结构在地震作用下的性能要求,包括构建的稳定性、变形能力、耗能能力等。
4.抗震设计原则:规范强调了在建筑设计中应该遵循的抗震设计原则,例如合理布置结构抗震构件、避免单一抗震体系、重要设备的抗震设计等。
三、抗震设计规范的应用和实施建筑抗震设计规范的应用不仅限于抗震构件的设计与构造,同时也应涉及建筑的地基与基础设计、物料选择、施工质量管理等方面。
只有全方位的、系统化的抗震设计工作,才能最大程度地确保建筑物在地震发生时的安全性。
抗震设计规范的实施需要建筑设计和施工人员的共同努力,要求在建筑工程的各个阶段中,都要考虑地震影响因素,采取有效的抗震设计措施。
建筑抗震设计规范

建筑抗震设计规范建筑抗震设计规范是指为了增强建筑结构的抗震能力,在建筑设计过程中要遵循的一系列规范和标准。
以下是一些常见的建筑抗震设计规范。
1. 抗震设计基本原则:建筑结构必须能够抵抗地震力的作用,保证建筑物在地震发生时能够稳定、安全地使用。
抗震设计应基于科学研究和工程实践,充分考虑地震力的特点,采用适当的抗震设计方法和技术。
2. 设计地震动参数:地震设计应根据地震动参数来确定地震力的作用,包括震级、震源距离、场地类别等。
地震动参数的确定应参考国家地震烈度分区图和地震动参数规定,结合工程地质勘察和地震波动特性分析等。
3. 结构抗震设计:建筑结构的抗震设计应根据地震力的作用来确定结构抗震要求和设计方法。
抗震设计应考虑建筑结构的水平抗震能力、竖向抗震能力和整体稳定性。
建筑结构应采用适当的材料和构造形式,增加结构的刚度和强度。
4. 结构稳定性设计:建筑结构的稳定性是抗震设计的重要内容。
建筑结构在地震作用下应具有足够的抗侧稳定性和抗倾覆能力。
对于高层建筑、大跨度结构和特殊结构等,应根据结构特点进行相应的稳定性设计。
5. 设计荷载和组合:抗震设计应按照规范规定的荷载和荷载组合来确定结构的抗震设计荷载。
抗震设计荷载应综合考虑地震力、重力荷载、温度荷载等多种荷载形式的作用。
6. 抗震构造措施:建筑结构的抗震设计应采用适当的抗震构造措施,如设置抗震支撑、刚性“斜撑”、抗震墙等。
构造措施的选择应根据结构类型、使用要求和地震力的特点来确定。
7. 施工质量与监理:抗震设计要求应在施工过程中得到有效实施。
施工方应按照设计要求和施工规范进行施工,确保施工质量符合抗震设计要求。
同时,建筑抗震设计中应有合格的监理机构进行质量监督。
8. 抗震检测与验收:建筑抗震设计完成后,应进行抗震检测与验收。
抗震检测应包括结构材料的检验、施工质量的检验和结构的静力和动力试验等。
抗震验收应检查结构的抗震性能是否满足设计要求。
9. 抗震设防研究与技术发展:建筑抗震设计规范应不断更新和完善,结合新的科学研究成果和工程实践经验,不断提高建筑结构的抗震能力。
场地设计地震动参数确定方法

Vs 为土层剪切波速;Vsm 为土层平均(等效)剪切波速;fk 为地基土静承载力标准值。
表1.6.2建筑场地类别划分
场地类别
场地土类型 剪切波速
I
II
III
IV
(m/s)
覆盖层厚度(m)
坚硬(场地)土 Vs >500 中硬(场地)土 250<Vsm(Vse)
≤500
0m <5 m
>5 m
中软(场地)土 140<Vsm(Vse) ≤250
区域与近场 地震构造研究
坝址断裂活动性和 工程地震环境研究
地历 地 震史 震 时地 活 空震 动 分对 趋 布场 势 特地 分 征的 析
影 响
大深 新断现现
地部 构裂代代
构构 造活地构
造造 运动壳造
特特 动性形应
征征 及分变力
及
分析
场
分
区
区
断工 裂程 活地 动震 性环 鉴境 定评
价
断 裂 活 动 对 坝
(1)确定设防烈度和相应的设防峰值加速度 PGA
(2)划分场地类别
场地土划分
ⅠⅡⅢⅣ四类场地
等效剪切波速、覆盖层厚度
(3)确定设计谱类型和相 应设计地震参数
时程分析用地 震动时程
天然地震动时程的选择和修正 人工地震动时程合成
• 5.2.3场地设计地震动参数确定方法
天然地震动时程的选择和修正 人工地震动时程合成
场地相关法确定地震设计参数 按工程设防需要确定和场地地震地质环境特点相关的特定场地地震 设计参数
场地相关法 按工程设防 需要确定和 场地地震地 质环境特点 相关的特定 地震设计参 数
(1)概率地震危险性 分析
第5代中国地震动参数

第5代中国地震动参数
第五代中国地震动参数区划图将我国国土划分为不同抗震设计要求的区域,是新建、扩建、改建一般建设工程必须达到的最低抗震设防要求,也是已建一般建设工程抗震加固的设防要求。
该区划图也用于指导重大工程、特殊工程、生命线工程、重要桥梁、重要公共建筑等的抗震设防。
该区划图基于大量的地震区划基础资料及其综合研究,考虑了近年来国内外地震学研究的最新进展和成就,编制修订历时近5年。
与第四代地震区划图相比,地震设防区域实现了全覆盖,取消了不设防地区,地震动参数明确到乡镇。
具体到地震动参数,包括峰值加速度(PGA)、周期(T)、峰值速度(PGV)和持续时间(D)。
PGA是指地震曲线中最大的正向加速度,通常以“g”为单位来表示;T是指地震波形周期的倒数,以秒为单位;PGV是指地震曲线中最大的正向速度幅值,通常以厘米/秒为单位;D是指地震曲线中连续出现加速度超过特定值(如0.05g)的时间长度,以秒为单位。
地震动参数确定

基岩地震动时程的合成:
将地震危险性分析得出的具有概率含义的基岩地震动峰 值和反应谱作为目标谱,结合适应本地区地震活动特征 的非平稳强度包络函数,采用三角级数迭加法合成基岩 地震动,作为场地地震动力反应分析的输入地震动时程。
地震动地时程 震 动 时 程
非平稳包络函数 平稳过程的地震动时程
场地地震动反应分析结果
工程场地动力参数的选择:
地震波输入面取剪切波速值大于500米∕秒的强、中 风化基岩层顶面作为计算面; 根据现场测试结果,选择ZK1、ZK8、ZK15、ZK77 和ZK81五个孔进行场地地震反应分析计算,进而得出 各孔的柱状剖面参数(各土层的厚度、等效剪切波速 和容重); 列出土层的动剪切模量和动阻尼参数; 基岩目标谱和峰值加速度取自工程场地地震危险性分 析的结果; 抗震设防水准取50年超越概率63%、10%和2%。
➢地震动加速度峰值
据工程场地土动力模型,将50年63%、10%和2%三 个不同随机相位的合成地震波,输入工程场地的ZK1 孔点进行动力反应分析计算,得到工程场地地表面的 加速度峰值Amax如下表:
孔点
概率水平 P50=0.63 P50=0.10 P50=0.02
相位1
51.1 160.9 292.4
地震号
SVZX23 7
AV2X64 6
地震名 GAZLI
SAN BARBARA
震级 日期 方向
台站
RA
7.2 1976.5.1 0 7
5.5 1978.8.1 0 3
KARAKTR POIN
COURT HOUSE
10.1 707.9 7.9 197.6
设计地震动时程的合成
为满足工程场地抗震设计的需要,本报告以下表所列 的水平向场地相关设计反应谱参数作为目标谱参数, 以前述的合成基岩地震动时程的方法和同样的包络函 数参数,合成工程场地抗震所需的设计地震动时程。
规准化场地地震动反应谱谱参数

规准化场地地震动反应谱谱参数1. 引言1.1 研究背景地震动反应谱是描述地震动对结构物产生影响的重要参数,对于工程领域的地震设计和抗震分析具有重要意义。
规范化场地地震动反应谱是指在考虑地震动波形、震源距离等因素的影响后,将地表地震动反应谱进行标准化处理,得到的反应谱曲线。
在地震工程领域,研究规范化场地地震动反应谱参数具有重要意义。
规范化场地地震动反应谱参数可以反映地震动频率和幅值之间的关系,帮助工程师更好地理解地震动作用于结构物的特性。
规范化场地地震动反应谱参数可以用于地震设计规范的制订和修订,为工程建设提供重要依据。
规范化场地地震动反应谱参数还可以用于工程结构的抗震设计和性能评估,提高结构物的抗震能力。
深入研究规范化场地地震动反应谱参数及其影响因素,对于提高工程结构的抗震性能和减轻地震灾害具有重要意义。
【研究背景】部分将重点探讨规范化场地地震动反应谱的相关基础知识,为后续内容的展开提供必要基础。
1.2 研究目的研究目的是为了深入理解规范化场地地震动反应谱谱参数的意义和计算方法,探讨其在工程实践中的应用及影响因素。
通过对规范化场地地震动反应谱参数的研究,可以更好地评估结构在地震作用下的响应,为工程设计和抗震加固提供科学依据。
通过总结规范化场地地震动反应谱参数的特点和规律,为今后的地震工程研究和实践提供参考和借鉴。
未来的研究方向包括进一步完善规范化场地地震动反应谱参数的计算方法,探讨不同地震动特征对参数的影响以及拓展其在不同工程场景下的应用。
通过深入研究规范化场地地震动反应谱参数,可以提高工程抗震性能,减少地震灾害带来的损失,促进地震工程领域的发展。
2. 正文2.1 规范化场地地震动反应谱简介规范化场地地震动反应谱是指将实际场地地震动反应谱进行规范化处理,以消除场地效应和地震动强度的影响,得到一种标准化的地震动反应谱。
规范化场地地震动反应谱可以用于不同场地条件下的地震动响应分析,是工程设计和地震灾害评估中重要的参考依据。
建筑物结构设计规范要求中的抗震设计参数选取

建筑物结构设计规范要求中的抗震设计参数选取建筑物结构设计中,抗震设计参数的选取是至关重要的。
在建设过程中,合理选择适合的抗震参数能够提高建筑的抗震性能,保障人员的生命安全。
根据建筑物结构设计规范要求,本文将对抗震设计参数的选取进行探讨,并分析其对结构安全性的影响。
1. 地震烈度参数地震烈度参数是一个非常重要的抗震设计参数,用于评估地震对建筑物的影响程度。
烈度参数一般通过地震动参数和场地条件确定。
根据现行规范,地震动参数通常选取地震加速度反应谱中的设计地震加速度值,以及地震周期。
这些参数的选取与地震烈度有关,需要考虑地理位置、地质条件和历史地震数据等综合因素。
2. 设计基准地震设计基准地震是指根据地震破坏性能目标和建筑物所在地的地震烈度特征,选取合适的地震动波进行结构设计。
设计基准地震分为不同等级,包括常规地震、重大地震、历史地震等。
在选择设计基准地震时需要考虑建筑物的用途、重要性和地震灾害风险等因素,以确保结构的抗震性能满足要求。
3. 结构抗震性能目标结构抗震性能目标是指建筑物在受到地震荷载作用时所表现的性能要求。
根据建筑物的不同用途和重要性,抗震性能目标可以分为不同等级,如设计基准地震的确定、结构的位移限值、倾覆限值、应力限值等。
合理选择结构抗震性能目标能够提高建筑物的抗震能力,确保其在地震中的安全性能。
4. 结构材料参数结构材料参数是指建筑物所采用的材料在地震作用下的力学性能参数。
对于不同类型的结构材料,如钢结构、混凝土结构和木结构等,需要选择合适的抗震设计参数。
包括钢材的强度、混凝土的抗压强度和抗拉强度等。
具体选取过程需要参考相应的材料规范和试验数据,确保结构的稳定性和抗震能力。
综上所述,建筑物结构设计规范要求中的抗震设计参数选取是一个综合性、科学性的过程。
在选取过程中,需要综合考虑地震烈度、设计基准地震、结构抗震性能目标和结构材料参数等因素。
合理选取抗震设计参数能够提高建筑物的抗震性能,确保其在地震中的安全可靠性。
规准化场地地震动反应谱谱参数

规准化场地地震动反应谱谱参数全文共四篇示例,供读者参考第一篇示例:规范化场地地震动反应谱是指在特定场地条件下,经过归一化处理的地震动反应谱。
它是地震工程中重要的设计参数,用于评估结构物的地震响应。
地震动反应谱是描述地震波在结构物上引起的动态响应的一种图形,它会受到场地条件的影响而发生变化。
为了比较不同场地条件下的地震动反应谱,需要进行规范化处理,即将地震动反应谱除以一定的标准加速度谱,得到规范化地震动反应谱。
规范化场地地震动反应谱主要有几个重要参数,包括峰值加速度、脉冲持续时间和频谱宽度。
这些参数反映了地震波对结构物的影响程度,对结构物的设计和评估起着重要作用。
峰值加速度是规范化场地地震动反应谱中的一个重要参数,表示结构物在地震作用下的最大加速度。
峰值加速度是结构物设计中重要的参数之一,它直接影响结构物的抗震性能和安全性能。
通过规范化场地地震动反应谱中的峰值加速度参数,可以评估结构物在地震条件下的最大受力情况,为结构物的设计提供依据。
第二篇示例:规范化场地地震动反应谱谱参数是指在地震工程领域中对地面运动进行评估和分析时所使用的一种重要参数。
地震动反应谱是地震运动在土壤或结构体内引起的振动响应的一种图形化表达方式,它可以反映出地震动对结构的影响程度,为地震设计和评估提供了重要的依据。
在实际工程中,为了统一地震动反应谱的分析和比较,通常采用规范化场地地震动反应谱谱参数进行分析。
规范化场地地震动反应谱谱参数是指在满足特定条件下的地震动反应谱,通过对实际地震动反应谱进行归一化处理得到的参数。
规范化场地地震动反应谱谱参数有助于将不同地震动反应谱进行比较和分析,为地震设计提供了便利。
规范化场地地震动反应谱谱参数通常包括加速度响应谱、速度响应谱和位移响应谱。
加速度响应谱是地震动对结构体系中单位质量的加速度响应进行傅立叶变换得到的参数,它可以反映出地震动的频率特性对结构的影响程度。
速度响应谱是加速度响应谱进行积分得到的参数,可以反映出地震动对结构体系中单位质量的速度响应的影响。
场地条件对震害各参数的影响

在地震案例中,地震烈度异常大多数是由特殊的土壤条件所引起。例如,基岩地基附近的地震烈度较低,软弱松散地基上的地震烈度偏高。默德韦杰夫(Medvedev)研究了地基土壤和地下水等场地条件对地震烈度的影响:
(1)
式中,v为地震波速,为土壤密度,h为地下水位埋深,常数=0.5(砾石)或1.0(亚砂土,亚粘土和细砂土)。
3局部地形对地震烈度的影响
在宏观震害调查中,多次发现在孤立突出的小山包、小山梁上的房屋震害相对较重。例如,通海地震发生在山区,整个村庄散布在山梁上,通过对比山梁下部区域的村庄震害,发现山梁位置与附近平地的村庄震害指数之间差距0.07-0.25。除此之外,在云南永善-大关地震的回龙湾异常区和邢台地震井阮异常区的北方岭事例同样证明上述结论。
关键词:场地条件;震害参数;反应谱
1引言
设计地震动的确定依赖于拟建工程在设计使用年限内,可能遭遇到的地震有多大和在可能发生的地震中在拟建场地的地震动有多大。前者取决于对地震的预报,后者反映了场地条件对地震动的影响。场地条件一般是指局部地质条件,如近地表几十米至几百米的土壤、岩石、地下水等工程地质情况、微地形以及有无断层破碎带通过等。国内外震害表明,场地条件是引起地表震害或地震动局部变化的主要因素[1-3]。
场地条件对地震震害的影响早为人们所认识。1928年,美国学者Wood在分析1906年旧金山大地震的异常震害现象时,首先意识到场地条件对地震地面运动的重要影响。其后对每次地震的观察,都表明震害与场地条件有关。1967年委内瑞拉地震,加拉加斯高层建筑的破坏具有非常明显的地区性,主要集中在市内冲击层最厚的地方,而在基岩或薄的冲击层上的高层建筑几乎未遭到破坏。1976年唐山地震,位于10度区内的唐山陶瓷厂、唐山钢铁公司一带,由于地处大城山山脚附近,基岩埋藏浅,震害相对较轻,而唐山陶瓷厂附近一二百米地方的房屋普遍倒塌,与该厂附近严重倒塌的房屋相比,厂区烈度却小1~2度。1985年墨西哥地震,震中在太平洋中,按地震波衰减规律,到墨西哥城已经不强,本不应该有大震害,且地震波途径的地区震害也不严重,但却造成墨西哥城数十栋18~24层高层建筑倒塌。震后通过对记录到的弹性加速度反应谱的研究表明,反应谱最大的区域在1.6~3.2s之间,而这些倒塌房屋的第一振型周期恰好在这个范围,即发生了共振。并且在本次地震中,基岩加速度峰值在0.05~0.1g之间,而附近土层记录到的加速度峰值是基岩的1.5~4倍。此外,墨西哥在抗震设计中一直使用美国UBC规范的反应谱,但墨西哥城实际反应谱最大值是UBC规范反应谱最大值的2~5倍。之所以形成这样的反应谱,是因为墨西哥城坐落在高原湖泊的很厚沉积层上,土层的影响,使地震波在传播中发生了很大的变化。同样的例子还出现在1999年台湾集集地震中,台北市一部分地区位于较厚的软土层上,台北距震中距离已超过100KM,但是仍有一部分多层建筑倒塌。出现上述震害,除这些建筑本身存在设计薄弱环节和缺陷外,土层对地震动的放大效应是最重要的原因。在1975年辽宁海城地震余震时,中国地震局工程力学研究所流动工作队,在大石桥市蟠龙山山脚基岩表面及附近平整土层上记录到的地震加速度记录,两观测点间水平距离不到100m,土层上加速度峰值是山脚基岩表面加速度峰值的3倍左右,这说明不同场地条件对地震动的放大作用不同。
结构抗震设计中地震动参数选取的几个基本问题

第23卷第1期2021年3月防灾科技学院学报J.ofInstituteofDisasterPreventionVol.23,No.1Mar.2021结构抗震设计中地震动参数选取的几个基本问题郭 迅,何 福,周 洋(防灾科技学院 中国地震局建筑物破坏机理与防御重点实验室,河北三河 065201)摘 要:以“小震”名义对设防烈度的折减与老规范用“结构系数”如何确定地震作用是抗震设计的重要环节。
自1989版抗震设计规范引入分级超越概率后,同一设防烈度对应多值描述,给正确理解和应用带来困难。
梳理了地震作用取值的发展沿革,展示了规范更新并未打破地震作用取值的连贯性,折减效果相当。
作为案例应用,指出地震模拟实验中振动台对容纳其厂房的地震作用幅值上限是明确的,不存在超越概率问题。
结合对实际震害的思考,指出抗震概念设计远比计算分析重要。
关键词:抗震设计;地震动参数;设防烈度;超越概率;结构系数中图分类号:P426 616文献标识码:A文章编号:1673-8047(2021)01-0001-05收稿日期:2020-12-09基金项目:国家重点研发计划项目(2018YFC1504302-3、2016YFE0205100、2017YFC1500606);中央高校基本科研业务费专项(ZY20160107)作者简介:郭迅(1967—),男,博士,教授,从事结构抗震及结构振动控制相关研究.0 引言 我国现行建筑抗震设计规范确定的基本原则是“小震不坏,中震可修,大震不倒”[1],具体操作时作为基本设防烈度的中震一般不直接表现出来;并且同一烈度对应多个表征地震动强度的加速度值或系数,这样的做法给工程师带来理解上的困难,实践中不便操作。
实际上,地震动参数的内涵非常丰富,包括设防烈度、超越概率、地震动持时、频谱特性、断层影响等,结构设计时不同的验算内容对应不同的选择。
1989年之前,我国几个版本的抗震设计规范均采用确定性理论,只要场地的设防烈度确定,地震作用就随之确定,结构抗震性能的好坏用结构系数来体现。
场地地震安全性评价中确定设计地震动参数方面若干问题的研究

中 图分类号 :P315
文献标识码 :A
Study on som e problem s in def'm ing design ground m otion param eters of seism ic safety evaluation for engineering sites
LIN Jian—sheng CHEN Jun-feng LIN Zi ̄ian XIE We-Jie HE Xing-yuan
研究中基于一个典型场地计算剖面 ,采用一维等效线性化模型并 通过逐项 变换某些研究参数 的方法 , 研究了有关方 面对设计地震动参 数可 能产生 的影响及存在 的误差 和相应 的规律 ,有关研究结果 对合
理确定设计地震动参数具有一定的实用价值 。 关键词 :设计地震动参数 ;反应谱 ;选择标准 ;影响因素
2 关 于基 岩地 震动 时程 的输入 问题
在 场地地 震安 全性评 价 中 ,为合理 地 反映建 筑场址 的场地 特征 ,在选 择设计 地震 动参 数时通 常采 用 以地 震危险性分析得到的场址基岩水平加速度反应谱 和峰值等地表基岩地震动特征为 目标函数 ,通过三角级数 构成 一个平稳 的高斯过 程 ,然后 乘 以时间 域非平 稳强度 包络 函数得 到非平 稳 的基岩 地震动 加速度 时间过 程 , 为考 虑相 位随机性 的影 响对应 每种 超越 概 率 分别 输 入三 个 以上 不 同随机 相 位 并得 到 相 应 的基 岩地 震 动 时 程 。 由此 可见基 岩水平 加速度 反应 谱 曲线 (目标 谱 )、强 度包 络线 函数 和 随机 相位 的选 择 标 准 ,直 接影 响 到 基岩 地震 动时程 的合成 结果 。 2.1 关 于基岩水 平加 速度反 应谱 (目标谱 )的选 择
工程抗震设防标准和设计地震动

第二 水准
中震可修
当遭受相当于本地区抗震设防烈度的地震 影响时,可能损坏,经一般修理或不需修 理仍可继续使用
第三 水准
大震不倒
当遭受高于本地区抗震设防烈度的预估的 罕遇地震影响时,不致倒塌或发生危及生 命的严重破坏
• 实现方法:两阶段设计 20
两阶段设计法
第一阶段设计:按小震作用效应和其他荷载效应的基 本组合验算结构构件的承载能力,以及在小震作用下验 算结构的弹性变形:以满足第一水准抗震设防目标的要 求:
16
三水准地震作用的标定步骤(2)
(3)从概率意义上讲,“小震”就是多遇的地震,出 于我国地震烈度的概率分布符合极值III型,极值分布 的众值为其概率密度函数上的峰点,在极值分布中此 值为众值,所以我们称此地震烈度为众值烈度。从地 震烈度的重现期来看,在设计基准限期50年的众值烈 度的超越核率为63.2%:
(虽然有隔震、控制等措施)
9
抗震设防的重要性
事例1 1976年7月26日在我国一个拥有150万人口的唐山市,
遭遇7.8级地震的袭击,顷刻间整座城市化为一片片瓦 砾,人员死亡高达近25万人,经济损失超百亿元;
1985年一个拥有100余万人口的智利瓦尔帕莱索市虽 遭受了同样7、8级地震的袭击,人员死亡却只有150人, 而且不到一周时间,整个城市就恢复原样。
不能精确的给出怎,必么须确以定概?率为基础进行预测,给
出今后若干年内不同强度地震发生可能性,使用寿
命期内对不同频度和强度的地震,要求结构具有不
同的抵抗能力 。
三水准:“小震”“中震”“大震”
14
抗震设防标准的标定
建筑抗震规范提出了三个烈度水准的抗 震设防要求。
三个烈度水准是依据对我国华北、西北、 西南三个地区45个城镇的地震危险性分析结 果,运用概率的方法对 “小震”、“中震” 与“大震”的概率意义和取值进行了分析并 给出了相应的结果。
地震动参数

峰值地震动幅值是地震振动强度的表示,通常以峰值表示的最多,如峰值加速度、峰值速度。
峰值是指地震动的最大值。
地震动峰值的大小反应了地震过程中某一时刻地震动的最大强度,它直接反映了地震力及其产生的振动能量和引起结构地震变形的大小,是地震对结构影响大小的尺度。
在以烈度为基础作为抗震设防标准时,往往以相应的烈度换算成相应的峰值加速度,例如,中国地震烈度(1980)规定,烈度与峰值加速度和速度的对应关系:建设部(1992)419号文规定了烈度为Ⅶ、Ⅷ、Ⅸ、Ⅹ时,设计时取对应的峰值加速度平均值分别为:0.1,0.2,0.4,0.8g。
反应谱地震动频谱特性就是强震地面运动对具有不同自振周期的结构的响应,反应谱是工程抗震用来表示地动频谱的一种特有的方式,这是由于它是通过单自由度体系的反应来定义的,容易为工程界所接受。
反应谱S(T,ξ)的定义是:具有同一阻尼比ξ的一系列单自由度体系(其自振周期为Ti,i=1,2,…N)的最大反应绝对值S(Ti,ξ)与周期Ti的关系,即S (Ti,ξ),有时也写为S(T)。
或者说干具有相同阻尼特性的,但结构周期不同的单自由度体系,在某一地震作用下的最大反应。
反应谱的形状随a(t)而变,近震小震坚硬场地上的地震动a(t)的反应谱峰值在高频部分,远震大震软厚场地上的a(t)的反应谱峰值在低频部分。
震害经验表明:小震近震近坚硬场地上的地震动容易使刚性结构产生震害,而大震软厚场地上的地震动容易使高柔结构产生震害。
这一规律从地震动的频谱特性去理解就很容易解释,前一种地震动的高频比较丰富,而后一种则以底频含量较强,由于共振效应,前者易使高频结构受到破坏,后者易使底频结构受损。
强震持时强地震动的持续时间在震害及对结构的影响,主要发生在结构反应进入非线性化之后,持时的增加使出现较大永久变形的概率提高,持时愈长,则反应愈大,产生震害的积累效应。
对一般工业民用建筑的抗震设计,利用地震动幅值(强度)就行了,但对重大工程、特殊工程,仅有幅值不行,需要考虑持续时间。
地震动参数在工程抗震设计中的使用

地震动小区划
基于计算地震动参数、场地分类的空间 分布等 确定分区图
Ⅰ
1000
Ⅳ
Ⅰ
Sa (T)(Gal)
Ⅲ Ⅱ
100
0.01
0.1
1
10
T (sec)
地震区划与地震小区划之间的关系
地震区划 地震环境的影响 地震活动性 区域地质环境的影响 地震(动)衰减 给出结果:大范围内的地震动变化,大尺度分区图 地震小区划 重视局部场地条件的影响 区分不同的地震破坏作用 更详细考虑(近场)地震地质环境 表述更详细、小尺度 综合性结果
城市轨道交通结构抗震设计规范范
3.1.3 各抗震设防类别结构的抗震设防标准,应符合下列要求: 标准设防类(丙类):地震作用和抗震措施按本地区抗震 设防烈度确定。 重点设防类(乙类):地震作用按本地区抗震设防烈度确 定,或采用经地震主管部门批准的地震动参数小区划、工程场 地地震安全性评价的结果确定,但不低于本地区抗震设防烈度 确定的地震作用。抗震设防烈度为6度、7度和8度时应按抗震 设防烈度提高一度的要求采取抗震措施,抗震设防烈度为9度 时应按比9度更高的要求采取抗震措施。 特殊设防类(甲类):地震作用应按地震主管部门批准的 工程场地地震安全性评价的地震动参数结果且高于本地区抗震 设防烈度的要求确定。抗震设防烈度为6度、7度和8度时应按 抗震设防烈度提高一度的要求采取抗震措施,抗震设防烈度为 9度时应按比9度更高的要求采取抗震措施。
安评工作需要了解什么?
对评价结果的要求
设计方面的要求
特殊要求:周期、阻尼比、竖向
需要提供的地震动参数、超越概率水平
峰值加速度及加速度反应谱,速度、位移、时程
需要关注的地震地质灾害类型
抗震场地问题

在一次地震中,同一类建筑在不同的场地条件下 会有不同的效应。在相同的场地条件下,不同建筑物 会有不同的反应。
2、建筑场地的地震效应
①场地土层较硬及厚度影响 一般土层软弱,覆盖厚度较大时,反应谱在长周期 部分突出。地震振动时间长,
计地震分组第一组设计基本加速度0.2g,近年最高水位2.0m,其余见图,判别液化严重程度。
[解] (1)对砂土和 细砂作15m范围内的 判断
Ncr N0[0.9 0.1(ds dw )]
3
c
逐点进行判断
第一点:
(2)液化层(砂粉土)计算液化指数
Ile
n i 1
(1
Ni N cri
用非液化全部置换液化土层;
加密法(振冲、挤密、强夯)处理时,在基础边缘 以外的处理宽度,应超过处理深度的1/2,且不小于 基础宽的1/3;
3、部分消除液化的措施
处理后地基液化指数减少,当判别深度15m时,液化 指数小于4,对独立基础和条基尚不应小于基础底下 液化土层特征深度的和基础宽度的较大值;
1、土的液化原理及危害
饱和砂土及粉土在地震荷载作用下,不能排水
导致孔压上升,有效应力变为零,颗粒处于悬浮
状态;
Vse d0 / t
起使液化;
完全液化;
影响液化的因素:
①外部因素 包括震级大小、作用时间、距离;
②土层本身因素 必须饱和,必须是粉土、砂土。
液化引起喷水冒砂,造成大面积地面沉降,开裂。
2、室内土动力试验 动三轴试验 :一般情况,单向振动即可,正
工程勘察报告地震活动性评估与抗震设计建议

工程勘察报告地震活动性评估与抗震设计建议工程勘察报告一、引言本工程勘察报告旨在对地震活动性进行评估,并提出相应的抗震设计建议。
为确保工程安全可靠,减少地震灾害风险,我们参考了相关国内外标准和规范,结合现场实地调研和数据分析,对本工程的地震活动性进行了综合评估。
二、地震活动性评估1.地震活动性概述根据历史地震记录及地质调查资料分析,本地区近年来地震频繁发生,存在着较高的地震活动性。
根据地震监测数据,我们确定了本地区的主要地震参数,包括最大震级、震源深度和断层类型等信息。
2.地震烈度评估结合地震活动性分析结果,我们采用烈度评估方法对本工程的地震烈度进行了评估。
根据相关地震烈度标准和工程特点,我们对各重要构件和结构进行了单独的地震烈度评估,并确定了相应的烈度等级。
3.地震破坏性分析基于地震烈度评估结果,我们进行了地震破坏性分析,以评估各构件和结构在地震作用下的破坏程度。
通过合理的数值模拟和结构分析,我们确定了不同地震烈度下的破坏模式和损伤程度,并为工程的抗震设计提供了依据。
三、抗震设计建议1.结构类型选择根据地震活动性评估和地震破坏性分析结果,我们建议采用某种结构类型,以保证工程在地震作用下有足够的抗震能力和稳定性。
该结构类型应满足相关抗震设计规范的要求,并考虑到工程的特殊需求和地质条件。
2.设计参数确定结合工程的具体情况,我们提出了适用的设计参数,包括地震荷载、结构抗震强度等。
这些参数将根据工程的场地条件、结构形式和使用功能等进行调整和优化,以满足地震设计的要求,并确保工程的抗震性能。
3.结构加固与改造针对现有结构或部分薄弱节点,我们提出了相应的加固与改造方案。
通过采用合适的增加截面、钢筋加固或结构补强措施,可以提高工程的整体抗震性能,降低地震破坏风险。
4.构造耐震要求根据相关抗震规范和设计原则,我们明确了各构件和结构的耐震要求,涉及材料的选用、节点的设置和构造的连续性等。
这些要求将指导施工过程中的实施措施,并保证工程的整体稳定性和安全性。
地震设计加速度反应谱的主要参数

地震设计加速度反应谱的主要参数一、地震场地条件:地震场地条件是描述地震波在地表传播过程中遇到的地质条件和土壤特性。
地震场地条件对地震波的传播、衰减和放大具有重要影响。
常见的地震场地条件包括岩石地、沉积软土地和深厚软土地等。
地震场地条件的不同会导致地震波的频率特性、振幅特性和持续时间等参数发生变化。
二、设计地震动参数:设计地震动参数是指用于描述地震波在地震事件中的主要动力学特性的参数。
主要包括峰值加速度、峰值速度和峰值位移等。
这些参数取决于地震发生的位置、规模和距离等。
在地震工程设计中,通常使用设防地震参数和设计地震动谱。
设防地震参数是在设计过程中用来确定建筑物在地震事件中所需承受的最大地震力。
主要包括地震区划、地震烈度和设防烈度等级等。
地震区划是根据地震活动性和地震地理分布特征将地区划分为不同等级。
地震烈度是对地震破坏程度进行定量评估的参数。
设防烈度等级是根据建筑物的使用功能和重要性等因素来确定的。
设计地震动谱是根据历史地震记录进行统计和分析得到的地震动参数。
地震动谱描述了地震波在其中一点的频率和振幅特性。
常见的设计地震动谱包括周期谱和地震加速度响应谱。
周期谱是通过将地震记录进行傅里叶变换得到的频率-振幅关系曲线。
地震加速度响应谱是通过将地震波输入到结构模型中,模拟结构的反应,得到不同周期下的峰值加速度。
三、结构类型:结构类型是指建筑物的结构形式和特点。
地震设计加速度反应谱需要根据不同的结构类型进行选择和调整。
常见的结构类型包括砖混结构、钢混结构、钢结构和木结构等。
不同结构类型的抗震性能、刚度、周期和阻尼等参数不同,需要根据实际情况进行选择和确定。
四、性能目标:性能目标是指结构在地震力作用下达到的抗震性能要求。
根据不同的结构类型和使用功能,可以设置不同的性能目标。
常见的性能目标包括安全性能、亲密性能和可用性能等。
安全性能是指在设计地震动水平下,结构能够保持不会倒塌或严重破坏的能力。
亲密性能是指结构在地震作用下能够保持基本完好,但可能需要进行维修和修复。
设计地震动参数

设计地震动参数设计地震动参数是指在建筑物和工程结构设计过程中考虑地震作用时所需的地震动相关参数。
这些参数包括地震峰值加速度、设计地震谱、地震作用时间历程等,它们对于结构的抗震性能和安全性起着至关重要的作用。
正确的地震动参数的选择和使用对于建筑物和工程结构的抗震设计至关重要。
设计地震动参数中最为关键的是地震峰值加速度。
地震峰值加速度是指地震过程中地面运动的最大加速度值,它是描述地震动强度的重要指标。
地震峰值加速度的大小对于结构的抗震性能产生着直接的影响,因此需要在设计中进行准确的评估和选择。
地震峰值加速度的确定需考虑地震烈度、地震震级、场地类别等因素,在工程设计中需要基于相关地震动参数计算和确定合适的数值。
设计地震谱是另一个重要的地震动参数。
地震谱是描述地震动频率成分与振幅的函数关系,通过地震谱可以对地震动频率的信息进行分析和描述。
根据地震谱,设计师能够了解在不同频率下地震作用对于结构的影响程度,从而进行合理的抗震设计。
设计地震谱的制定需考虑地震地质条件、场地特性、建筑高度和重要性等因素,需要根据相关规范和设计要求进行准确的选择和应用。
地震作用时间历程也是设计地震动参数中的重要内容。
地震作用时间历程是地震动加速度随时间的变化曲线,它能够反映地震过程中的振动特性和持续时间。
在实际抗震设计中,需要考虑地震作用时间历程对于结构的影响,因此需要合理选择适应的地震作用时间历程。
地震作用时间历程的选择需要考虑场地的特性、地震频谱、结构的动力特性等因素,需要通过相关分析和计算得出合理的结果。
设计地震动参数是抗震设计中不可或缺的重要内容,它直接关系到建筑物和工程结构的抗震性能和安全性。
在确定设计地震动参数时,需要综合考虑地震峰值加速度、设计地震谱、地震作用时间历程等多个方面的因素,确保选择合理、准确的参数进行抗震设计。
通过合理的设计地震动参数选择和应用,能够有效提高建筑物和工程结构的抗震性能,从而保障人们的生命财产安全。
场地地震动参数的确定

场地地震动参数的确定1 场地地震动参数值(1) 场地地表地震动加速度峰值由各场地计算点的每个超越概率下三个不同相位地震动时程输入时计算得到的地表地震加速度峰值。
考虑到场地地层不均匀性,取各场地计算点不同时程加速度峰值平均值较大点结果作为该工程场地设计地震动加速度峰值,结果见表6.3.1。
鉴于50年超越概率为63%的地表设计加速度峰值较小,建议采用50年超越概率为10%的地表设计加速度峰值的三分之一作为设计用值,即分别为2/厘米秒,2/厘米秒。
(2) 场地设计地震动加速度反应谱根据地震动反应谱计算结果分别将计算点按5%阻尼比50年超越概率为63%、10%和2%对反应谱进行综合,参考建筑抗震规范取值形式及安全、经济的原则,考虑到本工程高层建筑特点,在近建筑物卓越周期附近反应谱值的衰减有所控制,设计地震加速度反应谱取如下形式:(0.04)()g c T T Tββββ⎧⎪⎪-⎪⎨⎪⎪⎪⎩m 0m m 1(-1)1+(T -0.04)(T )= 000.040.046g gT s s T T T T T T T s≤≤≤≤T 为反应谱周期;0g T T 、为反应谱拐点周期;β(T )为周期T 时的反应谱值;m β为反应谱最大值;C 为衰减指数。
依据该反应谱的形式和图6.3.1中反应谱曲线确定各场地设计反应谱各参数。
图中折线即为标定的设计反应谱曲线,场地地表的设计反应谱参数见表,max α为地震影响系数。
2结果分析本次工作地震动参数确定的50年超越概率为10%的结果与由《建筑抗震设计规范(GB50011-2001)》确定该工程设计基本地震加速度(0.05g)相比较高,主要原因为获得了对沧口断裂活动性新研究成果的认识,增加了沧口潜在震源区,突出了近场区的地震危险性贡献。
设计地震分组(第二组,)有所差别主要原因是建筑物不同地层对基岩谱放大结果所致。
3场地地震动时程合成结果对归准的5%阻尼比的50年超越概率水平为63%、2%场地设计反应谱依据以上强度包络函数分别合成了不同场地三个不同相位的地表加速度时程共12条,如图6.4.1、。