2020年山东省中考数学试卷(含答案)
山东省东营市2020年中考数学试题(Word版,含答案与解析)
山东省东营市2020年中考数学试卷一、单选题(共10题;共20分)1.-6的倒数是( ). A. 6 B. 16 C. −16 D. -6 【答案】 C【考点】有理数的倒数【解析】【解答】解: −6×(−16)=1故答案为:C .【分析】两数之积等于1的数被叫做倒数.2.下列运算正确的是( )A. (x 3)2=x 5B. (x −y)2=x 2+y 2C. −x 2y 3⋅2xy 2=−2x 3y 5D. −(3x +y)=−3x +y【答案】 C【考点】单项式乘单项式,完全平方公式及运用,去括号法则及应用,幂的乘方【解析】【解答】A : (x 3)2=x 6 ,故此选项不符合题意B : (x −y)2=x 2−2xy+y 2 ,故此选项不符合题意C : −x 2y 3⋅2xy 2=−2x 3y 5 ,故此选项符合题意D : −(3x+y)=−3x −y ,故此选项不符合题意故答案为:C【分析】根据幂的乘方,完全平方,同底数幂的乘法法则逐一判断即可.3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A. -2 B. 2 C. ±2 D. 4【答案】 B【考点】计算器在数的开方中的应用【解析】【解答】4的算术平方根 √4=2 ,故答案为:B .【分析】根据算术平方根的求解方法进行计算即可得解.4.如图,直线 AB 、CD 相交于点O,射线 OM 平分 ∠BOD, 若 ∠AOC =42° ,则 ∠AOM 等于( )A. 159∘B. 161∘C. 169∘D. 138∘【答案】A【考点】邻补角,角平分线的定义【解析】【解答】解:由题意可知:∠AOD=180°-∠AOC=180°-42°=138°,∴∠BOD=180°-∠AOD=42°,又OM是∠BOD的角平分线,∴∠DOM= 12∠BOD=21°,∴∠AOM=∠DOM+∠AOD=21°+138°=159°.故答案为:A.【分析】先求出∠AOD=180°-∠AOC,再求出∠BOD=180°-∠AOD,最后根据角平分线平分角即可求解.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A. 23B. 12C. 13D. 16【答案】C【考点】列表法与树状图法【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴P(两盏灯泡同时发光)26=13,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,其对称轴与x轴交于点C其中A,C两点的横坐标分别为-1和1下列说法错误的是()A. abc<0B. 4a+c=0C. 16a+4b+c<0D. 当x>2时,y随x的增大而减小【答案】B【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】∵开口向下,与y轴交点在正半轴∴a<0,c>0∵A,C两点的横坐标分别为-1和1∴a−b+c=0,−b2a=1∴b=−2a>0,a−(−2a)+c=0∴3a+c=0,abc<0,故A选项不符合题意,B选项符合题意∵A,C两点的横坐标分别为-1和1∴B点横坐标为3∴当x=4时y=16a+4b+c<0,故C选项不符合题意∵当x>1时,y随x的增大而减小∴当x>2时,y随x的增大而减小,故D选项不符合题意故答案为:B.【分析】根据开口方向、对称轴、与y轴交点即可分别判断a、b、c符号,进而判断A选项;由A,C两点的横坐标分别为-1和1可得两个方程,判断B选项;由当x=4时y=16a+4b+c<0判断C选项;由二次函数对称轴及增减性判断D选项.7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A. πB. 2πC. 2D. 1【答案】 D【考点】圆锥的计算【解析】【解答】解:根据题意得12•2π•r•3=3π,解得r=1.故答案为:D.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•3=3π,然后解方程即可.8.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里 B. 48里 C. 24里 D. 12里【答案】B【考点】一元一次方程的实际应用-行程问题【解析】【解答】解:设第一天的路程为x里∴x+x2+x4+x8+x16+x32=378解得x=192∴第三天的路程为x4=1924=48故答案选B【分析】根据题意可设第一天所走的路程为x,用含x的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可.9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A. 12B. 8C. 10D. 13【答案】C【考点】动点问题的函数图象【解析】【解答】由图象可知:点P在A上时,CP=AC=13,点P在AB上运动时,在图象上有最低点,即AB边上的高,为12,点P与点B重合时,CP即BC最长,为13,所以,△ABC是等腰三角形,∴AB的长=2× √132−122=2×5=10故答案为:C【分析】根据图象可知点P沿A→B→C匀速运动到点C,此时AC最长,CP在AB边上先变小后变大,从而可求出AB上的高,从图象可以看出点P运动到点B时CP=CB=13,可知△ABC是等腰三角形,进而得出结论.10.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合) ,对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:① △APE≌△AME;② PM+PN=AC;③ PE2+PF2=PO2;④ △POF∼△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤【答案】 B【考点】三角形全等及其性质,矩形的判定与性质,正方形的性质,三角形全等的判定(ASA ),直角三角形斜边上的中线【解析】【解答】∵四边形ABCD 正方形,AC 、BD 为对角线,∴∠MAE=∠EAP=45°,根据题意MP ⊥AC ,故∠AEP=∠AEM=90°, ∴∠AME=∠APE=45°,在三角形 △APE 与 △AME 中,{∠AEP =∠AEMAE =AE ∠EAP =∠EAM∴ △APE ≌△AME ASA ,故①符合题意;∴AE=ME=EP= 12 MP ,同理,可证△PBF ≌△NBF ,PF=FN= 12 NP ,∵正方形ABCD 中,AC ⊥BD ,又∵PM ⊥AC ,PN ⊥BD ,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF 为矩形,∴PF=OE ,∴OE+AE=PF+PE=NF+ME=AO ,又∵ME=PE= 12 MP ,FP=FN= 12 NP ,OA= 12 AC ,∴ PM+PN=AC ,故②符合题意;∵四边形PEOF 为矩形,∴PE=OF ,在直角三角形OPF 中, OF 2+PF 2=PO 2 ,∴ PE 2+PF 2=PO 2 ,故③符合题意;∵△BNF 是等腰直角三角形,而P 点是动点,无法保证△POF 是等腰直角三角形,故④不符合题意;连接MO 、NO ,在△OEM 和△OEP 中,{OE =OE∠OEM =∠OEP EM =EP∴△OEM ≌△OEP ,OM=OP ,同理可证△OFP≌△OFN,OP=ON,又∵∠MPN=90°,OM=OP=ON,OP=12MO+NO,根据直角三角形斜边中线等于斜边一半,OP= 12MN,∴MO+NO=MN,点O在M、N两点的连线上.故⑤符合题意.故答案为:B.【分析】①根据题意及正方形的性质,即可判断△APE≌△AME;②根据△APE≌△AME及正方形的性质,得ME=EP=AE=12MP,同理可证PF=NF= 12NP,根据题意可证四边形OEPF为矩形,则OE=PF,则OE+AE=PF+PE=NF+ME=AO,AO= 12AC,故证明PM+PN=AC;③根据四边形PEOF为矩形的性质,在直角三角形OPF中,使用勾股定理,即可判断;④△BNF是等腰直角三角形,而P点是动点,无法保证△POF是等腰直角三角形,故④可判断;⑤连接MO、NO,证明OP=OM=ON,根据直角三角形斜边中线等于斜边一半,即可证明.二、填空题(共8题;共8分)11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为________.【答案】2×10−8【考点】科学记数法—表示绝对值较小的数【解析】【解答】因为0.00000002=2×10−8,故答案为:2×10−8.【分析】根据科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.12.因式分解:12a2−3b2=________.【答案】3(2a+b)(2a-b)【考点】提公因式法与公式法的综合运用【解析】【解答】解:12a2−3b2=3(4a2−b2)=3(2a+b)(2a−b).故答案为:3(2a+b)(2a−b).【分析】先提公因式,再按照平方差公式分解即可.13.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是________岁.【答案】14【考点】加权平均数及其计算【解析】【解答】解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.【分析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.14.已知一次函数y=kx+b的图象经过A(1,﹣1),B(﹣1,3)两点,则k________0(填“>”或“<”)【答案】<【考点】一次函数的性质【解析】【解答】∵A点横坐标为1,B点横坐标为-1,根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了,∴k<0.故答案为<.【分析】根据A(1,-1),B(-1,3),利用横坐标和纵坐标的增减性判断出k的符号.15.如果关于x的一元二次方程x2−6x+m=0有实数根,那么m的取值范围是________.【答案】m≤9【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵关于x的一元二次方程x2−6x+m=0有实数根,∴△=b2−4ac≥0,∵a=1,b=−6,c=m,∴(−6)2−4×1×m≥0,∴4m≤36,∴m≤9.故答案为:m≤9.【分析】由一元二次方程根与系数的关键可得:△≥0,从而列不等式可得答案.16.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD= 3PF,△PEF,△PDC,△PAB的面积分别记为S、S1,S2.若S=2,则S1+S2=________.【答案】18【考点】平行四边形的性质,相似三角形的判定与性质【解析】【解答】解:∵PA=3PE,PD=3PF,∴PEPA =PDPF=3,且∠APD=∠EPF,∴△PEF∽△PAD,根据相似三角形面积比等于相似比的平方,且△PEF的面积为2可知,SΔPDA SΔPFE =(PDPF)2=32=9,∴SΔPDA=2×9=18,过P点作平行四边形ABCD的底AD上的高PH,∴SΔPDA=1AD×PH=18,2∴AD×PH=36,即平行四边形ABCD的面积为36,∴S1+S2=S平行四边形ABCD−SΔPAD=36−18=18.故答案为:18.【分析】证明△PEF∽△PAD,再结合△PEF的面积为2可求出△PAD的面积,进而求出平行四边形ABCD 的面积,再用平行四边形ABCD的面积减去△PAD的面积即可求解.17.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为________.【答案】2√2【考点】垂线段最短,含30°角的直角三角形,勾股定理,切线的性质【解析】【解答】解:如图:连接OP、OQ,∵PQ是⊙O的一条切线∴PQ⊥OQ∴PQ2=OP2−OQ2∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,OB=2√3,∠A=30°∴AB=2OB= 4√3,AO=cos∠A·AB= √32×4√3∵S△AOB= 12AO⋅OB=12PO⋅AB∴12×2√3×6=12PO⋅4√3,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ= √OP2−OQ2=√32−12=2√2.故答案为2√2.【分析】如图:连接OP、OQ,根据PQ2=OP2−OQ2,可得当OP⊥AB时,PQ最短;在Rt△AOB中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=−1x,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,······,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2020=________.【答案】2【考点】反比例函数图象上点的坐标特征,与一次函数相关的规律问题【解析】【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为2,A1(2,3),B1(2,−12) ;A2的纵坐标和B1的纵坐标相同为−12,代入y=x+1,得x= −32,可得A2(−32,−12);B2的横坐标和A2的横坐标相同为−32,代入y=−1x得,y= 23,得B2( −32,23) ;A3的纵坐标和B2的纵坐标相同为23,代入y=x+1,得x= −13,故A3(−13,23)B3的横坐标和A3的横坐标相同为−13,代入y=−1x得,y=3,得B3( −13,3)A4的纵坐标和B3的纵坐标相同为3,代入y=x+1,得x=2,所以A4(2,3)…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673⋯⋯1,∴a2020=a1=2,故答案为:2.【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可三、解答题(共7题;共76分)19.(1)计算:√27+(2cos60∘)2020−(12)−2−|3+2√3|;(2)先化简,再求值:(x−2xy−y 2x )÷x2−y2x2+xy,其中x=√2+1,y=√2.【答案】(1)解:√27+(2cos60∘)2020−(12)−2−|3+2√3| =3√3+1−4−3−2√3=√3−6;(2)解:(x−2xy−y 2x )÷x2−y2x2+xy=x2−2xy+y2x ⋅x2+xy x2−y2=(x−y)2x ⋅x(x+y) (x−y)(x+y)=x−y.当x=√2+1,y=√2时,原式=√2+1−√2=1.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;(2)先将括号内的进行通分,再按同分母分式减法计算,将除法转化为乘法,把分子分母因式分解后进行约分得到最简结果,再把x,y的值代入即可.20.如图,在△ABC中,以AB为直径的⊙O交AC于点M弦MN//BC交AB于点E,且ME=3, AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【答案】(1)解:∵ME=3,AE=4,AM=5,∴AE2+ME2=AM2,∴∠AEM=90°,∵MN//BC,∴∠ABC=∠AEM=90°,∵AB为⊙O的直径,∴BC是⊙O的切线.(2)解:如图,连接BM,∵AB为⊙O的直径,∴∠AMB=90°,又∵∠AEM=90∘,∴cos∠BAM=AMAB =AEAM,即5AB =45,∴AB=254,∴⊙O的直径AB的长度为254.故答案为:254.【考点】勾股定理的逆定理,圆周角定理,切线的判定,锐角三角函数的定义【解析】【分析】(1)先用勾股定理的逆定理证明△AEM为直角三角形,且∠AEM=90°,再根据MN∥BC即可证明∠ABC=90°进而求解;(2)连接BM,由AB是直径得到∠AMB=90°,再分别在Rt△AMB和Rt△AEM中使用∠A的余弦即可求解.21.如图,C处是一钻井平台,位于东营港口A的北偏东60∘方向上,与港口A相距60√2海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45∘方向,则从B到达C需要多少小时?【答案】解:如图,过点C作CD⊥AB于点D,由题意得:AE//CD,BF//CD,∴∠ACD=∠CAE=60∘,∠BCD=∠CBF=45°,在Rt△ACD中,AC=60√2(海里),∴CD=1AC=30√2(海里),2在Rt△CDB中,CD=30√2(海里),∴BC=√2CD=60,∴60=1.2(小时),50∴从B到达C需要1.2小时.【考点】解直角三角形的应用﹣方向角问题【解析】【分析】过点C作CD⊥AB于点D,在Rt△ACD与Rt△CDB中,利用锐角三角函数的定义求出CD与BC的长,进而求解.22.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.20%,【答案】(1)解:由图形可知:72°占360°的百分比为72360=故调查的总的学生人数为40÷20%=200(名),故答案为:200(名) .(2)解:“非常好”的学生人数为:0.22×200=44(人),总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,故一般的人数为200-44-68-40=48,其频率为48÷200=0.24,同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:(3)解:“非常好”和“较好”的学生的频率为0.22+0.34=0.56,∴该校学生作业情况“非常好”和“较好”的学生一共约1800×0.56=1008(名),故答案为:1008;(4)解:由题意知,列表如下:由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,∴两次抽到的作业本都是非常好的概率为212=16,故答案为:16.【考点】用样本估计总体,频数(率)分布表,扇形统计图,列表法与树状图法【解析】【分析】(1)用72°除360°得到“不好”的学生人数的占比,然后再用40除以该百分比即可得到总共调查的学生人数;(2)先算出“非常好”的人数,然后再用总分数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,最后分别用求出其人数除总人数得到其频率;(3)先算出“非常好”和“较好”的学生的频率,再乘以1800即可求解;(4)采用列表法将所有可能的情况列出,然后再用概率公式求解即可.23.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【答案】(1)解:设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据题意得:18x+6(20−x)=300,解得:x=15,则20−x=20−15=5,则甲、乙两种型号口罩的产量分别为15万只和5万只(2)解:设甲种型号口罩的产量是y万只,则乙种型号口罩的产量是(20−y)万只,根据题意得:12y+4(20−y)≤216,解得: y≤17.设所获利润为w万元,则w=(18−12)y+(6−4)(20−y)=4y+40,由于4>0,所以w随y的增大而增大,即当y=17时,w最大,此时w=4>17+40=108.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元【考点】一次函数的实际应用,一元一次方程的实际应用-销售问题【解析】【分析】(1)设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据该公司三月份的销售收入为300万元列出一元一次方程,从而可以得到甲、乙两种型号的产品分别是多少万只;(2)根据题意,可以得到利润和生产甲种产品数量的函数关系式,再根据公司四月份投入总成本(原料总成本+生产提成总额)不超过216万元,可以得到生产甲种产品数量的取值范围,然后根据一次函数的性质,即可得到应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大,并求出最大利润.24.如图,抛物线y=ax2−3ax−4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)EFDF是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【答案】(1)解:把C(0,2)代入y=ax3−3ax−4a,即−4a=2,解得a=−12∴抛物线的解析式为y=−12x2+32x+2令−12x2+32x+2=0可得: x1=−1,x2=4,∴A(−1,0),B(4,0);(2)解:存在,如图,由题意,点E在y轴的右侧,作EG//y轴,交BC于点G∴CD//EG∴EF DF=EG CD∵ 直线 y =kx +1(k >0) 与 y 轴交于点 D ∴ D(0,1) , ∴CD =2−1=1, ∴EFDF =EG设 BC 所在直线的解析式为 y =mx +n(m ≠0) , 将 B(4,0),C(0,2) 代入上述解析式得: {0=4m +n2=n 解得: {m =−12n =2∴BC 的解析式为 y =−12x +2 设 E(t,−12t 2+32t +2)则 G(t,−12t +2) ,其中 0<t <4 .∴EG =−12t 2+32t +2−(−12x +2)=−12(t −2)2+2∴EF DF =−12(t −2)2+2, ∵−12<0,∴抛物线开口方向朝下∴当 t =2 时,有最大值,最大值为 2 . 将t=2代入 −12t 2+32t +2 =-2+3+2=3 ∴点 E 的坐标为 (2,3) .【考点】待定系数法求二次函数解析式,平行线分线段成比例,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)直接将 C(0,2) 代入 y =ax 3−3ax −4a 求出a ,即可确定抛物线解析式;然后令y=0求得x 的值,再结合已知即可确定A 、B 的坐标;(2)作 EG//y 轴,交 BC 于点 G ,由平行线等分线段定理可得 EFDF =EGCD ;再根据题意求出D 点坐标和CD 的长,可得 EFDF =EG ;然后再根据B 、C 的坐标求出直线BC 的解析式;再设 E(t,−12t 2+32t +2) ,则 G(t,−12t +2) ,运用两点间距离公式求得EG ,然后再代入 EFDF =EG ,根据二次函数的性质即可说明25.如图1,在等腰三角形 ABC 中, ∠A =120∘,AB =AC, 点 D 、E 分别在边 AB 、AC 上, AD =AE, 连接 BE, 点 M 、N 、P 分别为 DE 、BE 、BC 的中点.(1)观察猜想图1中,线段NM、NP的数量关系是________,∠MNP的大小为________;(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】(1)相等;60°(2)解:△MNP是等边三角形.理由如下:如图,由旋转可得∠BAD=∠CAE在△ABD和△ACE中{AB=AC∠BAD=∠CAEAD=AE∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE.∵点M、N分别为DE、BE的中点,∴MN是△EBD的中位线,∴MN=12BD且MN//BD同理可证PN=12CE且PN//CE∴MN=PN,∠MNE=∠DBE,∠NPB=∠ECB∵∠MNE=∠DBE=∠ABD+∠ABE=∠ACE+∠ABE∠ENP=∠EBP+∠NPB=∠EBP+∠ECB∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBP+∠ECB =∠ABC+∠ACB=60°.在△MNP中∵∠MNP= 60°,MN=PN∴△MNP是等边三角形.(3)解:根据题意得: BD≤AB+AD即BD≤4,从而MN≤2△MNP的面积=12MN⋅√32MN=√34MN2.∴△MNP面积的最大值为√3.【考点】三角形的外角性质,等腰三角形的性质,等边三角形的判定,旋转的性质,三角形的中位线定理【解析】【解答】解:(1)由题意知:AB=AC,AD=AE,且点M、N、P分别为DE、BE、BC的中点,∴BD=CE,MN //BD,NP //CE,MN= 12BD,NP= 12EC∴MN=NP又∵MN //BD,NP //CE,∠A= 120°,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C= 30°根据三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C = 60∘.【分析】(1)根据"∠A=120∘,AB=AC,AD=AE,点M、N、P分别为DE、BE、BC的中点",可得MN //BD,NP //CE ,根据三角形外角和定理,等量代换求出∠MNP.(2)先求出△ABD≌△ACE,得出∠ABD=∠ACE,根据MN //BD,NP //CE ,和三角形外角和定理,可知MN=PN,再等量代换求出∠MNP,即可求解.(3)根据BD≤AB+AD,可知BD最大值,继而求出△MNP面积的最大值。
2020年山东省青岛市中考数学试卷和答案
2020年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4 B.﹣4 C.D.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9 4.(3分)如图所示的几何体,其俯视图是()A.B.C.D.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).甲乙应聘者项目学历98经验76工作态度5711.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF 交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC =16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C 之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD 上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w (元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a (1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S 与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE 的平分线上?若存在,求出t的值;若不存在,请说明理由.答案一、选择题(本大题共8小题,每小题3分,共24分)1.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.3.【解答】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.4.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.6.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.7.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.8.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y=x﹣b的图象经过二三四象限.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.【解答】解:原式=(2﹣)×=×=4,故答案为:4.10.【解答】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.11.【解答】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.12.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.13.【解答】解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴=,∴AE===2,∴=,∴AH=,即点A到DF的距离为,故答案为:.14.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.【解答】解:如图所示:⊙O即为所求.四、解答题(本大题共9小题,共74分)16.【解答】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.17.【解答】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.18.【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF ⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×≈4.3(海里).答:观测塔A与渔船C之间的距离约为4.3海里.19.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.【解答】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9﹣3+1=7种不同情况;故答案为:7;(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n﹣1=2n﹣1,这2个整数之和共有2n﹣1﹣3+1=2n﹣3种不同情况;故答案为:2n﹣3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9﹣6+1=4种不同情况;故答案为:4;(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n+(n ﹣1)+(n﹣2)=3n﹣3,这3个整数之和共有3n﹣3﹣6+1=3n ﹣8种不同结果,故答案为:3n﹣8;探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n+(n ﹣1)+(n﹣2)+(n﹣3)=4n﹣6,因此这4个整数之和共有4n ﹣6﹣10+1=4n﹣15种不同结果,归纳总结:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+…+a=,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)+…+(n﹣a+1)=na﹣,因此这a个整数之和共有na﹣﹣+1=a(n﹣a)+1种不同结果,故答案为:a(n﹣a)+1;问题解决:将n=100,a=5,代入a(n﹣a)+1得;5×(100﹣5)+1=476,故答案为:476;拓展延伸:(1)设从1,2,3,…,36这36个整数中任取a个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a(36﹣a)+1=204,解得,a=7或a=29;答:从1,2,3,…,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n+1)个连续整数中任取a个整数,这a 个整数之和共有a(n+1﹣a)+1,故答案为:a(n+1﹣a)+1.24.【解答】解:(1)∵AB∥CD,∴,∴,∴CM=,∵点M在线段CQ的垂直平分线上,∴CM=MQ,∴1×t=,∴t=;(2)如图1,过点Q作QN⊥AF于点N,∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,∴AC===10cm,EF===10cm,∵CE=2cm,CM=cm,∴EM===,∵sin∠PAH=sin∠CAB,∴,∴,∴PH=t,同理可求QN=6﹣t,∵四边形PQNH是矩形,∴PH=NQ,∴6﹣t=t,∴t=3;∴当t=3时,四边形PQNH为矩形;(3)如图2,过点Q作QN⊥AF于点N,由(2)可知QN=6﹣t,∵cos∠PAH=cos∠CAB,∴,∴,∴AH=t,∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,∴S=×6×(8﹣t+6+8﹣t+)﹣××[6﹣(6﹣t)]﹣×(6﹣t)(8﹣t+6)=﹣t2+t+;(4)存在,理由如下:如图3,连接PF,延长AC交EF于K,∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,∴△ABC≌△EBF(SSS),∴∠E=∠CAB,又∵∠ACB=∠ECK,∴∠ABC=∠EKC=90°,∵S△CEM=×EC×CM=×EM×CK,∴CK==,∵PF平分∠AFE,PH⊥AF,PK⊥EF,∴PH=PK,∴t=10﹣2t+,∴t=,∴当t=时,使点P在∠AFE的平分线上.观沧海两汉:曹操东临碣石,以观沧海。
2020年山东省济南市中考数学试卷(含答案解析)
2020年山东省济南市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.−2的绝对值是()A. 2B. −2C. ±2D. √22.如图所示的几何体,其俯视图是()A. B. C. D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A. 0.215×108B. 2.15×107C. 2.15×106D. 21.5×1064.如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A. 35°B. 45°C. 55°D. 70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A. 每月阅读课外书本数的众数是45B. 每月阅读课外书本数的中位数是58C. 从2到6月份阅读课外书的本数逐月下降D. 从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A. (−2a3)2=4a6B. a2⋅a3=a6C. 3a+a2=3a3D. (a−b)2=a2−b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A′B′C′,那么点B的对应点B′的坐标为()A. (1,7)B. (0,5)C. (3,4)D. (−3,2)9.若m<−2,则一次函数y=(m+1)x+1−m的图象可能是()A. B. C. D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A. 52B. 3C. 4D. 511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A. 2.6mB. 2.8mC. 3.4mD. 4.5m12.已知抛物线y=x2+(2m−6)x+m2−3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M 的纵坐标为t,若t≥−3,则m的取值范围是()A. m≥32B. 32≤m≤3 C. m≥3 D. 1≤m≤3二、填空题(本大题共6小题,共24.0分)13.分解因式:2a2−ab=______.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是______.15.代数式3x−1与代数式2x−3的值相等,则x=______.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为______.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为______米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B′处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB′上的点C′处,EF为折痕,连接AC′.若CF=3,则tan∠B′AC′=______.三、解答题(本大题共9小题,共78.0分)19.计算:(π2)0−2sin30°+√4+(12)−1.20.解不等式组:{4(2x−1)≤3x+1①2x >x−32②,并写出它的所有整数解.21.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是______;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2√3),反比例函数y=kx(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=12∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是______.线段BE与线段CF的数量关系是______;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.如图1,抛物线y=−x2+bx+c过点A(−1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.答案和解析1.【答案】A【解析】解:−2的绝对值是2;故选:A.根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数−a,解答即可.此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.根据俯视图是从物体上面看所得到的图形判断即可.本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.【答案】B【解析】解:将21500000用科学记数法表示为2.15×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵AB//CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°−35°=55°,故选:C.由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD 的度数.本题主要考查了平行线的性质以及垂线的定义,属于基础题型.5.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形的,故本选项符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了轴对称与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【答案】B【解析】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.本题考查折线统计图、众数及中位数的定义等知识点,掌握众数、中位数的定义,并能从统计图中得到必要的信息是解决本题的关键.7.【答案】A【解析】解:∵(−2a3)2=4a6,故选项A正确;∵a2⋅a3=a5,故选项B错误;∵3a+a2不能合并,故选项C错误;∵(a−b)2=a2−2ab+b2,故选项D错误;故选:A.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查积的乘方、同底数幂的乘法、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.8.【答案】C【解析】解:由坐标系可得B(−3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B′的坐标为(3,1+3),即(3,4),故选:C.根据轴对称的性质和平移规律求得即可.此题主要考查了坐标与图形的变化--对称和平移,关键是掌握点的坐标的变化规律.9.【答案】D【解析】解:∵m<−2,∴m+1<0,1−m>0,所以一次函数y=(m−1)x+1−m的图象经过一,二,四象限,故选:D.由m<−2得出m+1<0,1−m>0,进而利用一次函数的性质解答即可.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b> 0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】D【解析】解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=12⋅BC⋅AD=10,∴AD=10×24=5,∴BM+MD长度的最小值为5.故选:D.由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.11.【答案】B【解析】解:∵FD⊥AB,AC⊥EB,∴DF//AC,∵AF//EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB⋅sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.44(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=DFDE,∴DE≈1.120.4=2.8(m),故选:B.首先证明四边形ACDF是矩形,求出AC,DF即可解决问题.本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.【答案】A【解析】解:当对称轴在y 轴的右侧时,{2m −6<0−2m−62≤24(m 2−3)−(2m−6)24≥−3,解得32≤m <3,当对称轴是y 轴时,m =3,符合题意,当对称轴在y 轴的左侧时,2m −6>0,解得m >3, 综上所述,满足条件的m 的值为m ≥32. 故选:A .根据题意,x =−b2a ≤2,4ac−b 24a≥−3本题考查二次函数图形与系数的关系,二次函数图象上的点的坐标特征,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.13.【答案】a(2a −b)【解析】解:2a 2−ab =a(2a −b). 故答案为:a(2a −b).直接提取公因式a ,进而得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【答案】25【解析】解:共有球3+2=5个,白球有2个, 因此摸出的球是白球的概率为:25. 故答案为:25.让白球的个数除以球的总数即为摸到白球的概率.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.15.【答案】7【解析】解:根据题意得:3x−1=2x−3, 去分母得:3x −9=2x −2, 解得:x =7,经检验x =7是分式方程的解.故答案为:7.根据题意列出分式方程,求出解即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.【答案】36【解析】解:∵正六边形的内角是120度,阴影部分的面积为24π, 设正六边形的边长为r , ∴120π×r 2360×2=24π,解得r =6.则正六边形的边长为6.根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式计算即可.本题考查了扇形面积的计算.本题的关键是根据多边形的内角和公式求出扇形的圆心角.17.【答案】1【解析】解:设道路的宽为x m ,根据题意得: (10−x)(15−x)=126,解得:x 1=1,x 2=24(不合题意,舍去), 则道路的宽应为1米; 故答案为:1.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.18.【答案】14【解析】解:连接AF ,设CE =x ,则C′E =CE =x ,BE =B′E =10−x , ∵四边形ABCD 是矩形,∴AB =CD =8,AD =BC =10,∠B =∠C =∠D =90°, ∴AE 2=AB 2+BE 2=82+(10−x)2=164−20x +x 2, EF 2=CE 2+CF 2=x 2+32=x 2+9, 由折叠知,∠AEB =∠AEB′,∠CEF =∠C′EF ,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164−20x+x2+x2+9=2x2−20x+173,∵AF2=AD2+DF2=102+(8−3)2=125,∴2x2−20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=8−6=2,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E−C′E=(10−4)−4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B′AC′=B′C′A′B′=28=14.故答案为:14.连接AF,设CE=x,用x表示AE、EF,再证明∠AEF=90°,由勾股定理得通过AF进行等量代换列出方程便可求得x,再进一步求出B′C′,便可求得结果.本题主要考查了矩形的性质,折叠的性质,勾股定理,解直角三角形的性质,关键是利用勾股定理列出方程.19.【答案】解:原式1−2×12+2+2=1−1+2+2=4.【解析】直接利用负整数指数幂的性质以及零指数幂的性质等知识分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:{4(2x−1)≤3x+1①2x>x−32②,解不等式①得:x≤1,解不等式②得:x>−1,∴不等式组的解集为−1<x≤1,∴不等式组的所有整数解为0,1.【解析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.【答案】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD//BC,∴∠EAC=∠FCO,在△AOE和△COF中{∠EAO=∠FCOAO=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF.【解析】利用平行四边形的性质得出AO=CO,AD//BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.22.【答案】0.10.35108°【解析】解:(1)根据频数分布直方图可知:a=4÷40=0.1,因为40×25%=10,所以b=(40−4−12−10)÷40=14÷40=0.35,故答案为:0.1;0.35;(2)如图,即为补全的频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×1240=108°;故答案为:108°;(4)因为2000×40−440=1800,所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.(1)用调查总人数减去其他小组的频数即可求得a值;(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;(3)用总人数乘以达标率即可.此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.23.【答案】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴ADAC=ACAB,∴AC2=AD⋅AB=2×3=6,∴AC=√6.【解析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB 的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.24.【答案】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,{3000a+3500b=32000(3400−3000)a+(4000−3500)b=4400,解得,{a=6b=4,答:营业厅购进A、B两种型号手机分别为6部、4部;(2)设购进A种型号的手机x部,则购进B种型号的手机(30−x)部,获得的利润为w元,w=(3400−3000)x+(4000−3500)(30−x)=−100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30−x≤2x,解得,x≥10,∵w=−100x+15000,k=−100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30−x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.【解析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B 两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.25.【答案】解:(1)∵B(2,2√3),则BC=2,而BD =12,∴CD =2−12=32,故点D(32,2√3),将点D 的坐标代入反比例函数表达式得:2√3=k32,解得k =3√3,故反比例函数表达式为y =3√3x,当x =2时,y =3√32,故点E(2,3√32);(2)由(1)知,D(32,2√3),点E(2,3√32),点B(2,2√3),则BD =12,BE =√32,故BD BC=122=14,EB AB=√322√3=14=BD BC, ∴DE//AC ;(3)①当点F 在点C 的下方时,如下图,过点F 作FH ⊥y 轴于点H ,∵四边形BCFG 为菱形,则BC =CF =FG =BG =2, 在Rt △OAC 中,OA =BC =2,OB =AB =2√3, 则tan∠OCA =AO CO=22√3=√33,故∠OCA =30°,则FH =12FC =1,CH =CF ⋅cos∠OCA =2×√32=√3,故点F(1,√3),则点G(3,√3), 当x =3时,y =3√3x=√3,故点G 在反比例函数图象上;②当点F 在点C 的上方时, 同理可得,点G(1,3√3),同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(3,√3)或(1,3√3),这两个点都在反比例函数图象上.【解析】(1)求出D(32,2√3),再用待定系数法即可求解; (2)证明EBAB =BD BC,即可求解;(3)①当点F 在点C 的下方时,求出FH =1,CH =√3,求出点F(1,√3),则点G(3,√3),即可求解;②当点F 在点C 的上方时,同理可解.此题为反比例函数综合题,涉及到菱形的性质、解直角三角形、矩形的性质、平行线分线段成比例等知识点,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.26.【答案】∠EAB =∠CBA CF =12BE【解析】解:(1)①如图1中,连接BE ,设DE 交AB 于T .∵CA =CB ,∠CAB =45°, ∴∠CAB =∠ABC =45°,∴∠ACB =90°,∵∠ADE =12∠ACB =45°,∠DAE =90°,∴∠ADE =∠AED =45°, ∴AD =AE ,∵∠DAT =∠EAT =45°, ∴AT ⊥DE ,DT =ET , ∴AB 垂直平分DE , ∴BD =BE ,∵∠BCD =90°,DF =FB , ∴CF =12BD ,∴CF =12BE.∵∠CBA=45°,∠EAB=45°,∴∠EAB=∠ABC.故答案为:∠EAB=∠ABC,CF=12BE.②结论不变.解法一:如图2−1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,设AD=AE=y.FM=x,DM=a,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN//AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴△CMF≌△BMN(SAS),∴CF=BN,∵BE=2BN,∴CF=12BE.解法二:如图2−2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC//DE,∵∠ACB=∠CBT=90°,∴AC//BT//BD,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,∵△GCT是等腰直角三角形,∴CF=FG=FT,∴CF=12BE.(2)结论:BE=2√3CF.理由:如图3中,取AB的中点T,连接CT,FT.∵CA=CB,∴∠CAB=∠CBA=30°,∠ACB=120°,∵AT=TB,∴CT⊥AB,∴AT=√3CT,∴AB=2√3CT,∵DF=FB,AT=TB,∴TF//AD,AD=2FT,∴∠FTB=∠CAB=30°,∵∠CTB=∠DAE=90°,∴∠CTF=∠BAE=60°,∵∠ADE=12∠ACB=60°,∴AE=√3AD=2√3FT,∴ABCT =AEFT=2√3,∴△BAE∽△CTF,∴BECF =BACT=2√3,∴BE=2√3CF.(1)①如图1中,连接BE,设DE交AB于T.首先证明BD=BE,再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2−1中,取AB的中点M,BE的中点N,连接CM,MN.证明△CMF≌△BMN(SAS)可得结论.解法二:如图2−2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.(2)结论:BE=2√3CF.如图3中,取AB的中点T,连接CT,FT.证明△BAE∽△CTF可得结论.本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.27.【答案】解:(1)将点A、B的坐标代入抛物线表达式得{−1−b+c=0−9+3b+c=0,解得{b=2c=3,故抛物线的表达式为y=−x2+2x+3,当x=0时,y=3,故点C(0,3);(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC=√(0+1)2+(3−0)2=√10,同理可得:AD=√a2+4,CD=√1+(a−3)2,①当CD=AD时,即√a2+4=√1+(a−3)2,解得a=1;②当AC=AD时,同理可得a=±√6(舍去负值);故点D的坐标为(1,1)或(1,√6);(3)∵E(m,0),则设点M(m,−m2+2m+3),设直线BM的表达式为y=sx+t,则{−m2+2m+3=sm+t0=3s+t,解得{s=−1m+1t=3m+1,故直线BM的表达式为y=−1m+1x+3m+1,当x=0时,y=3m+1,故点N(0,3m+1),则ON=3m+1;S1=12×AE×y M=12×(m+1)×(−m2+2m+3),2S2=ON⋅x M=3m+1×m=S1=12×(m+1)×(−m2+2m+3),解得m=−2±√7(舍去负值),经检验m=√7−2是方程的根,故m=√7−2.【解析】(1)用待定系数法即可求解;(2)若△ACD是以∠DCA为底角的等腰三角形,则可以分CD=AD或AC=AD两种情况,分别求解即可;(3)S1=12×AE×y M,2S2=ON⋅x M,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.。
2020年山东省聊城市中考数学试卷含答案解析
2020年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣2.如图所示的几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b25.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分6.计算÷3×的结果正确的是()A.1B.C.5D.97.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC =2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.50512.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:x(x﹣2)﹣x+2=.14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.15.计算:(1+)÷=.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(7分)解不等式组并写出它的所有整数解.19.(8分)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.20.(8分)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.21.(8分)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.22.(8分)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.(8分)如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△P AB的面积为18,求出点P的坐标.24.(10分)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.25.(12分)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.2020年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.2.如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看,是一个矩形,矩形的靠右边有一条纵向的实线,故选:C.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【解答】解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分【解答】解:把这些数据从小到大排列,最中间的两个数是第15、16个数的平均数,所以全班30名同学的成绩的中位数是:=94;96出现了10次,出现的次数最多,则众数是96,所以这些成绩的中位数和众数分别是94分,96分.故选:B.6.计算÷3×的结果正确的是()A.1B.C.5D.9【解答】解:原式=====1.故选:A.7.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC===5,∴sin∠ACH==,故选:D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π【解答】解:连接OD,BC,∵CD⊥AB,OC=OD,∴DM=CM,∠COB=∠BOD,∵OC∥BD,∴∠COB=∠OBD,∴∠BOD=∠OBD,∴OD=DB,∴△BOD是等边三角形,∴∠BOD=60°,∴∠BOC=60°,∵DM=CM,∴S△OBC=S△OBD,∵OC∥DB,∴S△OBD=S△CBD,∴S△OBC=S△DBC,∴图中阴影部分的面积==2π,故选:B.10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m【解答】解:设底面半径为rm,则2πr=,解得:r=,所以其高为:=m,故选:C.11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.505【解答】解:由图形可知图ⓝ的地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.12.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1【解答】解:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=B′C=,∵B′D=2,∴DF=2+,过D作DE⊥BC于E,∴DE=DF=×(2+)=+1,故选:D.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.15.计算:(1+)÷=﹣a.【解答】解:原式=•a(a﹣1)=•a(a﹣1)=﹣a.故答案为:﹣a.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.【解答】解:画树状图如下:由树状图知,共有9种等可能结果,其中抽到同一类书籍的有3种结果,所以抽到同一类书籍的概率为=,故答案为:.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE===2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(7分)解不等式组并写出它的所有整数解.【解答】解:,解不等式①,x<3,解不等式②,得x≥﹣,∴原不等式组的解集为﹣≤x<3,它的所有整数解为0,1,2.19.(8分)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为120;统计图中的a=12,b=36;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.【解答】解:(1)18÷15%=120(人),因此样本容量为120;a=120×10%=12(人),b=120×30%=36(人),故答案为:120,12,36;(2)E组频数:120﹣18﹣12﹣30﹣36=24(人),补全条形统计图如图所示:(3)2500×=625(人),答:该校2500名学生中喜爱“葫芦雕刻”的有625人.20.(8分)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.【解答】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函数,k=﹣6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500﹣3500=2000(棵),w=﹣6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.21.(8分)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.22.(8分)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43≈28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.(8分)如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△P AB的面积为18,求出点P的坐标.【解答】解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,故反比例函数表达式为:y=﹣,将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),将点A、B的坐标代入一次函数表达式得,解得,故直线的表达式为:y=﹣3x﹣3;(2)设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,则S△P AB=PE•CA+PE•BD=PE PE=PE=18,解得:PE=4,故点P的坐标为(3,0)或(﹣5,0).24.(10分)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.【解答】(1)证明:连接OD、BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴D为AC中点,∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O的切线;(2)由(1)知BD是AC的中线,∴AD=CD==3,∵O的半径为5,∴AB=6,∴BD===,∵AB=AC,∴∠A=∠C,∵∠ADB=∠CED=90°,∴△CDE∽△ABD,∴,即=,∴DE=3.25.(12分)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)将点A(﹣1,0),B(4,0),代入y═ax2+bx+4,得:,解得:,∴二次函数的表达式为:y=﹣x2+3x+4,当x=0时,y=4,∴C(0,4),设BC所在直线的表达式为:y=mx+n,将C(0,4)、B(4,0)代入y=mx+n,得:,解得:,∴BC所在直线的表达式为:y=﹣x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=﹣x2+3x+4=﹣(x﹣)2+,∴点D的坐标为:(,),将x=代入y=﹣x+4,即y=﹣+4=,∴点E的坐标为:(,),∴DE=﹣=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,由DE=PF得:﹣t2+4t=,解得:t1=(不合题意舍去),t2=,当t=时,﹣t2+3t+4=﹣()2+3×+4=,∴点P的坐标为(,);(3)存在,理由如下:如图2所示:由(2)得:PF∥DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∽△CDE,∴=,∵C(0,4)、E(,),∴CE==,由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),∴CF==t,∴=,∵t≠0,∴(﹣t+4)=3,解得:t=,当t=时,﹣t2+3t+4=﹣()2+3×+4=,∴点P的坐标为:(,).。
2020年山东省青岛市中考数学试卷(含解析)印刷版
2020年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4B.﹣4C.D.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣94.(3分)如图所示的几何体,其俯视图是()A.B.C.D.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者项目甲乙学历98经验76工作态度5711.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.2020年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4B.﹣4C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.【分析】根据中心对称图形的概念结合各图形的特点求解.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.4.(3分)如图所示的几何体,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.8.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.【分析】根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出<0,﹣b<0,即可得出一次函数y=x﹣b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y =x﹣b的图象经过二三四象限.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=4.【分析】先化简括号内的二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:原式=(2﹣)×=×=4,故答案为:4.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么乙将被录用(填甲或乙).应聘者项目甲乙学历98经验76工作态度57【分析】根据加权平均数的定义列式计算,比较大小,平均数大者将被录取.【解答】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.11.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.【分析】根据反比例函数系数k的几何意义求得k的值,即可求得反比例函数的解析式,代入点P,即可求得a.【解答】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.【分析】先令y=0,得出关于x的一元二次方程,由△>0得方程有两个不相等的实数根,即抛物线与x轴有两个不同的交点.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【分析】解法一:根据正方形的性质得到AO=DO,∠ADC=90°,求得∠ADE=90°,根据直角三角形的性质得到DF=AF=EF=AE,根据三角形中位线定理得到FG=DE=1,求得AD=CD=4,过A作AH⊥DF于H,根据相似三角形的性质和勾股定理即可得到结论.解法二:同理得FG的长,利用勾股定理计算DF的长,最后根据△ADF的面积列等式可得AH的长.【解答】解:解法一:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=3,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,∴AE===2.过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△EAD,∴=,∴=,∴AH=,即点A到DF的距离为,解法二:在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=3,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,∴DG=2,∴DF===,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∴S△ADF=DF•AH=AD•FG,∴AH=,故答案为:.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为24﹣3﹣3π.【分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC =120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.【分析】作出∠A的平分线和线段BC的垂直平分线,找到它们的交点,即为圆心O,再以OB为半径画出⊙O,得出答案.【解答】解:如图所示:⊙O即为所求.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:【分析】(1)先计算括号内分式的加减运算,再将除法转化为乘法,最后约分即可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【分析】用列表法表示所有可能出现的结果情况,进而求出小亮、小颖去的概率,进而判断游戏是否公平.【解答】解:这个游戏公平,理由如下:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)【分析】过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,再根据锐角三角函数即可求出观测塔A与渔船C之间的距离.【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×≈4.3(海里).答:观测塔A与渔船C之间的距离约为4.3海里.19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=20%;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是84.5分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.【分析】(1)求出调查人数,和“90﹣100”的人数即可补全频数直方图;(2)用“70﹣80”的频数10除以调查人数50 即可得出m的值;(3)利用中位数的意义,求出中间位置的两个数的平均数,即可得出中位数;(4)样本估计总体,样本中优秀所占的百分比为,因此估计总体1200人的是优秀的人数.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【分析】(1)根据函数图象中的数据,可以求得游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并计算出同时打开甲、乙两个进水口的注水速度;(2)根据题意和(1)中的结果,可以得到甲进水管的进水速度,从而可以求得单独打开甲进水口注满游泳池需多少小时.【解答】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,AD∥BC,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADB=∠CBD,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?【分析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式为:y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有最大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有7种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有(2n ﹣3)种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有(3n ﹣8)种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有(4n﹣15)种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有[a(n﹣a)+1]种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有476种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有[a(n﹣a+1)+1]种不同的结果.【分析】根据整数的总个数n,与任取的a个整数,分别计算这a个整数之和的最大值、最小值,进而得出共有多少种不同结果情况,然后延伸到一般情况.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5。
山东省烟台市2020年中考数学试题(Word版,含答案与解析)
山东省烟台市2020年中考数学试卷一、单选题(共12题;共24分)1.4的平方根是()A. ±2B. -2C. 2D. √2【答案】A【考点】平方根【解析】【解答】解:4的平方根是±2.故答案为:A.【分析】一个正数的平方根有两个,它们互为相反数,即可求出4的平方根。
2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、是轴对称图形,也是中心对称图形,故此选项不符合题意;故答案为:A.【分析】根据轴对称图形与中心对称图形的概念对每一个选项进行判断即可.3.实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A. aB. bC. cD. 无法确定【答案】A【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,有理数大小比较【解析】【解答】解:观察有理数a,b,c在数轴上的对应点的位置可知,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故答案为:A.【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.4.如图,是一个几何体的三视图,则这个几何体是()A. B.C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故答案为:B.【分析】结合三视图确定各图形的位置后即可确定正确的选项.5.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A. 众数改变,方差改变B. 众数不变,平均数改变C. 中位数改变,方差不变D. 中位数不变,平均数不变【答案】C【考点】平均数及其计算,中位数,方差,众数【解析】【解答】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故答案为:C.【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.6.利用如图所示的计算器进行计算,按键操作错误的是()A. 按键即可进入统计计算状态B. 计算√8的值,按键顺序为:C. 计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D. 计算器显示结果为1时,若按键,则结果切换为小数格式0.3333333333【答案】B【考点】计算器在数的开方中的应用,计算器在有理数混合运算中的应用【解析】【解答】解:A、按键即可进入统计计算状态是正确的,A不符合题意;B、计算√8的值,按键顺序为:,B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,C不符合题意;D、计算器显示结果为13时,若按键,则结果切换为小数格式0.333333333是正确的,D不符合题意;故答案为:B.【分析】根据计算器的按键写出计算的式子.然后求值.7.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A. (√2)nB. (√2)n﹣1C. (√22)n D. (√22)n﹣1【答案】B【考点】等腰三角形的性质,勾股定理,探索数与式的规律【解析】【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=√2;∵△OA2A3为等腰直角三角形,∴OA3=2=(√2)2;∵△OA3A4为等腰直角三角形,∴OA4=2 √2=(√2)3.∵△OA4A5为等腰直角三角形,∴OA5=4=(√2)4,……∴OA n的长度为(√2)n﹣1,故答案为:B.【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.8.量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A. 60°B. 70°C. 80°D. 85°【答案】C【考点】三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=12(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故答案为:C.【分析】根据等腰三角形的性质,三角形的外角的性质即可得到结论.9.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品—“奔跑者”,其中阴影部分的面积为5cm2的是()A. B.C. D.【答案】 D【考点】三角形的面积,平行四边形的性质,等腰直角三角形【解析】【解答】解:最小的等腰直角三角形的面积=18× 12×42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意;故答案为:D.【分析】先求出最小的等腰直角三角形的面积=18× 12×42=1cm2,可得平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,再根据阴影部分的组成求出相应的面积即可求解.10.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A. 1.7B. 1.8C. 2.2D. 2.4【答案】A【考点】三角形的中位线定理【解析】【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF=12AC=1.7,故答案为:A.【分析】由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.11.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A. 12B. 920C. 25D. 13【答案】 D【考点】勾股定理,矩形的性质,轴对称的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF=√AF2−AB2=√25−9=4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=43,∴DE=EF=3﹣x=53,∴tan∠DAE=DEAD =535=13,故答案为:D.【分析】先根据矩形的性质和折叠的性质得AF=AD=BC=5,EF=DE,在Rt△ABF中,利用勾股定理可求出BF的长,则CF可得,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理可得关于x的方程,解方程即可得到x,进一步可得DE的长,再根据正切的定义即可求解.12.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=kx的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A. x<﹣1B. ﹣0.5<x<0或x>1C. 0<x<1D. x<﹣1或0<x<1【答案】 D【考点】一次函数的图象,反比例函数与一次函数的交点问题,比较一次函数值的大小【解析】【解答】解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,∴若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故答案为:D.【分析】根据图象,找出双曲线y3落在直线y1上方,且直线y1落在直线y2上方的部分对应的自变量x的取值范围即可.二、填空题(共6题;共6分)13.5G是第五代移动通信技术,5G网络下载速度可以达到每秒1300000 KB以上,这意味着下载一部高清电影只需1秒,将1300000用科学记数法表示应为________.【答案】1.3×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】1300000= 1.3×106.故答案为:1.3×106.【分析】科学记数法就是将一个数字表示成a×10 n的形式,其中1≤|a|<10,n表示整数.n的值为这个数的整数位数减1,由此即可解答.14.若一个正多边形的每一个外角都是40°,则这个正多边形的内角和等于________.【答案】1260°【考点】多边形内角与外角,正多边形的性质【解析】【解答】∵一个多边形的每个外角都等于40°,∴多边形的边数为360°÷40°=9,∴这个多边形的内角和=180°×(9-2)=1260°【分析】根据任意多边形的外角和都为360°,可以求出多边形的边数,再根据多边形内角和公式180°(n-2),求出内角和。
山东省烟台市2020年中考数学试题(解析版)
2020年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)1.4的平方根是()A.2B.﹣2C.±2D.2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333 7.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 8.量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC 的度数为()A.60°B.70°C.80°D.85°9.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.10.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.411.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.12.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1二、填空题(本大题共6个小题,每小题3分,满分18分)13.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为.14.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为.15.关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是.16.按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.17.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为.18.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.三、解答题(本大题共7个小题,满分66分)19.先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.20.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.21.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?22.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).23.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果(近计算器按键顺序计算结果(近似值)似值)0.178.70.284.31.7 5.73.511.3 24.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.25.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x =,D为第一象限内抛物线上一动点,过点D作DE⊥OA 于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.2020年山东省烟台市中考数学试卷参考答案与试题解析一.选择题(共12小题)1.4的平方根是()A.2B.﹣2C.±2D.【分析】根据平方根的定义,求数4的平方根即可.【解答】解:4的平方根是±2.故选:C.2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.3.实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【解答】解:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故选:A.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.【分析】结合三视图确定各图形的位置后即可确定正确的选项.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.5.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【解答】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333【分析】根据计算器的按键写出计算的式子.然后求值.【解答】解:A、按键即可进入统计计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D不符合题意;故选:B.7.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.8.量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC 的度数为()A.60°B.70°C.80°D.85°【分析】根据等腰三角形的性质,三角形的外角的性质即可得到结论.【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.9.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.【分析】先求出最小的等腰直角三角形的面积=××42=1cm2,可得平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,再根据阴影部分的组成求出相应的面积即可求解.【解答】解:最小的等腰直角三角形的面积=××42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.10.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【分析】由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.11.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD =5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据余弦函数的定义即可求解.【解答】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.12.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1【分析】根据图象,找出双曲线y3落在直线y1上方,且直线y1落在直线y2上方的部分对应的自变量x的取值范围即可.【解答】解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.二.填空题13.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.14.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为1260°.【分析】利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出它的边数,再根据多边形的内角和公式计算即可.【解答】解:正n边形的每个外角相等,且其和为360°,据此可得=40°,解得n=9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.15.关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是m>0且m≠1.【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,解得m>0且m≠1.故答案为:m>0且m≠1.16.按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为18.【分析】根据﹣3<﹣1确定出应代入y=2x2中计算出y的值.【解答】解:∵﹣3<﹣1,∴x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.17.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【分析】画出平面直角坐标系,作出新的AC,BD的垂直平分线的交点P,点P即为旋转中心.【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).18.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;故答案为②③④.三.解答题19.先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.【分析】根据分式四则运算的顺序和法则进行计算,最后代入求值即可.【解答】解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.20.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解答】解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共用25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.21.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?【分析】(1)设销售A型口罩x只,销售B型口罩y只,根据“药店三月份共销售A,B 两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3”列方程组解答即可;(2)根据题意即可得出W关于m的函数关系式;根据题意列不等式得出m的取值范围,再结合根据一次函数的性质解答即可.【解答】解:设销售A型口罩x只,销售B型口罩y只,根据题意得:,解答,经检验,x=4000,y=5000是原方程组的解,∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,10000﹣m≤1.5m,解得m≥4000,∵0.1<0,∴W随m的增大而减小,∵m为正整数,∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,增大利润为5600元.22.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).【分析】(1)证明:连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;(2)根据平行四边形的性质得到BC=AD=2,过O作OH⊥AM于H,则四边形OBCH 是矩形,解直角三角形即可得到结论.【解答】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.23.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用164厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果计算器按键顺序计算结果(近似值)(近似值)0.178.70.284.31.7 5.73.511.3【分析】(1)根据样本平均数即可解决问题.(2)利用等腰三角形的性质求出∠BAC即可.【解答】解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.故答案为176,164.(2)如图2中,∵AB=AC,AF⊥BC,∴BF=FC=50cm,∠F AC=∠F AB,由题意FC=10cm,∴tan∠F AC ===5,∴∠F AC=78.7°,∴∠BAC=2∠F AC=157.4°,答:两臂杆的夹角为157.4°24.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【分析】【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC =CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD (SAS),得出EG=FC,即可得出FC=CD+CE.【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.25.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA 于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.【分析】(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;(3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,此时m=1,点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OD=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即=2或,解得:m=1或﹣2(舍去)或或(舍去),故m=1或.。
2020年山东省东营市中考数学试卷及其答案
2020年山东省东营市中考数学试卷一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣6的倒数是()A.6B.﹣6C.D.﹣2.(3分)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2B.2C.±2D.44.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于()A.159°B.161°C.169°D.138°5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.18.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.1310.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12.(3分)因式分解:12a2﹣3b2=.13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是岁.14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).15.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020=.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.23.(8分)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本124售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B 左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD =AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.2020年山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣6的倒数是()A.6B.﹣6C.D.﹣【解答】解:﹣6的倒数是﹣.故选:D.2.(3分)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2B.2C.±2D.4【解答】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于()A.159°B.161°C.169°D.138°【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【解答】解:画树状图,如图所示:随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,则P(能让两盏灯泡L1、L2同时发光)==.故选:D.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,而a<0,所以4a+c<0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.1【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x 里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【解答】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME(ASA),故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是等腰直角三角形,故④错误;连接OM,ON,∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为2×10﹣8.【解答】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.12.(3分)因式分解:12a2﹣3b2=3(2a+b)(2a﹣b).【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是14岁.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k<0(填“>”或“<”).【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.15.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是m≤9.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴Δ=36﹣4m≥0,解得:m≤9,则m的取值范围是m≤9.故答案为:m≤9.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=18.【解答】解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD =S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020=2.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A 2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B 2的横坐标和A2的横坐标相同为a2=﹣,A 3的纵坐标和B2的纵坐标相同为y3=﹣=,B 3的横坐标和A3的横坐标相同为a3=﹣,A 4的纵坐标和B3的纵坐标相同为y4=﹣=3,B 4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好440.22较好680.34一般480.24不好400.20请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【解答】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好440.22较好680.34一般480.24不好400.20故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A 1A2B CA 1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A 2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B(B,A1)(B,A2)﹣﹣﹣(B,C)C(C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.23.(8分)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本124售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B 左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD =AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.。
山东省青岛市2020年中考数学试题(解析版)
山东省青岛市2020年中考数学试题(解析版)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
2020年山东省济南市中考数学试题及答案
2020年山东省济南市中考数学试题及答案选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的绝对值是A.2B.-2C.±2D.22.如图所示的几何体,其俯视图是A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是A.(-2a3)2=4a6B.a2·a3=a6C.3a+a2=3a3D.(a-b)2=a2-b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为A.(1,7)B.(0,5)C.(3,4)D.(-3,2)9.若m<-2,则一次函数y=(m+1)x+1-m的图象可能是A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E、F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD 长度的最小值为A.5B.3C.4D.5211.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE 与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m-6)x+m2-3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若t ≥-3,则m 的取值范围是A .m ≥32B .32≤m ≤3C .m ≥3D .1≤m ≤3非选择题部分共102分二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.分解因式:2a 2-ab =.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式3x -1与代数式2x -3的值相等,则x =.16.如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m 2,则修建的路宽应为米.18.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan ∠B 'AC =.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(π2)0-2sin30°+4+(12)-1.20.(本小题满分6分)x-1)≤3x+1①2x>x-32②,并写出它的所有整数解.21.(本小题满分6分)如图,在 ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(本小题满分8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生机极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:请结合上述信息完成下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是______;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟铁绳次数达到合格及以上的人数.23.(本小题满分8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,B C.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(本小题满分10分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如下表所示:某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(本小题满分10分)如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,23),反比例函数y =k x (x >0)的图象与BC ,AB 分别交于D ,E ,BD =12.(1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.26.(本小题满分12分)在等腰△ABC 中,AC =BC ,△ADE 是直角三角形,∠DAE =90°,∠ADE =12∠ACB ,连接BD ,BE ,点F 是BD 的中点,连接CF .(1)当∠CAB =45°时.①如图1,当顶点D 在边AC 上时,请直接写出∠EAB 与∠CBA 的数量关系是.线段BE 与线段CF 的数量关系是;②如图2,当顶点D 在边AB 上时,(1)中线段BE 与线段CF 的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;型号/价格进价(元/部)售价(元/部)A30003400B 35004000第25题图第25题备用图学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.第26题图1第26题图2第26题图327.(本小题满分12分)如图1,抛物线y=-x2+bx+c过点A(-1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.数学试题参考答案1-10ACBCD BACDD11-12BA13.a(2a-b);14.25;15.7;16.6;17.1;18.1 419.解:原式=420.解:解不等式①,得x≤1解不等式②,得x>-1∴原不等式组的解集是-1<x≤1∴整数解为0,1。
山东省青岛市2020年中考数学试题(含答案与解析)
A. B. C. D.
7.如图,将矩形 折叠,使点 和点 重合,折痕为 , 与 交于点 若 , ,则 的长为()
A. B. C. D.
8.已知在同一直角坐标系中二次函数 和反比例函数 的图象如图所示,则一次函数 的图象可能是()
归纳结论:
从1,2,3,…, ( 为整数,且 )这 个整数中任取 个整数,这 个整数之和共有______种不同的结果.
问题解决:
从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.
拓展延伸:
(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)
应聘者
项目
甲
乙
学历
9
8
经验
7
6
工作态度
5
7
11.如图,点 是反比例函数 图象上 一点, 垂直于 轴,垂足为 . 的面积为6.若点 也在此函数的图象上,则 __________.
12.抛物线 ( 为常数)与 轴交点的个数是__________.
13.如图,在正方形 中,对角线 与 交于点 ,点 在 的延长线上,连接 ,点 是 的中点,连接 交 于点 .若 , ,则点 到 的距离为__________.
A. B. C. D.
第Ⅱ卷(共96分)
二、填空题(本大题共6小题,每小题3分,共18分)
9.计算 的结果是___.
10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)
2020年山东省青岛市中考数学试卷及答案
2020年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分) 1.(3分)(2020•青岛)﹣4的绝对值是( ) A .4B .﹣4C .14D .−142.(3分)(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .3.(3分)(2020•青岛)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( ) A .2.2×108B .2.2×10﹣8C .0.22×10﹣7D .22×10﹣94.(3分)(2020•青岛)如图所示的几何体,其俯视图是( )A .B .C .D .5.(3分)(2020•青岛)如图,将△ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)6.(3分)(2020•青岛)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ̂=AD ̂,AC 交BD 于点G .若∠COD =126°,则∠AGB 的度数为( )A .99°B .108°C .110°D .117°7.(3分)(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√58.(3分)(2020•青岛)已知在同一直角坐标系中,二次函数y =ax 2+bx 和反比例函数y =cx 的图象如图所示,则一次函数y =ca x ﹣b 的图象可能是( )A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2020•青岛)计算:(√12−√43)×√3=.10.(3分)(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 将被录用(填甲或乙).应聘者 项目 甲 乙学历 9 8 经验 7 6 工作态度5711.(3分)(2020•青岛)如图,点A 是反比例函数y =kx(x >0)图象上的一点,AB 垂直于x 轴,垂足为B ,△OAB 的面积为6.若点P (a ,7)也在此函数的图象上,则a = .12.(3分)(2020•青岛)抛物线y =2x 2+2(k ﹣1)x ﹣k (k 为常数)与x 轴交点的个数是 . 13.(3分)(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 .14.(3分)(2020•青岛)如图,在△ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N .已知∠BAC =120°,AB +AC =16,MN ̂的长为π,则图中阴影部分的面积为 .三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)(2020•青岛)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(2020•青岛)(1)计算:(1a +1b)÷(ab−ba);(2)解不等式组:{2x−3≥−5,13x+2<x.17.(6分)(2020•青岛)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)(2020•青岛)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D 出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125)19.(6分)(2020•青岛)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)(2020•青岛)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF . (1)求证:△ADE ≌△CBF ;(2)连接AF ,CE .当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.22.(10分)(2020•青岛)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD =4m ,宽AB =3m ,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用y =kx 2+m (k ≠0)表示.求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元/m 2.已知GM =2m ,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w (元)最大?最大利润是多少?23.(10分)(2020•青岛)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a 个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC 交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.2020年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分) 1.(3分)(2020•青岛)﹣4的绝对值是( ) A .4B .﹣4C .14D .−14【解答】解:∵|﹣4|=4, ∴﹣4的绝对值是4. 故选:A .2.(3分)(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .【解答】解:A 、不是中心对称图形,不符合题意; B 、不是中心对称图形,不符合题意; C 、不是中心对称图形,不符合题意; D 、是中心对称图形,符合题意. 故选:D .3.(3分)(2020•青岛)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( ) A .2.2×108B .2.2×10﹣8C .0.22×10﹣7D .22×10﹣9【解答】解:将0.000000022用科学记数法表示为2.2×10﹣8. 故选:B .4.(3分)(2020•青岛)如图所示的几何体,其俯视图是( )A.B.C.D.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.(3分)(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【解答】解:如图,△A′B′C′即为所求,则点A 的对应点A ′的坐标是(﹣1,4). 故选:D .6.(3分)(2020•青岛)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ̂=AD ̂,AC 交BD 于点G .若∠COD =126°,则∠AGB 的度数为( )A .99°B .108°C .110°D .117°【解答】解:∵BD 是⊙O 的直径, ∴∠BAD =90°, ∵AB̂=AD ̂, ∴∠B =∠D =45°, ∵∠DAC =12∠COD =12×126°=63°, ∴∠AGB =∠DAC +∠D =63°+45°=108°. 故选:B .7.(3分)(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√5【解答】解:∵矩形ABCD , ∴AD ∥BC ,AD =BC ,AB =CD , ∴∠EFC =∠AEF , ∴AE =AF =3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA=OC=2√5,故选:C.8.(3分)(2020•青岛)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=c x的图象如图所示,则一次函数y=ca x﹣b的图象可能是()A.B.C.D.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴ca<0,﹣b<0,∴一次函数y=ca x﹣b的图象经过二三四象限.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2020•青岛)计算:(√12−√43)×√3=4.【解答】解:原式=(2√3−2√33)×√3=4√33×√3=4,故答案为:4.10.(3分)(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么乙将被录用(填甲或乙).应聘者项目甲乙学历98经验76工作态度 5 7【解答】解:∵x 甲=9×2+7×1+5×32+1+3=203,x 乙=8×2+6+7×32+1+3=436, ∴x 甲<x 乙, ∴乙将被录用, 故答案为:乙.11.(3分)(2020•青岛)如图,点A 是反比例函数y =kx (x >0)图象上的一点,AB 垂直于x 轴,垂足为B ,△OAB 的面积为6.若点P (a ,7)也在此函数的图象上,则a =127.【解答】解:∵AB 垂直于x 轴,垂足为B , ∴△OAB 的面积=12|k |, 即12|k |=6,而k >0, ∴k =12, ∴反比例函数为y =12x, ∵点P (a ,7)也在此函数的图象上, ∴7a =12,解得a =127. 故答案为127.12.(3分)(2020•青岛)抛物线y =2x 2+2(k ﹣1)x ﹣k (k 为常数)与x 轴交点的个数是 2 . 【解答】解:∵抛物线y =2x 2+2(k ﹣1)x ﹣k (k 为常数), ∴当y =0时,0=2x 2+2(k ﹣1)x ﹣k ,∴△=[2(k ﹣1)]2﹣4×2×(﹣k )=4k 2+4>0, ∴0=2x 2+2(k ﹣1)x ﹣k 有两个不相等的实数根,∴抛物线y =2x 2+2(k ﹣1)x ﹣k (k 为常数)与x 轴有两个交点,故答案为:2.13.(3分)(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为4√55.【解答】解:解法一:∵在正方形ABCD 中,对角线AC 与BD 交于点O , ∴AO =DO ,∠ADC =90°, ∴∠ADE =90°, ∵点F 是AE 的中点, ∴DF =AF =EF =12AE , ∴OF 垂直平分AD , ∴AG =DG , ∴FG =12DE =1, ∵OF =2, ∴OG =2, ∵AO =CO , ∴CD =2OG =4, ∴AD =CD =4, 过A 作AH ⊥DF 于H , ∴∠H =∠ADE =90°, ∵AF =DF , ∴∠ADF =∠DAE , ∴△ADH ∽△AED , ∴AH DE=AD AE,∴AE =√AD 2+DE 2=√42+22=2√5, ∴AH 2=2√5,∴AH =4√55, 即点A 到DF 的距离为4√55, 解法二:在正方形ABCD 中,对角线AC 与BD 交于点O , ∴AO =DO ,∠ADC =90°, ∴∠ADE =90°, ∵点F 是AE 的中点, ∴DF =AF =EF =12AE , ∴OF 垂直平分AD , ∴AG =DG , ∴FG =12DE =1, ∵OF =3, ∴OG =2, ∵AO =CO , ∴CD =2OG =4, ∴AD =CD =4, ∴DG =2,∴DF =√DG 2+FG 2=√4+1=√5, 过A 作AH ⊥DF 于H , ∴∠H =∠ADE =90°, ∴S △ADF =12DF •AH =12AD •FG , ∴AH =4√55, 故答案为:4√55.14.(3分)(2020•青岛)如图,在△ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N .已知∠BAC =120°,AB +AC =16,MN ̂的长为π,则图中阴影部分的面积为 24﹣3√3−3π .【解答】解:如图,连接OM 、ON ,∵半圆分别与AB ,AC 相切于点M ,N . ∴OM ⊥AB ,ON ⊥AC , ∵∠BAC =120°, ∴∠MON =60°,∴∠MOB +∠NOC =120°, ∵MN ̂的长为π, ∴60πr 180=π,∴r =3,∴OM =ON =r =3, 连接OA ,在Rt △AON 中,∠AON =30°,ON =3, ∴AN =√3, ∴AM =AN =√3,∴BM +CN =AB +AC ﹣(AM +AN )=16﹣2√3, ∴S 阴影=S △OBM +S △OCN ﹣(S 扇形MOE +S 扇形NOF )=12×3×(BM +CN )﹣(120π×32360) =32(16﹣2√3)﹣3π =24﹣3√3−3π. 故答案为:24﹣3√3−3π.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(4分)(2020•青岛)已知:△ABC .求作:⊙O ,使它经过点B 和点C ,并且圆心O 在∠A 的平分线上.【解答】解:如图所示:⊙O 即为所求.四、解答题(本大题共9小题,共74分)16.(8分)(2020•青岛)(1)计算:(1a+1b)÷(ab−ba);(2)解不等式组:{2x −3≥−5,13x +2<x .【解答】解:(1)原式=(b ab+a ab)÷(a 2ab−b 2ab)=a+b ab ÷a 2−b 2ab=a+bab •ab(a+b)(a−b)=1a−b ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3,则不等式组的解集为x >3.17.(6分)(2020•青岛)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A ,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【解答】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种, ∴P (小颖)=36=12, P (小亮)=36=12, 因此游戏是公平.18.(6分)(2020•青岛)如图,在东西方向的海岸上有两个相距6海里的码头B ,D ,某海岛上的观测塔A 距离海岸5海里,在A 处测得B 位于南偏西22°方向.一艘渔船从D 出发,沿正北方向航行至C 处,此时在A 处测得C 位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125)【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×25=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC=FCsin67°=4×1312=4.33(海里).答:观测塔A与渔船C之间的距离约为4.33海里.19.(6分)(2020•青岛)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题: (1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m = 20% ;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n 名学生测试成绩的中位数是 84.5 分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m =10÷50=20%, 故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为84+852=84.5,因此中位数是84.5, 故答案为:84.5; (4)1200×12+1650=672(人), 答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.(8分)(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?【解答】解:(1)设y 与t 的函数解析式为y =kt +b , {b =1002k +b =380, 解得,{k =140b =100,即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34,∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .21.(8分)(2020•青岛)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF . (1)求证:△ADE ≌△CBF ;(2)连接AF ,CE .当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AD =CB ,∠ADC =∠CBA , ∴∠ADE =∠CBF , 在△ADE 和△CBF 中, {AD =CB∠ADE =∠CBF DE =BF, ∴△ADE ≌△CBF (SAS );(2)当BD 平分∠ABC 时,四边形AFCE 是菱形, 理由:∵BD 平分∠ABC , ∴∠ABD =∠CBD ,∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD ,AD ∥BC , ∴∠ADB =∠CBD , ∴∠ABD =∠ADB , ∴AB =AD ,∴平行四边形ABCD 是菱形, ∴AC ⊥BD ,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.(10分)(2020•青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w (元)最大?最大利润是多少?【解答】解:(1)∵长方形的长AD =4m ,宽AB =3m ,抛物线的最高点E 到BC 的距离为4m . ∴OH =AB =3,∴EO =EH ﹣OH =4﹣3=1, ∴E (0,1),D (2,0),∴该抛物线的函数表达式y =kx 2+1, 把点D (2,0)代入,得k =−14, ∴该抛物线的函数表达式为:y =−14x 2+1; (2)∵GM =2, ∴OM =OG =1, ∴当x =1时,y =34, ∴N (1,34),∴MN =34,∴S 矩形MNFG =MN •GM =34×2=32, ∴每个B 型活动板房的成本是: 425+32×50=500(元).答:每个B 型活动板房的成本是500元; (3)根据题意,得 w =(n ﹣500)[100+20(650−n)10] =﹣2(n ﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有最大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.(10分)(2020•青岛)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有7种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有2n﹣3种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有3n﹣8种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有4n﹣15种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a 个整数之和共有a(n﹣a)+1种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有476种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有a(n﹣a+1)+1种不同的结果.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9﹣3+1=7种不同情况;故答案为:7;(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n﹣1=2n﹣1,这2个整数之和共有2n﹣1﹣3+1=2n ﹣3种不同情况;故答案为:2n﹣3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9﹣6+1=4种不同情况;故答案为:4;(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n+(n﹣1)+(n﹣2)=3n﹣3,这3个整数之和共有3n﹣3﹣6+1=3n﹣8种不同结果,故答案为:3n﹣8;探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)=4n﹣6,因此这4个整数之和共有4n﹣6﹣10+1=4n﹣15种不同结果,归纳总结:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+…+a=a(a+1)2,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)+…+(n﹣a+1)=na−a(a−1)2,因此这a个整数之和共有na−a(a−1)2−a(a+1)2+1=a(n﹣a)+1种不同结果,故答案为:a(n﹣a)+1;问题解决:将n=100,a=5,代入a(n﹣a)+1得;5×(100﹣5)+1=476,故答案为:476;拓展延伸:(1)设从1,2,3,…,36这36个整数中任取a个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a (36﹣a )+1=204,解得,a =7或a =29;答:从1,2,3,…,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n +1)个连续整数中任取a 个整数,这a 个整数之和共有a (n +1﹣a )+1,故答案为:a (n +1﹣a )+1.24.(12分)(2020•青岛)已知:如图,在四边形ABCD 和Rt △EBF 中,AB ∥CD ,CD >AB ,点C 在EB 上,∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,延长DC 交EF 于点M .点P 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时,点Q 从点M 出发,沿MF 方向匀速运动,速度为1cm /s .过点P 作GH ⊥AB 于点H ,交CD 于点G .设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,点M 在线段CQ 的垂直平分线上?(2)连接PQ ,作QN ⊥AF 于点N ,当四边形PQNH 为矩形时,求t 的值;(3)连接QC ,QH ,设四边形QCGH 的面积为S (cm 2),求S 与t 的函数关系式;(4)点P 在运动过程中,是否存在某一时刻t ,使点P 在∠AFE 的平分线上?若存在,求出t 的值;若不存在,请说明理由.【解答】解:(1)∵AB ∥CD ,∴CM BF =CE BE , ∴8−68=CM 6, ∴CM =32,∵点M 在线段CQ 的垂直平分线上,∴CM =MQ ,∴1×t =32,∴t =32;(2)如图1,过点Q 作QN ⊥AF 于点N ,∵∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,∴AC =√AB 2+BC 2=√64+36=10cm ,EF =√BF 2+BE 2=√64+36=10cm , ∵CE =2cm ,CM =32cm ,∴EM =√EC 2+CM 2=√4+94=52, ∵sin ∠P AH =sin ∠CAB ,∴BC AC =PH AP , ∴610=PH 2t ,∴PH =65t ,同理可求QN =6−45t ,∵四边形PQNH 是矩形,∴PH =NQ ,∴6−45t =65t ,∴t =3;∴当t =3时,四边形PQNH 为矩形;(3)如图2,过点Q 作QN ⊥AF 于点N ,由(2)可知QN =6−45t ,∵cos ∠P AH =cos ∠CAB ,∴AH AP =AB AC , ∴AH 2t =810,∴AH =85t ,∵四边形QCGH 的面积为S =S 梯形GMFH ﹣S △CMQ ﹣S △HFQ ,∴S =12×6×(8−85t +6+8−85t +32)−12×32×[6﹣(6−45t )]−12×(6−45t )(8−85t +6)=−1625t 2+15t +572; (4)存在,理由如下:如图3,连接PF ,延长AC 交EF 于K ,∵AB =BE =8cm ,BC =BF =6cm ,AC =EF =10cm ,∴△ABC ≌△EBF (SSS ),∴∠E =∠CAB ,又∵∠ACB =∠ECK ,∴∠ABC =∠EKC =90°,∵S △CEM =12×EC ×CM =12×EM ×CK , ∴CK =2×3252=65, ∵PF 平分∠AFE ,PH ⊥AF ,PK ⊥EF , ∴PH =PK ,∴65t =10﹣2t +65, ∴t =72,∴当t =72时,使点P 在∠AFE 的平分线上.。
2020年山东省泰安中考数学试卷附答案解析版
2020年ft东省泰安市初中学业水平考试
数学答案解析
第Ⅰ卷(选择题)
一、 1. 【答案】A 【解析】根据倒数的概念求解即可.根据乘积等于 1 的两数互为倒数,可直接得到 1 的倒数为2 .故选A.
2 2. 【答案】D 【解析】根据整式的加减乘除法则分开讨论即可得到结果. A. 3xy xy 2xy ,故 A 错误; B. x3 x4 x34 x7 ,故 B 错误; C. x10 x2 x102 x12 ,故 C 错误;
若 BC 恰好平分DBE .求直线 BE 的表达式; 3 如图(2),若点 P 在抛物线上(点 P 在 y 轴右侧),连接 AP 交 BC 于点 F ,连接
BP , S△BFP mS△BAF . ①当 m 1 时,求点 P 的坐标;
2
②求 m 的最大值.
数学试卷 第 7 页(共 8 页)
数学试卷 第 8 页(共 8 页)
问题解决: 3 若 AB 6 , CE 9 ,求 AD 的长.
25.若一次函数 y 3x 3 的图象与 x 轴,y 轴分别交于 A ,C两点,点 B 的坐标为3,0,
二次函数 y ax2 bx c 的图象过 A , B , C 三点,如图(1).
1 如图(1),点 B 是 DE 的中点,判定四边形 BEAC 的形状,并说明理由; 2 如图(2),若点G 是 EC 的中点,连接GB 并延长至点 F ,使 CF CD .
面积. 21.(11 分)
为迎接 2020 年第 35 届全国青少年科技创新大赛,某学校举办了 A :机器人;B :航 模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项), 将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
山东省临沂市2020年中考数学试题(Word版,含答案与解析)
山东省临沂市2020年中考数学试卷一、单选题(共14题;共28分)1.下列温度比 −2℃ 低的是( )A. −3℃B. −1℃C. 1℃D. 3℃【答案】 A【考点】正数和负数的认识及应用【解析】【解答】解:根据两个负数,绝对值大的反而小可知-3<-2,所以比-2℃低的温度是-3℃.故答案为:A .【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.2.下列交通标志中,是中心对称图形的是( )A. B. C. D.【答案】 B【考点】中心对称及中心对称图形【解析】【解答】解:A 、不是中心对称图形,不符合题意;B 、是中心对称图形,故本选项符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,故本选项不符合题意.故答案为:B .【分析】根据中心对称图形的定义和交通标志的图案特点即可解答.3.如图,数轴上点A 对应的数是 32 ,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A. −12B. -2C. 72D. 12【答案】 A【考点】实数在数轴上的表示,平移的性质【解析】【解答】解:∵将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数为: 32 -2= −12 ,故答案为:A.【分析】数轴上向左平移2个单位,相当于原数减2,据此解答.4.根据图中三视图可知该几何体是()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱【答案】B【考点】由三视图判断几何体【解析】【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形可得为三棱柱.故答案为:B.【分析】根据主视图和左视图为长方形可得此几何体为柱体,再根据俯视图为三角形可得为三棱柱.5.如图,在△ABC中,AB=AC,∠A=40°,CD//AB,则∠BCD=()A. 40°B. 50°C. 60°D. 70°【答案】 D【考点】平行线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故答案为:D.【分析】先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.6.计算(−2a3)2÷a2的结果是()A. −2a3B. −2a4C. 4a3D. 4a4【答案】 D【考点】同底数幂的除法,积的乘方,幂的乘方【解析】【解答】解:(−2a3)2÷a2= 4a6÷a2= 4a4,故答案为:D.【分析】根据积的乘方和幂的乘方以及同底数幂的除法运算法则即可求出答案.7.设a=√7+2,则()A. 2<a<3B. 3<a<4C. 4<a<5D. 5<a<6【答案】C【考点】二次根式的性质与化简,二次根式的化简求值【解析】【解答】解:∵4<7<9,∴2<√7<3,∴4<√7+2<5,即4<a<5,故答案为:C.【分析】先估计√7的范围,再得出a的范围即可.8.一元二次方程x2−4x−8=0的解是()A. x1=−2+2√3,x2=−2−2√3B. x1=2+2√3,x2=2−2√3C. x1=2+2√2,x2=2−2√2D. x1=2√3,x2=−2√3【答案】B【考点】一元二次方程的根【解析】【解答】解:∵x2−4x−8=0中,a=1,b=-4,c=-8,∴△=16-4×1×(-8)=48>0,∴方程有两个不相等的实数根∴x= 4±4√32=2±2√3,即x1=2+2√3,x2=2−2√3,故答案为:B.【分析】得出方程各项系数,再利用公式法求解即可.9.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A. 112B. 18C. 16D. 12【答案】C【考点】概率公式【解析】【解答】解:列表得:所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,恰好抽到马鸣和杨豪的概率是 212=16 ,故答案为:C.【分析】列表得出所有等可能的情况数,找出所选两人恰好是马鸣和杨豪的情况数,即可求出所求的概率.10.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x 人,y 辆车,可列方程组为( ) A. {x 3=y +2x 2+9=y B. {x 3=y −2x−92=y C. {x 3=y +2x−92=y D. {x 3=y −2x 2−9=y【答案】 B【考点】二元一次方程组的其他应用【解析】【解答】解:设有x 人,y 辆车,依题意得: {x3=y −2x−92=y ,故答案为:B .【分析】根据若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,列二元一次方程组. 11.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是( )A. 甲平均分高,成绩稳定B. 甲平均分高,成绩不稳定C. 乙平均分高,成绩稳定D. 乙平均分高,成绩不稳定【答案】 A【考点】平均数及其计算【解析】【解答】解:x甲=85+90+80+85+805=84,x乙=100+85+90+80+955=90,S2甲=15×[(85−84)2+(90−84)2+(80−84)2+(85−84)2+(80−842]=14,S2乙=15×[(100−90)2+(85−90)2+(90−90)2+(80−90)2+(95−902]=50,可得乙的平均分高,成绩不稳定.故答案为:D.【分析】分别求出甲、乙的平均数、方差,比较即可得到答案.12.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A. S1+S2>S2B. S1+S2<S2C. S1+S2=S2D. S1+S2的大小与P点位置有关【答案】C【考点】三角形的面积【解析】【解答】解:如图,过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,根据平行四边形的性质可知PE⊥BC,AD=BC,∴S1= 12AD×PF,S2= 12BC×PE,∴S1+ S2= 12AD×PF+ 12BC×PE= 12AD×(PE+PE)= 12 AD×EF= 12 S ,故答案为:C .【分析】过点P 作AD 的垂线PF ,交AD 于F ,再延长FP 交BC 于点E ,表示出S 1+ S 2 , 得到 S 1+S 2=S 2 即可.13.计算 x x−1−y y−1 的结果为( ) A. −x+y (x−1)(y−1) B. x−y (x−1)(y−1) C. −x−y (x−1)(y−1) D. x+y (x−1)(y−1)【答案】 A【考点】分式的混合运算,利用分式运算化简求值【解析】【解答】解: x x−1−y y−1=x(y−1)−y(x−1)(x−1)(y−1) = xy−x−xy+y(x−1)(y−1)= −x+y (x−1)(y−1)故答案为:A.【分析】利用异分母分式的加减法计算即可.14.如图,在 ⊙O 中, AB 为直径, ∠AOC =80° ,点D 为弦 AC 的中点,点E 为 BC⌢ 上任意一点,则 ∠CED 的大小可能是( )A. 10°B. 20°C. 30°D. 40°【答案】 B【考点】等腰三角形的性质,圆心角、弧、弦的关系【解析】【解答】解:连接OD 、OE∵OC=OA∴△OAC是等腰三角形∵∠AOC=80°,点D为弦AC的中点∴∠DOC=40°,∠BOC=100°设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°∵OC=OE,∠COE=100°-x∴∠OEC= 180∘−(100∘−x)2=40∘+x2∵OD=OE,∠DOE=100°-x+40°=140°-x∴∠OED= 180∘−(140∘−x)2=20∘+x2∴∠CED=∠OEC-∠OED= (40∘+x2)−(20∘+x2)=20°.故答案为B.【分析】连接OD、OE,先求出∠COD=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°;然后运用等腰三角形的性质分别求得∠OED和∠COE,最后根据线段的和差即可解答.二、填空题(共5题;共5分)15.不等式2x+1<0的解集是________.【答案】x< −12【考点】不等式的解及解集【解析】【解答】解:移项,得:2x<-1,系数化成1得:x< −12,故答案为:x< −12.【分析】移项系数化成1即可求解.16.若a+b=1,则a2−b2+2b−2=________.【答案】-1【考点】代数式求值【解析】【解答】解:a2−b2+2b−2= (a+b)(a−b)+2b−2将a+b=1代入,原式= a−b+2b−2= a+b−2=1-2=-1故答案为:-1.【分析】将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是________.17.点(−12【答案】m<n【考点】一次函数的性质【解析】【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−1<2,2∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.18.如图,在△ABC中,D,E为边AB的三等分点,EF//DG//AC,H为AF与DG的交点.若AC=6,则DH=________.【答案】1【考点】平行线分线段成比例,三角形的中位线定理【解析】【解答】解:∵D,E为边AB的三等分点,EF//DG//AC,∴EF:DG:AC=1:2:3∵AC=6,∴EF=2,EF=1由中位线定理得到,在△AEF中,DH平行且等于12故答案是:1【分析】利用平行线分线段成比例得到EF=2,再利用中位线得到DH的长即可.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点 A(2,1) 到以原点为圆心,以1为半径的圆的距离为________.【答案】 √5−1【考点】勾股定理,圆心角、弧、弦的关系【解析】【解答】解:根据题意可得:点到圆的距离为:该点与圆上各点的连线中,最短的线段长度,连接OA ,与圆O 交于点B ,可知:点A 和圆O 上点B 之间的连线最短,∵A (2,1),∴OA= √22+12 = √5 ,∵圆O 的半径为1,∴AB=OA-OB= √5−1 ,∴点 A(2,1) 到以原点为圆心,以1为半径的圆的距离为 √5−1 ,故答案为: √5−1 .【分析】连接OA ,与圆O 交于点B ,根据题干中的概念得到点到圆的距离即为OB ,再求出OA ,结合圆O 半径可得结果.三、解答题(共7题;共81分)20.计算: √(13−12)2+√22√6−sin60° . 【答案】 解: √(13−12)2+√22×√6−sin60°= √(−16)2+√22×√66−√32 = 16+√36−√32= −√33+16【考点】二次根式的性质与化简,二次根式的化简求值【解析】【分析】利用二次根式的性质,二次根式的乘法,特殊角的正弦值分别化简各项,再作加减法即可.21.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=________,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?【答案】(1)12;解:频数分布图如下:(2)解:850×3000=480(只);(3)解:650×1.0+950×1.2+1250×1.4+1550×1.6+850×1.8=1.44(千克),1.44×3000×15=64800(元),∵64800>54000,∴该村贫困户能脱贫.【考点】用样本估计总体,条形统计图【解析】【解答】解:(1)50−6−9−15−8=12(只);故答案为:12;【分析】(1)用总数量减去其它组的数量即为a的值;(2)先求出随机抽取的50只中质量不小于1.7kg 的鸡占的比值,再乘以3000即可;(3)先求出50只鸡的平均质量,根据市场价格,利润是15元/kg,再利用每千克利润×只数×每只的平均质量求出总利润,再进行比较即可.22.如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足60°⩽α⩽75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°=0.97,cos75°=0.26,tan75°=3.73,sin23.6°=0.40,cos56.4°= 0.40,tan21.8°=0.40)【答案】(1)解:当∠ABC=75°时,梯子能安全使用且它的顶端最高;在Rt△ABC中,有sin∠ABC= ACAB∴AC=AB•sin∠ABC=5.5×sin75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC约为5.3m(2)解:在Rt△ABC中,有cos∠ABC= BCAB = 2.25.5=0.4由题目给的参考数据cos56.4°=0.40,可知∠ABC=56.4°∵56.4°<60°,不在安全角度内;∴这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.【考点】锐角三角函数的定义,解直角三角形的应用【解析】【分析】(1)若使AC最长,且在安全使用的范围内,则∠ABC的度数最大,即∠ABC=75°;可通过解直角三角形求出此时AC的长.(2)当BC=2.2m时,可在Rt△BAC中,求出∠ABC的余弦值,进而可得出∠ABC的度数,然后判断这个角度是否在安全使用的范围内即可.23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A.那么用电器可变电阻应控制在什么范围内?【答案】(1)解:电流I是电阻R的反比例函数,设I=k,R∵当R=4Ω时,I=9A,代入,得:k=4×9=36,∴I=36;R(2)解:填表如下:函数图像如下:(3)解:∵I≤10,I=36,R∴36≤10,R∴R≥3.6,即用电器可变电阻应控制在3.6 Ω以上的范围内.【考点】反比例函数的图象,反比例函数的性质,根据当R=4Ω时,I=9A可【解析】【分析】(1)先由电流I是电阻R的反比例函数,可设I=kR求出这个反比例函数的解析式;(2)将R的值分别代入函数解析式,即可求出对应的I值,从而完成表格和函数图像;(3)将I≤10代入函数解析式即可确定电阻的取值范围.24.已知⊙O1的半径为r1,⊙O2的半径为r2,以O1为圆心,以r1+r2的长为半径画弧,再以O1O2的长为半径画弧,两弧交于点A,连接Q1A,O2A,O1A交线段O1O2的中点P为圆心,以12⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【答案】(1)解:由作图过程可得:AP=O1P=O2P= 1O1O2,AO1=AB+BO1= r1+r2,2∴∠PAO1=PO1A,∠PAO2=∠PO2A,AB= r2,而∠PAO1+∠PO1A+∠PAO2+∠PO2A=180°,∴∠PAO1+∠PAO2=90°,即AO2⊥AO1,∵BC∥AO2,∴O1B⊥BC,即BC与圆O1相切,过点O2作O2D⊥BC,交BC于点D,可知四边形ABDO2为矩形,∴AB=O2D= r2,而圆O2的半径为r2,∴点D在圆O2上,即BC是⊙O2的切线;(2)解:∵AO2∥BC,∴△AO1O2∽△BO1C,∴AO1BO1=O1O2O1C,∵r1=2,r2=1,O1O2=6,即AO1= r1+r2=3,BO1=2,∴32=6O1C,∴O1C=4,∵BO1⊥BC,∴cos∠BO1C= BO1CO1=24=12,∴∠BO1C=60°,∴BC= √O1C2−O1B2=2√3,∴S阴影= S△BO1C - S扇形BO1E= 12×2√3×2−60×π×22360= 2√3−2π3【考点】三角形内角和定理,等腰三角形的性质,矩形的判定与性质【解析】【分析】(1)过点O2作O2D⊥BC,交BC于点D,根据作图过程可得AP=O1P=O2P,利用等腰三角形的性质和三角形内角和证明AO2⊥AO1,再根据BC∥AO2,证明四边形ABDO2为矩形,得到O2D= r2,点D在圆O2上,可得结论;(2)证明△AO1O2∽△BO1C,求出O1C,利用△BO1C的面积减去扇形BO1E的面积即可.25.已知抛物线y=ax2−2ax−3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.【答案】(1)解:∵y=ax2−2ax−3+2a2,∴y=a(x−1)2−a−3+2a2,∴其对称轴为:x=1.(2)解:由(1)知抛物线的顶点坐标为:(1,2a2−a−3),∵抛物线顶点在x轴上,∴2a2−a−3=0,解得:a=32或a=−1,当a=32时,其解析式为:y=32x2−3x+32,当a=−1时,其解析式为:y=−x2+2x−1,综上,二次函数解析式为:y=32x2−3x+32或y=−x2+2x−1.(3)解:由(1)知,抛物线的对称轴为x=1,∴Q(3,y2)关于x=1的对称点为(−1,y2),当函数解析式为y=32x2−3x+32时,其开口方向向上,∵P(m,y1)且y1<y2,∴−1<m<3;当函数解析式为y=−x2+2x−1时,其开口方向向下,∵P(m,y1)且y1<y2,∴m<−1或m>3.【考点】轴对称的性质,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m的取值范围.26.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【答案】(1)解:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)解:连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN= 12AF,NG= 12CF,即MN+NG= 12(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为12;(3)解:不变,理由是:∵∠EGF=90°,点N为EF中点,∴GN=FN=EN,∵AF=CF=EF,N为EF中点,∴MN=GN=FN=EN,∴△FNG为等边三角形,即∠FNG=60°,∵NG=NE,∴∠FNG=∠NGE+∠CEF=60°,∴∠CEF=30°,为定值.【考点】三角形的外角性质,线段垂直平分线的性质,等边三角形的判定与性质,菱形的性质【解析】【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC 的一半,即可求解;(3)证明△FNG为等边三角形,再结合NG=NE,最后利用外角性质得到∠CEF.。
2020年山东省济南市中考数学试题及参考答案(word解析版)
2020年山东省济南市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3 C.4 D.511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y 值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3二、填空题(本大题共6个小题.每小题4分,共24分)13.分解因式:2a2﹣ab=.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式与代数式的值相等,则x=.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF =3,则tan∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120 a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A 3000 3400B 3500 4000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON 的面积为S2,若S1=2S2,求m的值.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【知识考点】算术平方根;实数的性质.【思路分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.【解答过程】解:﹣2的绝对值是2;故选:A.【总结归纳】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据俯视图是从物体上面看所得到的图形判断即可.【解答过程】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.。
2020年山东省中考数学试卷(含答案)
山东省中考数学试卷、选择题(本大题共 15 个小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只有一项是符合 题目要求的. )1.|-3| 的倒数是PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于 2.5 微米的颗粒物, 2.5 微米即 0.0000025 米.用科学记数法表示 0.0000025 为﹣ 55﹣ 66A.2.5 ×10﹣5B.2.5 ×105C. 2.5 × 10﹣6 D.2.5 ×1065. 与如图所示的三视图对应的几何体是6. 从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是7.为了大力宣传节约用电,某小区随机抽查了 10户家庭的月用电量情况,统计如下表.关于这 10 户家庭的月用电量说法正确的是月用电量(度) 25 30 40 50 60 户数14221A .平均数是 38.5B .众数是 4C .中位数是 40D .极差是 38. 如图,在 □ABCD 中, E 是 AD 边上的中点,连接 BE ,并延长 BE 交CD 延长线于点 F ,则A . -3B 1C . 3 D. 3AB ∥ CD , EF 平分∠ CEG ,∠ 1=80°,则∠ 2的度数为A . 20°B . 40°C .50°D .60°3. 下列运算正确的是A .3 355yy C . a a aD .xx4. 我国新修订的《环境空气质量标准》中增加了A . 0B 2. 如右图所示,已知23 aa6aB . a36aC△ EDF 与△ BCF 的周长之比是A.1:2B.1:3C.1:4D.1:59. 下列函数中,当 0 x 2 时, y 随 x 的增大而增大的是A . yx 1 B.22y x 4x 5 C. y x D.10. 如图,△ ABC 的各个顶点都在正方形的格点上,则 sin A 的值为A. 5B. 2 5C.2 2D.10 555511. 下列命题中,不正确的是B .对角线互相垂直的四边形是菱形 .C .三角形的中位线平行于第三边且等于第三边的一半D .三角形的一条中线能将三角形分成面积相等的两部分12. 分式方程x x1的解是(x 1)(x 2)A. x 1B. x 1 5C. x 2D. 无解n ) (其中 m n )的图象mx n 与反比例函数 y =m+nx14. 如图,菱形 OABC 的顶点 O 在坐标原点,顶点 将菱形 OABC 绕原点顺时针旋转 105°至 A .( 2 , 2 ) B .( 2 , 2 )A .对角线相等的平行四边形是矩形13. 已知函数 y (x m)(x如图所示,则一次函数 y 的图象可能是A 在 x 轴上,∠ B=120°,OA=2, B ′C ′的位置,则点 B ′C.( 3 ,3 )D.(3 ,3 )15. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1 的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1 的坐标为(3,1),则点A2 的坐标为(0,4),⋯⋯若点A1的坐标为(a,b),则点A2015的坐标为B. (﹣a,﹣b+2)C. (b﹣1,﹣a+1)D. (a,b),、填空题(本大题共6 个小题.每小题3 分,共18 分.16.分解因式:3ax23ay217. 计算:2-1 +2cos30 °-tan60 °-( + 3)0 = _________ .18. 如图,已知函数y=x-2 和y=-2x+1 的图象交于点P,根据图象,可得方程组x y 2的解是 ________________ .2x y 119. 如图,AB是⊙O的直径,C、 D 是⊙O上的点,∠CDB=2°0 ,过点C作⊙O 的切线交AB的延长线于点E,则∠E 的度数为20.新定义:[a ,b,c]为函数y=ax2bx c (a ,b,c为实数)的“关联数”.若“关联数”为[m -2,m,1] 的函数为一次函数,则m的值为21. 如图所示,Rt △ABO中,∠ AOB=90°,点A在第一象限、点B在第四象限,且AO: BO= 1:2 ,若点A(x 0,y0)的1坐标(x 0,y0)满足x0 ,则点B(x ,y)的坐标x,y 所满足y0的关系式为三、解答题(本大题共7 个小题.共57分.解答应写出文字说明、证明过程或演算步骤.22. (1)(3 分)化简:1abb22ab b2(2)(4 分)2x解不等式组2xx12xE、G在正方形23.(1)(3 分)如图,正方形AEFG的顶点边AB、AD上,连接BF、DF. 求证:BF=DF;(2)(4分)如图,在□ABCD中,AD=4,AB=8,∠ A=30°点 A 为圆心,AD的长为半径画弧交AB 于点E,连A.(﹣b+1,a+1)1)当 t 为何值时, PQ ∥BC ?2)设 △AQP 的面积为 y (cm 2),求 y 与t 之间的函数关系式;3)是否存在某一时刻 t ,使线段 PQ 恰好把 Rt △ ACB 的周长和面积同时平分?若存在, 求出此时 t 的值; 若不存在,说明理由;(4)如图②,连接 PC ,并把 △PQC 沿QC 翻折,得到四边形 PQP C ,那么是否存在某一时刻 t ,使四 边形 PQP C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.接 CE ,求阴影部分的面积. (结果保留π) 24. ( 8 分)某商店需要购进甲、乙两种商品共 160 件,其进价 和售价如下表: (注:获利 =售价 - 进价),若商店计划 销售完这批商品后能获利 1100 元,问甲、乙两种商品 应分别购进多少件?25.(8 分)我县某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级 14 个班中随机 抽取了 A 、B 、 C 、 D 四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图. (1)王老师所调查的 4 个班共征集到作品多 少件?请把图 2 补充完整; (2)如果全年级参展作品中有 5 件获得一等 奖,其中有 3 名作者是男生, 2 名作者是女 生.现在要在其中抽两人去参加学校总结表 彰座谈会, 求恰好抽中一男一女的概率. (要 求写出用树状图或列表分析过程) k 26.(9分)如图,反比例函数 y k(x 0) x 的图象经过线段 OA 的端点 A , O 为原点,作3 AB ⊥ x 轴于点 B ,点 B 的坐标为 (2,0),tan ∠AOB= . 2 (1)求 k 的值; (2)将线段 AB 沿 x 轴正方向平移到线段 DC 的位置,反比例函数 k y (x 0) 的图象恰好经过 DC 上一点 E ,且 DE :EC=2:1 ,求直 x 线 AE 的函数表达式; (3)若直线 AE 与 x 轴交于点 ,N ,与 y 轴交于点 M ,请你探索线段 AM 与线段 NE 的大小关系,写出你的结论并说明理由 . 27.(9 分)已知:如图①,在 Rt △ ACB 中, 方向向点 A 匀速运动,速度为 设运动的时间为 t (s )( 0tC 90o ,AC 4cm , BC 3cm ,点 P 由B 出发沿 BA1cm/s ;点Q 由A 出发沿 AC 方向向点 C 匀速运动,速度为 2cm/s ;连接PQ .若2),解答下列问题:28. (9 分)如图,在平面直角坐标系中,已知点 A 的坐标是(4,0),并且OA=OC=4O,B动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P 的坐标.∴DF=AD ?sin30 °=2 EB=AB-AE=4数学参考答案及评分标准1 D2 C 3B4C5 B 6D7 A 8 A9 C 10 A 11 B 12 D 13 C14A15D填空题—1x150° 20.-216. 3a(x+y)(x-y)17.18.119. 2 21. y=—2y x选择题三、解答题22.(1)解:原式=(a(a b b))(a(a b b))a2 2b ab b2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分2b (a b)223. 2)解:(a b)(a b)=2(a b)ab2)解:解不等式①得:解不等式②得:3x>—2x≤3∴不等式组的解集是:∴最小整数解是:1)证明:∵四边形∴AB=AD∵BE=AB2分3⋯分⋯33< x≤ 3 ----------2x=— 1 -------------------------ABCD 和AEFG 都是正方形,,AE=AG=EF=FG ,∠BEF=∠ ﹣AE ,DG=AD ﹣AG,∴BE=DG在△ BEF 和△ DGF中,DGF=90 °,∴△ BEF≌△DGF( SAS),∴BF=DF ;------------过D点作DF⊥AB于点F.∵AD=4 ,AB=8,∠A=30分230 42 ∴阴影部分的面积=8 ×2- 43601-4 ×2 × =16-24π-4 =12-34π.324.解:(1)设甲种商品应购进 x 件,乙种商品应购进 y 件 ------------- 1 分根据题意,得x 5xy 160 10y 1100---------------------------------------------------------------------------------------------------------------------------------- 4 分x 100解得:---------------- 7 分y60答:甲种商品购进 100 件,乙种商品购进 60 件 .------------------------------------------------------------------------- 8 分25.解:(1)所调查的 4 个班征集到作品数为:--------------4 分3)画树状图如下:8分5150 360=12 件 B 作品的件数为: ---------------------------- 2 分12﹣ 2﹣5﹣ 2=3 件----------- 3 分 把图 2 补充完整如下:列表如下: ---- 6 分 共有 20 种机会均等的 结果,其中一男一女占12 种所以, P (一男一女)== 即恰好抽中一男一女的概率是326.解:1)由已知条件得,在 Rt △OAB 中, OB=2 ,tan ∠AOB=2∴ ∴ AB=3 ----------------------------------------------------- 1 分∴ A 点的坐标为( 2, 3)∴ k=xy=6 ---------------------------------------------------------------------------- 2 分2)∵ DC 由 AB 平移得到, DE :EC=2:1∴点 E 的纵坐标为 1------------------------- 5 分在表达式 y=- x 4 中,令 y=0 可得 x=8,令 x=0 可得 y=42∴点 M (0,4 ),N (8,0 ) ------------- 7 分延长 DA 交 y 轴于点 F ,则 AF ⊥OM ,且 AF=2 ,OF=3 , ∴ MF=OM - OF=1∴由勾股定理得 AM= 5 ---------------------------- ---------------- 8 分 ∵CN=8 -6=2,EC=1 , ∴根据勾股定理可得 EN= 5∴ AM=NE ------------------------------------------------------------------- 9 分27. 解:( 1)在 Rt △ABC 中, AB BC 2 AC 2 5 ,由题意知: AP = 5-t ,AQ = 2t ,上,∴点 E 的坐标为( 6, 1 ) ------------------- 3 分设直线 AE 的函数表达式为 y=kx+b2kb 3则6k b 11解得k2b 4直 线 AE 的 函 数 表 达 式 为1y= - x 423 )结论: AM=NE. 理由:------------------------------------------- 6 分又∵点 E 在双曲线AQ AP 若PQ ∥BC ,则△ APQ ∽△ABC ,∴ AQ AP ,AC AB10 ∴t 73)若 PQ 把△ ABC 周长平分,则 AP+AQ=BP+BC+C .Q即- 3t 2+3t =3. t=1代入上面方程不成立,54)过点 P 作 PM ⊥AC 于M,PN⊥BC 于 N , 若四边形 PQP ′C 是菱形,那么 PQ= PC .∴菱形 PQP ′C 边长为 505 .928.解:(1)由 A (4, 0),可知 OA=4∵OA=OC=4OB∴ (5 t) 2t t 3 (42t),解得: t 1.6分∴不存在这一时刻 t ,使线段 PQ 把 Rt △ACB 的周长和面积同时平分. 7分∵PM ⊥AC 于M ,∴QM=C .M∵PN ⊥BC 于 N ,易知△ PBN ∽△ ABC .PNBPAC AB4t PN5QMCM 4 4t t 5 5 2t 4,4t 5解得:10 t 9∴当 t 10时,9在 Rt △PMC 中,PN 4 t , 5,四边形 PQP ′ C 是菱形,此时PMPC PM 2 CM 2499 68413 3t5505,9,图②P ′ 8分73,CM 4t 5 8 9,2t 5 t 4 5 ,2分2)过点 P 作 PH ⊥ AC 于 H . PH BCAP, AB,PH 35t 5∴ PH 3t 5∴yAQ PH12 2t若 PQ 把△ ABC 面积平分,则 SAPQ 2SABC,9分5分精品资料∴ OA=OC=4 , OB=12)存在.第一种情况,当以 C 为直角顶点时,过点 C 作 CP 1⊥AC ,交抛物线于点 P 1.过点 P 1作y 轴的垂线, 垂足是 M . ∵∠ ACP 1=90 °, ∴∠ MCP 1+∠ ACO=90°. ∵∠ ACO+ ∠OAC=9°0 , ∴∠ MCP 1=∠ OAC . ∵OA=OC ,∴∠ MCP 1=∠ OAC=45°, ∴∠ MCP 1=∠ MP 1C ,∴MC=MP1, --------------------------------------------------- 4 分设 P (m ,﹣ m 2+3m+4),则 m=﹣ m 2+3m+4 ﹣ 4,解得:m1=0 (舍去), m 2=2.∴﹣ m 2+3m+4=6 ,即 P (2, 6). --------------------------------------------- 5 分第二种情况,当点 A 为直角顶点时,过 A 作AP 2,AC 交抛物线于点 P 2,过点 P 2作 y 轴的垂线,垂足 是 N ,AP 交 y 轴于点 F .∴P2N ∥ x 轴,由∠ CAO=4°5 , ∴∠ OAP=4°5 ,∴∠ FP 2N=45°, AO=OF .∴P 2N=NF , -------------------------------------------------- 6 分设P2( n ,﹣ n 2+3n+4 ),则-n=-(﹣ n 2+3n+4)﹣ 4,设抛物线的解析式是 y=ax 2+bx+c则 ,解得:∴抛物线的解析式是: 2y=﹣---------------------------------------- 1 分---------------------------------------- 2 分-------------------------------------- 3 分∴C (0,4),B (﹣ 1,0).精品资料解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4= ﹣6,则P2的坐标是(﹣2,﹣6).OD=EF.根据垂线段最短,可得当OD ⊥ AC 时,OD 最短,即EF 最短.由(1)可知,在直角△ AOC 中,OC = OA=4,则AC= =4 ,根据等腰三角形的性质, D 是AC 的中点.又∵ DF ∥ OC,∴DF = OC=2,∴点P 的纵坐标是2. ------------------------------------------- 8 分则﹣x2+3x+4=2 ,解得:x= ,∴当EF最短时,点P 的坐标是:(,2)或(,2).------ 9 分。
2020年山东省中考数学试卷含答案
2020年中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0 B.1 C.﹣1 D.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形的是()A. B.C.D.4.(4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.95.(4分)与最接近的整数是()A.5 B.6 C.7 D.86.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.7.(4分)化简的结果为()A.B.a﹣1 C.a D.18.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.09.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB. C. D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.812.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x=.15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE <BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN 的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0 B.1 C.﹣1 D.故选:A.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意故选:D.3.(4分)下列图形中,不是轴对称图形的是()A. B.C.D.故选:C.4.(4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9 故选:C.5.(4分)与最接近的整数是()A.5 B.6 C.7 D.8 故选:B.6.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.、D.【解答】解:sinA===0.15,按键顺序为故选:A.7.(4分)化简的结果为()故选:B.8.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.0【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.9.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB. C. D.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.12.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC的面积是•AB2=•(25+12)=.故选:A.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=40度.14.(4分)分解因式:2x3﹣6x2+4x=2x(x﹣1)(x﹣2).15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于10.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为2.【解答】解:如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018.【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.三、解答题(本大题共7小题,共52分.解答写出文字说明、证明过程演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.=2ab﹣1,=1.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?【解答】解:(1)观察表格,可知这组样本数据的平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据的平均数为2;∵这组样本数据中,9出现了15次,出现的次数最多,∴这组数据的众数是9;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,∴这组数据的中位数为(8+9)=8.5;(3)∵读书时间是9小时的有15人,读书时间是10小时的有10,∴读书时间不少于9小时的有25人,∴被抽到学生的读书时间不少于9小时的概率是= 21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE <BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【解答】解:(1)∵DP平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE;(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)的长是x2﹣5x+6=0,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴,∴DG=,∴在线段BC上是否存在一点M,使得四边形ADME是菱形其面积为:DG•AE=2×=23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN 的数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【解答】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,24.(9分)如图,抛物线y=ax2+bx经过△OAB 的三个顶点,其中点A(1,),点B(3,﹣),O 为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.【解答】解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得解得∴y=﹣(2)由(1)抛物线开口向下,对称轴为直线x=当x>时,y随x的增大而减小∴当t>4时,n<m.(3)如图设抛物线交x轴于点F,分别过点A、B作AD⊥OC于点D,BE⊥OC于点E∵AC≥AD,BC≥BE∴AD+BE≥AC+BE=AB∴当OC⊥AB时,点A,点B到直线OC的距离之和最大.∵A(1,),点B(3,﹣)∴∠AOF=60°,∠BOF=30°∴∠AOB=90°∴∠ABO=30°当OC⊥AB时,∠BOC=60°,点C坐标为(,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省中考数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.|-3|的倒数是A .-3B .31-C .3 D. 312.如右图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为 A .20° B .40° C .50° D .60°3.下列运算正确的是 A .632a a a =⋅B .()236aa =C .55a a a ÷= D .33y y x x ⎛⎫= ⎪⎝⎭4.我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为 A.2.5×10﹣5B.2.5×105C. 2.5×10﹣6D.2.5×1065.与如图所示的三视图对应的几何体是6.从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是A .0B .C .D .7.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是月用电量(度) 25 30 40 50 60 户数14221A .平均数是38.5B .众数是4C .中位数是40D .极差是3 8.如图,在□ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则A B C D△EDF 与△BCF 的周长之比是 A.1:2 B.1:3 C.1:4 D.1:59.下列函数中,当02x ≤≤时,y 随x 的增大而增大的是A .1y x =-+ B. 245y x x =-+ C. 2y x = D. 2y x= 10.如图,△ABC 的各个顶点都在正方形的格点上,则sin A 的值为 A.55 B.255 C.225 D.10511.下列命题中,不正确的是A .对角线相等的平行四边形是矩形.B .对角线互相垂直的四边形是菱形.C .三角形的中位线平行于第三边且等于第三边的一半.D .三角形的一条中线能将三角形分成面积相等的两部分 12.分式方程)2)(1(311+-=--x x x x 的解是 A.1=x B.51+-=x C.2=x D.无解13.已知函数))((n x m x y ---=(其中n m <)的图象 如图所示,则一次函数n mx y +=与反比例函数m ny x的图象可能是14.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为 A .(2,2-) B .(2-,2)C .(3- ,3)D .(3,3-)15.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P (﹣y+1,x+1)叫做点P 的伴随 点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到 点A 1,A 2,A 3,…,A n ,….例如:点A 1的坐标为(3,1),则点A 2的坐标为(0,4),……; 若点A 1的坐标为(a ,b ),则点A 2015的坐标为A.(﹣b+1,a+1)B.(﹣a ,﹣b+2)C.(b ﹣1,﹣a+1)D.(a ,b ), 二、填空题(本大题共6个小题.每小题3分,共18分. 16.分解因式:2233ax ay -= ______.17. 计算:2-1+2cos30°-tan60°-(π+3)0=_______.18. 如图,已知函数y=x-2和y=-2x+1的图象交于点P ,根据图 象 , 可得方程组221x y x y -=⎧⎨+=⎩的解是_________.19.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=20°, 过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为 _____________.20.新定义:[a ,b ,c]为函数y =2ax bx c ++ (a ,b ,c 为实数)的“关联数”.若“关联数”为 [m -2,m ,1]的函数为一次函数,则m 的值为 .21. 如图所示,Rt △ABO 中,∠AOB=90°,点A 在第一象限、 点B 在第四象限,且AO: BO= 1:2 ,若点A(x 0,y 0)的 坐标(x 0,y 0)满足001y x =,则点B(x ,y)的坐标x ,y 所满足 的关系式为三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.) 22. (1)(3分) 化简:11a b a b ⎛⎫-⎪-+⎝⎭÷222b a ab b-+ (2)(4分) 解不等式组⎩⎨⎧-≤-->x x x 28132 ;并求它的最小整数解.23.(1)(3分)如图,正方形AEFG 的顶点E 、G 在正方形ABCD 的边AB 、AD 上,连接BF 、DF. 求证:BF=DF ; (2)(4分) 如图,在□ABCD 中,AD=4,AB=8,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,求阴影部分的面积.(结果保留π)24.(8分)某商店需要购进甲、乙两种商品共160件,其进价 和售价如下表:(注:获利=售价-进价),若商店计划 销售完这批商品后能获利1100元,问甲、乙两种商品 应分别购进多少件?25.(8分)我县某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了A 、B 、C 、D 四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图. (1)王老师所调查的4个班共征集到作品多少件?请把图2补充完整; (2)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程) 26.(9分)如图,反比例函数)0(>=x xky 的图象经过线段OA 的端点A ,O 为原点,作AB ⊥x 轴于点B ,点B 的坐标为(2,0),tan ∠AOB=23. (1)求k 的值;(2)将线段AB 沿x 轴正方向平移到线段DC 的位置,反比例函数)0(>=x xky 的图象恰好经过DC 上一点E ,且DE :EC=2:1,求直线AE 的函数表达式;(3)若直线AE 与x 轴交于点,N ,与y 轴交于点M ,请你探索线段AM 与线段NE 的大小关系,写出你的结论并说明理由.27.(9分)已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.精品资料28.(9分)如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB ,动点P 在过A ,B ,C 三点的抛物线上. (1)求抛物线的解析式;(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.A Q CPB图①AQCPB P图②数学参考答案及评分标准一、 选择题1 D2 C3 B4 C5 B6 D7 A8 A9 C 10 A 11 B 12 D 13 C 14 A 15 D 二、 填空题16. 3a(x+y)(x-y) 17. —2118.⎩⎨⎧-==11y x 19. 50° 20. 2 21. y=x 2- 三、解答题22.(1)解:原式=222))(()()(b ab a bb a b a b a b a +-÷+---+ ……………………………1分 =bb a b a b a b 2)())((2-⋅+- -----------------------------------2分=ba b a +-)(2. ……………………………………………………3分 (2)解:解不等式①得:x>—23---------------------------------------------1分 解不等式②得:x ≤3 ----------------------------------------------2分 ∴不等式组的解集是:—23<x ≤3 ------------------------------------3分 ∴最小整数解是:x=—1 ---------------------------------------4分 23. (1) 证明:∵四边形ABCD 和AEFG 都是正方形,∴AB=AD ,AE=AG=EF=FG ,∠BEF=∠DGF=90°,------------1分 ∵BE=AB ﹣AE ,DG=AD ﹣AG , ∴BE=DG , ------------------------------2分 在△BEF 和△DGF 中,∴△BEF ≌△DGF (SAS ),∴BF=DF ; -------------------------------------3分 (2)解:过D 点作DF ⊥AB 于点F .∵AD=4,AB=8,∠A=30° ∴DF=AD •sin30°=2 -----------------------1分 EB=AB-AE=4 ----------------------2分∴阴影部分的面积=8×2-3603042⨯⨯π-4×2×21=16-34π-4 =12-34π.------------4分24.解:(1)设甲种商品应购进x 件,乙种商品应购进y 件 ------------------1分 根据题意,得⎩⎨⎧=+=+1100105160y x y x ------------------------------4分解得:⎩⎨⎧==60100y x , -------------------------------7分答:甲种商品购进100件,乙种商品购进60件. ----------------------------8分25.解:(1)所调查的4个班征集到作品数为:︒︒÷3601505=12件 ------------------------------2分 B 作品的件数为:12﹣2﹣5﹣2=3件 --------------------3分把图2补充完整如下:---------------4分 (3)画树状图如下:列表如下:---------6分 共有20种机会均等的结果,其中一男一女占12种所以,P (一男一女)==即恰好抽中一男一女的概率是.----------------------------8分26.解:(1)由已知条件得,在Rt △OAB 中,OB=2,tan ∠AOB=23∴ ∴AB=3 ----------------------------------------1分∴A 点的坐标为(2,3)∴k=xy=6 ------------------------------------------2分(2)∵DC 由AB 平移得到, DE :EC=2:1∴点E 的纵坐标为1又∵点E 在双曲线 上,∴点E 的坐标为(6,1 ) --------------------3分设直线AE 的函数表达式为y=kx+b 则⎩⎨⎧=+=+1632b k b k解得 ⎪⎩⎪⎨⎧=-=421b k∴直线AE的函数表达式为 y=421-+x --------------------------5分(3)结论:AM=NE. 理由: ---------------------------------------------6分 在表达式y=421-+x 中,令y=0可得x=8,令x=0可得y=4 ∴点M (0,4),N (8,0 ) ---------------------7分延长DA 交y 轴于点F ,则AF ⊥OM ,且AF=2,OF=3,∴MF=OM -OF=1∴由勾股定理得AM=5 -------------------------------------8分 ∵CN=8-6=2,EC=1 , ∴根据勾股定理可得EN=5∴AM=NE ---------------------------------------9分27. 解:(1)在Rt△ABC 中,522=+=AC BC AB ,由题意知:AP = 5-t ,AQ = 2t ,若PQ∥BC,则△APQ ∽△ABC,∴=AC AQ AB AP ,∴5542tt -=, ∴710=t . ·························································· 2分 (2)过点P 作PH ⊥AC 于H∴=BCPH AB AP, ∴=3PH 55t -,∴t PH533-=, ∴t t t t PH AQ y 353)533(221212+-=-⨯⨯=⨯⨯=. ------------------------------------5分 (3)若PQ 把△ABC 周长平分,则AP+AQ=BP+BC+CQ .∴)24(32)5(t t t t -++=+-, 解得:1=t . ----------------------------6分 若PQ 把△ABC 面积平分,则ABC APQ S S ∆∆=21, 即-253t +3t =3. t =1代入上面方程不成立, ∴不存在这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时平分.-------------------7分(4)过点P 作PM⊥AC 于M,PN⊥BC 于N ,若四边形PQP ′C 是菱形,那么PQ =PC .∵PM⊥AC 于M ,∴QM=CM.∵PN⊥BC 于N ,易知△PBN∽△ABC. ∴AB BP AC PN =, ∴54tPN =, ∴54tPN =, ∴54t CM QM ==, ∴425454=++t t t , 解得:910=t . ----------------------------------------8分∴当910=t 时,四边形PQP ′C 是菱形,此时37533=-=t PM , 9854==t CM ,在Rt△PMC 中,9505816494922=+=+=CM PM PC , ∴菱形PQP ′C 边长为9505. -----------------------------------------------------------------------9分 28.解:(1)由A (4,0),可知OA=4∵OA=OC=4OB图①BB N∴OA=OC=4,OB=1∴C(0,4),B(﹣1,0).-----------------------------------------1分设抛物线的解析式是y=ax2+bx+c则,解得:-----------------------------------------2分∴抛物线的解析式是:y=﹣x2+3x+4 ---------------------------------------3分(2)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,-------------------------------------------------------------4分设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).----------------------------------------------------------5分第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,---------------------------------------------------------------6分设P2(n,﹣n2+3n+4),则-n=-(﹣n2+3n+4)﹣4,精品资料解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是(﹣2,﹣6).综上所述,P 的坐标是(2,6)或(﹣2,﹣6);----------------------------7分(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,则AC ==4,根据等腰三角形的性质,D 是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.----------------------------------------------------------8分则﹣x2+3x+4=2,解得:x=,∴当EF最短时,点P的坐标是:(,2)或(,2).------------9分。