上海昂立智立方数学高中-高一(秋季班)-高数—10秋—03—命题和充要条件—贾德淼-教师版

合集下载

上海昂立智立方数学高中 高一(秋季班) 高一新课-03-命题的形式及等价关系—教师版——尹杰

上海昂立智立方数学高中 高一(秋季班) 高一新课-03-命题的形式及等价关系—教师版——尹杰

高一数学新课(教师版)教师日期学生课程编号课型预习课题命题的形式及等价关系教学目标1、理解命题的概念,准确判断命题的真假;2、理解逻辑连接词“或”、“且”、“非”的含义;3、理解四种命题及其相互关系;4、理解命题的等价关系;教学重点1、熟练掌握原命题、逆命题、否命题、逆否命题之间的转化;2、熟练运用互为逆否命题的真假值相同这一结论;教学安排版块时长1例题解析80 2巩固训练30 3师生总结10 4课后练习30一、知识体系:二、新课讲授:(一)、命题的概念及真假判断1、一般地,我们把可以判断真假的语句叫做命题。

2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。

在数学中常见的命题由条件与结论两部分组成。

3、举反例是判断假命题的重要方法。

4、复合命题的真值表:“非p ”形式复合命题的真假可以用下表表示:p非p 真 假 假真记忆口诀 p 与非p 你真我假 你假我真“p 且q ”形式复合命题的真假可以用下表表示:pqp 且q真 真 真 真 假 假 假真假命题的形式及等价关系知识梳理命题的形式 及等价关系命题的概念及真假判断推出关系四种命题形式 等价命题假 假 假记忆口诀 p 且q 一假即假“p 或q ”形式复合命题的真假可以用下表表示:pqp 或q真 真 真 真 假 真 假 真 真 假假假记忆口诀 p 或q 一真即真【例1】判断下列语句是不是命题,若是,判断其真假;若不是,说明理由。

(1)能被4整除的数一定能被12整除; (2)对角互补的四边形外接于一个圆; (3)ab 是有理数,则b a ,都是有理数; (4)垂直于同一条直线的两条直线必平行吗? (5)人类在2020年登上火星. 【难度】★【答案】(1)是命题,真命题,因为3412⨯=。

(2)是命题,真命题,定理。

(3)不是命题,因为其不能做出真假判断。

(4)不是命题,这是疑问句,没有对垂直于同一条直线的两直线是否平行作出判断. (5)是命题.但目前无法判断真假.【例2】判断下列命题的真假: (1)质数都是奇数; 例题解析(2)钝角三角形的内角至少有一个是钝角; (3)若>0x ,>0y ,则<0xy 。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—04—子集与推出关系—杨阳-学生版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—04—子集与推出关系—杨阳-学生版

1、子集与推出关系:设{}{}|,|A a a B b b αβ==具有性质具有性质,则 A B ⊆ 与 αβ⇒ 等价. 2、子集与推出关系的各种表述形式:已知集合{}{}|,|A a a B b b αβ==具有性质具有性质 (1)若A B ⊆,则α是β的充分条件; (2)若A B ⊂,则α是β的充分非必要条件; (3)若A B ⊇,则α是β的必要条件; (4)若A B ⊃,则α是β的必要非充分条件; (4)若A B =,则α是β的充要条件.3、推出关系具有传递性:若αβ⇒,βγ⇒,则αγ⇒,若αβ⇒,βα⇒,则αβ⇔,称α与β等价.设{}|A a a α=具有性质,{}|B b b β=具有性质,则集合A 、B 之间的关系与α、β之间的关系,可用下表表示:集合,A B 之间的关系α与β之间的推出关系 α是β的什么条件 原命题“若α,则β”的真假 逆命题“若β、则α”的真假A ⊂≠B αβ⇒,/βα⇒ 充分非必要条件 真命题 假命题 A ⊃≠Bβα⇒,/αβ⇒必要非充分条件 假命题 真命题 A B =αβ⇔充要条件真命题真命题子集与推出关系知识梳理,A B 不满足以上三种情况/αβ⇒,/βα⇒既非充分又非必要条件假命题 假命题一、子集与推出关系【例1】用“⊆”,“⊇”,“⇒”,“⇐”填空:(1)命题α:我是上海人 ;命题β:我是中国人,A ={x ︱x 是上海人}; B ={x ︱x 是中国人}.则命题α 命题β; A B .(2)A ={x ︱1x >};B ={x ︱3x >},命题α:1x >;命题β:3x >.则A B ;命题α 命题β.【例2】试用子集与推出关系判断α是β(甲是乙)的什么条件: (1)α:2>x ;β:2≥x ; (2)α:21x =;β:1x =;(3)甲:220x y +=,乙:0,0x y ==;(4)设{2},{6}A x x B x x =>=<,甲:x A x B ∈∈或,乙:B A x I ∈.【例3】试用子集与推出关系来说明α是β的什么条件.(1)1:=x α,1:2=x β(2):α正整数n 被5整除, :β正整数n 的个位数是5例题解析【例4】试用子集与推出关系来说明集合A 与B 的关系. (1){}12A x x =是的约数, {}36B x x =是的约数 (2){}1A x x =>,{}3B x x =>(3){}A x x =是矩形,{}B x x =是有一个角为直角的平行四边形【例5】利用子集与推出关系的等价性,写出下列语句的相关条件. (1)写出31x -<<的充分条件; (2)写出31x -<<的必要条件; (3)写出31x -<<的充要条件.【例6】(1)设,x y R ∈,若α:220x y +=,β:0xy =, 则α是β的 条件. (2)设,x y R ∈,若α:,x y 都不为零,β:0xy >,则α是β的 条件. (3)设α:3a b +=,β:1a =且2b =,则α是β的 条件. (4)设α:0≠x 且0≠y ,β:0≠+y x ,则α是β的 条件.【例7】(1)设α:三角形中有一个角是直角,β:三角形的三边满足222AB BC AC +=,则α是β 的 条件.(2)“该平面图形是四边形”是“该平面图形是梯形”的 条件.【巩固训练】1.“2x =”是“2320x x -+=”的 条件.2.“2x ≥”是“2x >”的 条件.3.k 除以4余1,β:k 除以2余1,则α是β的 条件.4.α:是整数的12的数,β:与整数相差12的数,则α是β的 条件.5.设α:x 是奇数,β:x 被4除余1,则α是β的 条件.6.“0xy <”的一个充要条件是( )A .0x >B .0y <C .,x y 异号D .0,0x y =>7.设α:实数x 232x x +=,β:4x =-或1x =,则α是β的 条件.8.下列各式中,α是β的必要非充分条件的是( ) (1)α:()()120x x -+=, β:2x =-(2)α:2b ac =,β:a b b c= (3)α:,a b 不都为偶数, β:a b +不为偶数 (4)α:1x =且2y =-, β:2xy =- A .(1)(2)(3) B .(1)(3)(4) C .(2)(4) D .(1)(3)二、子集与推出关系与集合、命题、充分条件与必要条件等综合应用【例8】设集合{03},{02}M x x N x x =<≤=<≤ ,那么“a M ∈”是“a N ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【例9】若命题α是命题β的充要条件,命题β是命题γ的必要非充分条件,则命题γ是命题α的______条件.【例10】给定两个命题p ,q .若非p 是q 的必要而不充分条件,则p 是非q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【例11】设:13,:124,x m x m m R αβ≤≤+≤≤+∈,α是β的充分条件,求m 的范围.【例12】设:23,:11,x x m x m m R αβ≤<≤->+∈或,α是β的充分条件,求m 的范围.【例13】若1122,,,a b a b R ∈,且都不为零,则“1122a b a b =”是“110a x b +>与220a x b +>解集相同”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【例14】设2:60a a α+-=,β:10mb +=,若β是α的充分条件,求m 的值.【例15】设,m a R ∈,()()211f x x a x =+-+,()224mg x mx ax =++,若“对一切实数x ,()0f x >”是“对一切实数x ,()0g x >”的充分条件,求实数m 的取值范围.【巩固练习】1.设α:0(0)x a a <<>,β:102x a ≤-,若α是β的充分条件,求实数a 的取值范围.2.设{}2A x x =≥,{}B x x a =>,求满足B A ≠⊂的一个充分条件.3.设A 、B 、C 三个集合,A ⊂≠B 是A ⊂≠(B ∪C)的( ) A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件4.已知α:集合{}{}24P x x Q x x a ≠=-<<⊂=>,β:{}2a x x ∈≤-,则α与β的推出关系是( )A .αβ⇒B .αβ⇔C .βα⇒D .αβ≠>5.已知命题:14x α-≤≤,命题m x m -≤≤-13:β,且βα是的必要条件,求实数m 的取值范围.6.如果,,a b c 都是实数,那么p :0ac <,是q :关于x 的方程20ax bx c ++=有一个正根和一个负根的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.1.在判断充分、必要等条件时,通常可以从两方面入手:方法一:直接用逻辑推理的方法进行推理;方法二:借助集合间的包含关系,利用集合思想解决数学中的条件问题.2.本节课,我们利用等价转化的思想把看似没有联系的子集、推出关系,通过集合间的包含关系联系了起来.设{}α具有性质a a A =,{}β具有性质b b B =,具体如下:(1)A B ⊆ ⇔α是β的充分条件; (2)A B ⊇ ⇔α是β的必要条件; (3)A B ≠⊂ ⇔α是β的充分非必要条件;(4)A B ≠⊃⇔α是β的必要非充分条件;(5)A B =⇔α是β的充要条件.反思总结1.若非空集合M N ⊂,则“a M ∈或a N ∈”是“a M N ∈⋂”的 条件.2. 一个整数的末位数字是2,是这个数能被2整除的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.p 是q 的充要条件的是:( )A .p :1a >,q :二元一次方程组11x y ax y +=⎧⎨+=⎩有唯一解B . p :两条对角线互相垂直平分,q :四边形是正方形C .p :325x +>,q :325x --<-D . p :两个三角形相似,q :两个三角形面积之比等于对应的高之比4.设U 为全集,A ,B 是集合,则“存在集合C 使得A⊆C ,B⊆∁U C”是“A∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件5. (1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“ABC A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.6.已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.7.设A ,B 是有限集,定义:d (A ,B )=card(A ⊆B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;课后练习命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ).( ) A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立8. 判断下列集合A 与B 的关系.(1) A ={x | x 是12的约数},B ={x | x 是36的约数}; (2) A ={x | x >3},B ={x | x >5};(3) A ={x | x 是矩形},B ={x | x 是有一个角为直角的平行四边形}.9. 已知 A ={x | x 是等腰三角形},B ={x | p (x )},试确定一个集合B ,使A ⊆ B .10.试用子集与推出的关系来说明α是β的什么条件. (1):1x α=且2y = ; :3x y β+= (2):0a b α+> ; :0,0a b β>> (3):0xy α> ; :x y x y β+=+11. 设:14x α≤<,:x m β<,α是β的充分条件,求实数m 的取值范围.12. 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?13.已知函数2)(bx ax x f -=(1)当0>b 时,若对任意R x ∈都有1)(≤x f 求证b a 2≤.(2)当0a >时,求证;对任意[]1)(,1,0≤∈x f x 的充要条件是b a b 21≤≤-.。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—02—集合的运算—李新媛-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—02—集合的运算—李新媛-教师版
的仅有 7 个,他们是: 6, 11, 4, 21, 26, 31,6 .因此, A B 4, 6 .
【例 5】已知集合 A x | 2x 6 0, x R, B x | x a, x R,C x | x 5 ,若
A (B C) x | 4 x 5 ,则实数 a 的值是
集,因为 B C ,则 C 共有 2m 2mn 个。
【例 15】已知 A= t t满足 x x2 2tx 4t 3 0 R , B t t满足 x x2 2tx 2t 0 ,其中 x,t
均为实数
(1) 求 A B ;
(2) 设 m 为实数, g(m) m2 3, 求 M m g(m) A B 。
(1)若 m 2 ,且 a N ,求 A B ; (2)若 m a2 ,且 a 0 时,是否存在这样的实数 a ,使得集合 A B 中仅有一个元素?若存 在,求出 a 的取值范围;若不存在,试说明你的理由.
【难度】★★
【答案】⑴0,1, 2,3 ;⑵ 2 1,1 .
高一数学秋季课程
集合的运算(教师版)
建议利用韦达定理。
【 例 10 】 已 知 X 是 方 程 x2 px q 0 的 实 数 解 集 , A={1,3,5,7,9},B={1,4,7,10}. 且
X A , X B X ,则 p+q=

【难度】★★ 【答案】26
【例
11】
A
x,
y
y3 x2
a 1, x,
y R, B
从而 B or{3}or{6}or{3, 6}
高一数学秋季课程
集合的运算(教师版)
5 / 28
专业 引领 共成长
当 B , a2 4b 0 B {3} ,由-3 是方程 x2 ax b 0 的根且 0 ,a=6,b=9 B {6},同理可得 a=-12,b=36 B {3, 6} ,a=-3,b=-18

上海昂立智立方数学高中 高一(秋季班) 高一新课-04-命题充要条件-打浦桥校区-学生版

上海昂立智立方数学高中 高一(秋季班) 高一新课-04-命题充要条件-打浦桥校区-学生版

一、课前引入:1、用“⇔⇐⇒,,”填空①某个数能被4整除________某个数是偶数;②两个角相等________两个角是对顶角;③三角形有两个内角相等________三角形是等腰三角形;④两个平面图形全等________两个图形面积相等;*⑤“xx22<”________“10<<x”;二、新课探知:1、四种命题形式及其相互关系:2、充分条件与必要条件:充分条件:若条件α可以使事件β成立,即βα⇒,称α是β的充分条件,或β的充分条件是α必要条件:若没有条件α则事件β不成立,即αβ⇒,称α是β的必要条件,或β的必要条件是α充要条件:对于事件A和B,若BA⇒,且AB⇒,即BA⇔,则称A是B的充要条件;3、集合与子集的推出关系:记条件p、结论q对应的集合分别为A、B,则:若BA⊆,等价于qp⇒,则p是q的充分条件;若BA⊇,等价于qp⇒,则p是q的必要条件;知识引入命题的充要条件与子集若B A =,则p 是q 的充要条件; 从集合的角度解释充分必要条件: 若集合P,Q 满足Q P ⊆,则p :x ∈P ⇒q :x ∈Q ,即x ∈P 是x ∈Q 的充分条件,x ∈Q 是x ∈P 的必要条件,用口诀可以记忆为“小充分大必要”。

一、命题的充要条件【例1】将题1中的题改写成:充分条件,必要条件、充要条件 ①某个数能被4整除是某个数是偶数的 ________; ②两个角相等是两个角是对顶角的________;③三角形有两个内角相等是三角形是等腰三角形的________; ④两个平面图形全等是两个图形面积相等的________; ⑤“x x 22<”是“10<<x ”的________; 【例2】:1、“四边形对角线相等”是“四边形是矩形”的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件2、“四边形是矩形”是“四边形的两组对边分别相等”的( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件3、“四边形是矩形”是“四边形是正方形”的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件4、“四边形是正方形”是“四边形是矩形”的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件知识讲解及例题分析【例3】1、“整数的个位数是5”是“整数是5的倍数”的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件2、“整数是5的倍数”是“整数是25的倍数”( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件【例4】试从①1=x ;②1-=x ;③0)3)(1)(1(=-+-x x x 中,选出适合下列条件者,用代号填空(1)12=x 是__________的充分条件; (2)12=x 是__________的必要条件;【巩固训练】1、对任意实数a 、b 、c ,在下列命题中,真命题是( )A .“ac bc >”是“a b >”的必要条件B .“ac bc =”是“a b =”的必要条件C .“ac bc >”是“a b >”的充分条件D .“ac bc =”是“a b =”的充分条件2、已知命题p :40k -<<;命题q :函数21y kx kx =--的值恒为负.则命题p 是命题q 成立的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件3、0a <是方程2210ax x ++=至少有一个负数根的( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件4、已知a b c d ,,,为实数,且c d >.则“a b >”是“a c b d ->-”的( ) .A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件5、命题232:x x x p =+是命题232:x x q =+的………………………………………………( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件6、设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7、命题5:≠+y x p 是命题3:≠x q 或2≠y 的……………………………………………………( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件8、给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若,R a b ∈,则0a b +>”的一个充分而不必要条件的是__________.二、*充要条件的证明:①B A ⇒(充分性)②A B ⇒(必要性)【例5】已知是系数一元二次方程)0(02≠=++a c bx ax ,“042=-ac b ”是“方程02=++c bx ax 有两个相等的实数根”的什么条件?为什么?【巩固训练】1、求证:直线l :0=+-b y ax 经过两直线05:1=-+y x l 和2l :0153=+-y x 交点的充要条件是“23=+b a ”.2、已知0≠ab ,求证:1=+b a 的充要条件是0))(1(22=+--+b ab a b a3、已知c b a ,,都是实数,证明:0<ac 是关于x 的方程02=++c bx ax 有一个正根和一个负根的充要条件三、*子集的推出关系【例6】、试用子集的推出关系来说明α是β的什么条件 (1);1:,1:2==x x βα(2):α正整数n 被5整除,:β正整数n 的个位数是5【例7】;,421:,31:R m m x m x ∈+≤≤+≤≤βαα是β的充分条件,求m 的取值范围.【巩固训练】1、命题“a b >”是命题“33a b >”……………………………………………………………………( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件2、命题12:<<-x p 是命题1:<x q 或2>x ………………………………………………( ).A 充分非必要条件 .B 必要非充分条件.C 充要条件 .D 既非充分也非必要条件3、命题1>yx的一个充分不必要条件是……………………………………………………………( ) .A y x > .B y x < .C 0>>y x .D 0<<x y4、“0x <”是“x a <”的充分非必要条件,则a 的取值范围是5、2<x 是24x <的……………………… ……………( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件6、若x R ∈,则“1x >”是“11x<”的 ( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件7、设集合}06|{2=-+=x x x A ,}01|{=+=mx x B ,则B 是A 的真子集的一个必要不充分条件是( ).A }31,21{-∈m .B }31,0{∈m.C}31,21,0{-∈m .D }1,31,21,0{-∈m8、已知集合3|{<=x x M 或}5>x ,}8|{≤≤=x a x P(1)求实数a 的取值范围,使它成为}85|{≤<=x x P M I 的充要条件;(2)求实数a 的一个值,使它成为}85|{≤<=x x P M I 的一个充分但不必要条件; (3)求实数a 的取值范围,使它成为}85|{≤<=x x P M I 的一个必要但不充分条件;1、充要条件:对于事件α和β,若βα⇒,且αβ⇒,即βα⇔,则称α是β的充要条件; 充分不必要:对于事件α和β,若βα⇒,且αβ,则称α是β的充分不必要条件; 必要不充分:对于事件α和β,若αβ⇒,且且αβ,则称α是β的必要不充分条件;2、集合与子集的推出关系:记条件p 、结论q 对应的集合分别为A 、B ,则: 若B A ⊆,等价于q p ⇒,则p 是q 的充分条件; 若B A ⊇,等价于q p ⇒,则p 是q 的必要条件; 若B A =,则p 是q 的充要条件;注意:证明α是β的充要条件:(1)充分性证明:βα⇒,(2)必要性证明:αβ⇒1.若非空集合MN ⊂,则“a M ∈或a N ∈”是“a M N ∈⋂”的 条件.【难度】★2. 一个整数的末位数字是2,是这个数能被2整除的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【难度】★课后练习反思总结3.p 是q 的充要条件的是:( )A .p :1a >,q :二元一次方程组11x y ax y +=⎧⎨+=⎩有唯一解 B . p :两条对角线互相垂直平分,q :四边形是正方形 C .p :325x +>,q :325x --<-D .p :两个三角形相似,q :两个三角形面积之比等于对应的高之比【难度】★★4.设U 为全集,A ,B 是集合,则“存在集合C 使得A⊆C ,B⊆∁U C”是“A∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【难度】★★5. (1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“ABC A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.【难度】★★6.已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.【难度】★★7.设A ,B 是有限集,定义:d (A ,B )=card(A ⊆B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.命题⊆:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题⊆:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ).( ) A .命题⊆和命题⊆都成立 B .命题⊆和命题⊆都不成立 C .命题⊆成立,命题⊆不成立 D .命题⊆不成立,命题⊆成立 【难度】★★★8. 判断下列集合A 与B 的关系.(1) A ={x | x 是12的约数},B ={x | x 是36的约数}; (2) A ={x | x >3},B ={x | x >5};(3) A ={x | x 是矩形},B ={x | x 是有一个角为直角的平行四边形}.【难度】★★9. 已知 A ={x | x 是等腰三角形},B ={x | p (x )},试确定一个集合B ,使A ⊆ B .【难度】★★10.试用子集与推出的关系来说明α是β的什么条件. (1):1x α=且2y = ; :3x y β+=(2):0a b α+> ; :0,0a b β>>(3):0xy α> ;:x y x y β+=+【难度】★★11. 设:14x α≤<,:x m β<,α是β的充分条件,求实数m 的取值范围.【难度】★★12. 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?【难度】★★11 / 11 专业 引领 共成长高一数学新课课程 命题的充要条件与子集的推出关系 13.已知函数2)(bx ax x f -=(1)当0>b 时,若对任意R x ∈都有1)(≤x f 求证b a 2≤.(2)当0a >时,求证;对任意[]1)(,1,0≤∈x f x 的充要条件是b a b 21≤≤-. 【难度】★★★。

沪教版(上海)数学高一上册-1.5 充分条件与必要条件 课件品质课件PPT

沪教版(上海)数学高一上册-1.5 充分条件与必要条件 课件品质课件PPT
1.5(1)充分条件与必要条件
情景引入
早在战国时期,《墨经》中就有这样一段话 “有之则必然,无之则未必不然,是为大 故”“无之则必不然,有之则未必然,是为小 故”。
今天,在日常生活中,常听人说:“这充分说 明……”,“没有这个必要”等,在数学中, 也讲“充分”和“必要”,这节课,我们就来 学习教材第一章第五节——充分条件与必要条
0不一定要 x = 0.
③必要条件:无它不行,有它也不一定行. 如 xy = 0是 x = 0的必要条件,若xy≠0,则一定有 x≠0;若xy = 0 也不一定有 x = 0。
4.拓广引申
把命题:“若某个整数能够被4整除,则这个整数必是偶 数”中的条件与结论分别记作α与β,那么,原命题与 逆命题的真假同α与β之间有什么关系呢?
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未��

沪教版(上海)数学高一上册1.6命题及其关系、充分条件与必要条件课件

沪教版(上海)数学高一上册1.6命题及其关系、充分条件与必要条件课件

2
(√ )
题型分类·深度剖析 题型一 四种命题及真假判断
例1 金典导学案P5例1
题型分类·深度剖析
题型一 四种命题及真假判断
思维升华 (1)写一个命题的其他三种命题时,需注意: (2A))判充断分一条个件命(题B)为必真要命条题件,要给出推理证明;
判(D断)既命非题充的分真也假非及必写要四条种件命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.
①对于不是“若p,则q”形式的命题,需先改写; ②判将断条 一件个之命间题的是关假系命转题化,成只集需合举之出间反的例关. 系.
例:设p:|4x-3|≤1; 判若断x+命y是题偶的数真,假则及x写与四y不种都命是题偶时数,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.
②若命题有大前提,写其他三种命题时需保留大前提. 判充断要下 条面件结的论几是种否判正断确方法(请在括号中打“√”或“×”)
当一个命题有大前提而要写出其他三种命题时,必须保留大前提.
命题及其关系、充分条件与必要条件
件.( × ) (1)两个命题互为逆否命题,它们有
的真假性;
判断一个命题是假命题,只需举出反例.
(A)充分条件 (B)必要条件
(5)(2014·上 海 改 编 ) 设 a , b∈R , 则 “a + b>4” 是 例:设p:|4x-3|≤1;
基础知识·自主学习
常用关键词语的否定形式: 大(小)于:不大(小)于 全是,都是:不全是,不都是 任何每一个都:至少有一个不 至少有一个:一个都没有 至多有一个:至少有两个
知识梳理
基础知识·自主学习
知识梳理
3.四种命题的真假关系 (1)两个命题互为逆否命题,它们有相同 的真假性; (2)两个命题互为逆命题或互为否命题,它们的真假性

沪教版数学高一上册-充要条件PPT全文课件

沪教版数学高一上册-充要条件PPT全文课件

(3)“. x 2 1 0”是“x-1 0”成立的() ( A).充分非必要条件(B)必要非充分条件
(C ).充要条件
( D)非充分非必要条件
沪教版数学高一上册-充要条件PPT全 文课件 【完美 课件】
1.证明充分必要条件时,应先分清哪个是命 题的条件,哪个是命题的结论。由条件推 出结论就是充分性,由结论推出条件就是 必要性。 2.证明命题条件的充要性时,既要证明原命题成立,
沪教版数学高一上册-充要条件PPT全 文课件 【完美 课件】
(4)实系数一元二次方程 ax 2 bx c 0(a 0)有两个 不相等正根的充要条件 是 __________?
变式:
(1)无实根的充要条件是 __________? (2)有两个负根的充要条件 是 __________? (3)方程有一个正根和一个 负根的充要条件是 _________要条件
沪教版数学高一上册-充要条件PPT全 文课件 【完美 课件】
(2).a,b中至少有一个不为零的 充要条件是()
( A)ab 0
(B)ab 0
(C ).a 2 b2 0
(D)a 2 b2 0
沪教版数学高一上册-充要条件PPT全 文课件 【完美 课件】
1.5
教学目标:
——
1.巩固理解充分条件,必要条件,充分必要条件的概念;
2.能在具体的背景下,分辨充分条件,必要条件,充分必 要条件之间的关系与区别;
3.掌握充分条件,必要条件,充分必要条件的证明。
回顾: 若 ,则叫做的 _充___分__ 条件
若 ,则叫做的 __必__要__ 条件
填空
<1> “x2=4”是”x=2”的必_要__非_充__分_条__件___;

上海昂立智立方数学高中 高数—10暑—05—集合的概念与表示、集合间的关系—周宝瑞-教师版

上海昂立智立方数学高中 高数—10暑—05—集合的概念与表示、集合间的关系—周宝瑞-教师版

高一数学暑假班(教师版)教师日期学生课程编号课型课题集合的概念与表示、集合间的关系教学目标1.理解集合含义,理解元素与集合“属于”关系,深刻理解集合元素的确定性、互异性、无序性;掌握常用数集专用符号;能选择合适的表达方式描述集合;2.深刻理解集合与集合之间的包含以及相等关系;掌握子集、真子集、空集、两个集合相等等概念;会写出任意集合的所有子集、真子集。

教学重点会用列举法、描述法表示集合;掌握集合间的关系教学安排版块时长1例题解析502巩固训练403师生总结104课后练习20一、集合的概念(一)、知识精讲 (1)集合的概念我们把能够确切指定的一些对象组成的整体叫做集合,简称集。

集合中的各个对象叫做这个集合的元素。

对于一个给定的集合,集合中的元素具有确定性、互异性、无序性。

(2)集合的元素特征确定性是指一个对象要么是给定集合的元素,要么不是这个集合的元素,二者必居其一。

比如“著名的数学家”、“较大的数”、“高一一班成绩好的同学”等都不能构成集合,因为组成集合的元素不确定。

互异性是指对于一个给定的集合,集合中的元素是各不相同的,也就是说,一个给定的集合中的任何两个元素都是不同的对象,集合中的元素不重复出现。

例如由元素1,2,1组成的集合中含有两个元素:1,2。

无序性是指组成集合的元素没有次序,只要构成两个集合的元素是一样的,我们就称这两个集集合的概念与表示、集合间的关系例题解析知识梳理集合定义 特征与元素关系表示与集合关系把能够确切指定的对象看作一个整体确定性、无序性、互异性属于、不属于 描述法、列举法、图示法子集、真子集、相等合是相等的。

(3)集合与元素的字母表示、元素与集合的关系集合常用大写字母C B A 、、…来表示,集合中的元素用c b a 、、…表示,如果a 是集合A 的元素,就记作A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作A a ∉,读作“a 不属于A ”(4)常用的数集及记法数的集合简称数集,我们把常用的数集用特定的字母表示:全体自然数组成的集合,即自然数集,记作N ,不包含零的自然数组成的集合,记作*N 全体整数组成的集合,即整数集,记作Z 全体有理数组成的集合,即有理数集,记作Q 全体实数组成的集合,即实数集,记作R常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;(5)集合的分类我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集我们引进一个特殊的集合——空集,规定空集不含元素,记作∅,例如,方程012=+x 的实数解所组成的集合是空集,又如,两个外离的圆,它们的公共点所组成的集合也是空集。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—01—集合的概念与表示、集合间的关系—杨威-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—01—集合的概念与表示、集合间的关系—杨威-教师版
定义:对于两个集合 A 与 B,如果 A B ,并且 A B ,我们就说集合 A 是集合 B 的真子
集; 记作:A B 或 B A;读作:A 真包含于 B 或 B 真包含 A。
注意:1)、空集是任何集合的子集; 2)、空集是任何非空集合的真子集; 3)、任何一个集合是它本身的子集 新疆
王新敞 奎屯

·B
优于 P ' ,如果 中的点 Q 满足:不存在 中的其它点优于 Q ,那么所有
O

x
这样的点 Q 组成的集合是劣弧 (

A. AB
【难度】★★★ 【答案】D
B. BC
C. CD
D. DA
【例 12】直角坐标平面除去两点 A(1, 1) 、 B(2 , 2) 可用集合表示为( )
高一数学秋季课程
8. A y y x2 a, x R ,1 A ,则 a 的取值范围 A (x, y) y x2 a, x R , (1,2) A ,则 a =
【难度】★★
【答案】 ,1 ,1
; .
9.已知由实数组成的集合 A,1 A ,又满足:若 x A,则 1 A . 1 x
(1)设 A 中含有 3 个元素,且 2 A, 求 A;
二、集合之间的关系
1、子集: 定义:对于两个集合 A 与 B,如果集合 A 的任何一个元素都是集合 B 的元素,我们就说集 合 A 包含于集合 B,或集合 B 包含集合 A,此时我们称 A 是 B 的子集。 即: 若任意x A x B,则A B
记作: A B或B A ;读作:A 包含于 B 或 B 包含 A;
【难度】★★ 【答案】因为 5∈A,所以 a2+2a-3=5,
解得 a=2 或 a=-4. 当 a=2 时,|a+3|=5,不符合题意,应舍去. 当 a=-4 时,|a+3|=1,符合题意,所以 a=-4.

2019-2020新沪教版高一数学第一学期教学案03—命题和充要条件—学生版

2019-2020新沪教版高一数学第一学期教学案03—命题和充要条件—学生版

命题和充要条件知识梳理 一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。

2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。

3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。

相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。

4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。

二、四种命题形式1、一个数学命题用条件,结论表示就是“如果 α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。

2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。

如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。

3、命题、的否定分别记作α、β。

4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。

5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。

叫做的必要条件。

2、充要条件:如果既有,又有,即有βα⇔,那么既是的充分条件又是的必要条件,这时我们就说是的充要条件。

例题解析一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【例4】下列判断中正确的是 ( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________3、已知,A B 是两个集合,下列四个命题:①B ,A x A x B ⇔∈∉不包含于对任意有②B A A B ⇔⋂=∅不包含于③B A A ⇔不包含于不包含B ④B ,A x A x B ⇔∈∉不包含于存在,其中真命题的序号是4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( ) A .1 B .2 C .3 D .42、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个. A .0 B .1 C .2 D .43、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题. 其中是真命题的是 (填上你认为正确的命题的序号).5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—13—函数值域和最值—郑悦-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—13—函数值域和最值—郑悦-教师版

高一数学秋季班(教师版)教师日期学生课程编号13 课型复习课题函数值域和最值教学目标1.复习函数值域和最值的定义;2.梳理求函数值域的方法;3.归纳不同方法的适用情况;4.提升变式拓展与综合运用能力;教学重点1.各种函数值域求法的例题讲解与练习;2.综合运用与转化能力;教学安排版块时长1 知识梳理102 例题解析503 巩固训练504 师生总结105 课后练习60一、函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、分段函数的值域是各个区间上值域的并集;3、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;4、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;5、求函数值域的方法十分丰富,应注意总结;二、函数的最值1、设函数()y f x =定义域为A ,则当x A ∈时总有()()0f x f x M ≤=,则称当0x x =时()f x 取最大值M ;当x A ∈时总有()()1f x f x N ≥=,则称当1x x =时()f x 取最小值N ;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。

三、函数的值域的求法 1.直接观察 2.配方3.基本不等式/耐克函数 4.判别式法5.分离常数法/部分分式法 6.换元 7.数形结合 8.单调性 9.奇偶性(*) 知识梳理函数值域和最值一、特殊方法1.直接观察对于一些比较简单的函数,其值域可通过观察得到。

【例1】求函数3y x =-的值域;【难度】★【答案】∵故函数的值域是:【例2】求函数213y x x =-+-的值域 【难度】★★ 【答案】5,2⎡⎫+∞⎪⎢⎣⎭2.配方法主要用于和一元二次函数有关的函数求值域问题.对于求二次函数()20y ax bx c a =++≠或可转化为形如()()()()20f x a g x bg x c a =++≠⎡⎤⎣⎦的函数的值域(最值)一类问题,我们常常可以通过配方法来进行求解;【例3】求函数[]225,1,2y x x x =-+∈-的值域; 【难度】★【答案】将函数配方得:∵ 由二次函数的性质可知:当x=1时,,当时,故函数的值域是:[4,8]【例4】求二次函数[]242,1,4y x x x =-+-∈的值域; 【难度】★【答案】函数的定义域为[]1,4,2242(2)2y x x x =-+-=--+,从而函数为对称轴为2x =的开口向下的二次函数,2min 44422y ∴=-+⨯-=-,max 2y =.即函数的值域为[]2,2-.注:学过指数函数和对数函数后应用的更为广泛一些。

上海昂立智立方数学高中 高一(秋季班) 高一新课-09-基本不等式及其应用—李文萍 -学生版

上海昂立智立方数学高中 高一(秋季班) 高一新课-09-基本不等式及其应用—李文萍 -学生版

高一数学新课程教师日期学生课程编号课型预习课课题基本不等式教学目标1、会用基本不等式求最值;2、会用基本不等式比较大小,不等式的证明;3、利用基本不等式解决实际问题.4、利用基本不等式解决恒成立问题教学重点1、注意基本不等式求最值的条件;2、在学习过程中注意转化与化归思想、分类讨论思想的应用.教学安排版块时长1 例题解析802 巩固训练303 师生总结104 课后练习30),0,0(2,02,0)(0,022222时取等号当可得)同理(;式时取等号,则可得不等当时取等号;可得当仅当引入由b a b a ab b a b a ab b a b a b a a a =>>≥+≥-≥+=≥-=≥(一)、知识精讲1. 基本不等式ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.ADCBHF GE2. 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)如果x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值s 24(简记:和定积最大).注意:①求最值时要注意三点:“一正”“二定”“三相等”.所谓“一正”指正数,“二定”是指应用定理求最值时,和或积为定值,“三相等”是指等号成立.②连续使用基本不等式时,要注意等号要同时成立. 3. 利用基本不等式求最值的方法(1)利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路: ①对条件使用基本不等式,建立所求目标函数的不等式求解. 知识引入基本不等式),(24+∆∈≥+⇒≥⇒R b a ab ba S S AHD ABCD 正方形abb a +②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.(二)典型例题一、利用基本不等式求最值【例1】已知实数a 、b ,判断下列不等式中哪些一定是正确的? (1)ab b a ≥+2 ; (2)ab b a 222-≥+; (3)ab b a ≥+22; (4)2≥+b aa b (5)21≥+aa ; (6) 2≥+ab b a (7)222)(2b a b a +≥+)(【例2】(1)已知a b +∈R 、,如果1ab =,那么a b +的最小值为__________; (2)若0x >,则2x x+的最小值为 .(3)若x<0,则2x x+的最大值为 . (4)若13,3a a a >+-有最 值,是 ,此时a = .【巩固训练】1.(1)若0x >,则4y x x =+的最小值是___________.(2)、已知x <54,求函数y =4x -2+14x -5的最大值________;(3)若a >0,b >0,且a +2b -2=0,则ab 的最大值为___________. (4)(2014·上海) 若实数x ,y 满足xy =1,则x 2+2y 2的最小值为___________.【例3】(1)已知a b +∈R 、,如果1a b +=,那么ab 的最大值为______;22a b +的最小值为______;(2) 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________;【巩固训练】1. (1)若a R b ∈,,且221a b +=,则a b +的最大值是 ,最小值是 .(2)若x ,y ∈(0,+∞)且2x +8y -xy =0,求x +y 的最小值 . (3)若01,x <<则491y x x=+-的最小值为 . (4)若+∈R x ,则xx 212+有最 值,且值为 .【例4】(1)当0<x <4时,函数y =x (8-2x )的最大值为________.(2) 已知x >0,y >0,且1x +9y=1,求x +y 的最小值________;(3)已知a >b >0,则a 2+16b (a -b )的最小值是________.【例5】若1x <,则2231x x x -+-有最 值,值为 .【巩固训练】.____45)3(____;3,3)2(.________3,0)1(1222的取值范围求的最小值为则值,值为有最则++->+>x x x x x x x x2.已知如下命题①若122=+y x ,则y x +的最大值为2;②若12=+b a ,则ba 21+的最小值为9; ③若21<a ,则1224-+a a 的最小值为2-;④若0>x ,则x x x 8282≥+,当2=x 时,等号成立,所以x xx 8282≥+的最小值值为8.其中真命题是 .(填写命题序号)3.(1)若a ,b R +∈,且2222a b +=,则21a b +的最大值是(2)设1a >,1b >,且()1ab a b -+=,那么( )A 、a b +有最小值)12(2+B 、a b +有最大值2)12(+C 、ab 有最大值12+D 、ab 有最小值)12(2+(3)若,x y 是正数,则221122x y y x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值是( ) A .3 B . 72 C .4 D . 924.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是( ) A .2 B .4 C .25 D .55.⑴已知,a b 是正常数,a b ≠,(0),,x y ∈+∞,求证:222()≥a b a b x y x y+++,指出等号成立的条件; ⑵利用⑴的结论求函数29()12f x x x =+-(1(0)2,x ∈)的最小值,指出取最小值时x 的值.二、基本不等式的实际应用(一)、知识精讲1.用基本不等式解应用题的思维程序为: 由题设写出函数→变形转化→利用基本不等式→求得最值→结论2.在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量,一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数最值问题; (3)在定义域内求函数最值; (4)正确写出答案.(二)典型例题【例6】小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C. ab <v <a +b 2 D .v =a +b 2【例7】在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).x40m【例8】某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8m 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?【例9】某厂家拟在2004年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m 万元(13)0+-=≥m kx m 满足)(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。

高中数学沪教版高一上册第1章三充分条件与必要条件《1.6子集与推出关系》优质公开课教师资格证面试试讲教案

高中数学沪教版高一上册第1章三充分条件与必要条件《1.6子集与推出关系》优质公开课教师资格证面试试讲教案

高中数学沪教版高一上册第1章三充分条件与必要条件《1.6子集与推出关系》优质课公开课教案教师资格证面试试讲教案1教学目标
知识与技能目标:
1、理解集合的包含关系与推出关系的等价性
2、掌握用集合间的包含关系进行推理的方法;
过程与方法目标:
逐步形成逻辑思维能力及等价转化思想,了解集合知识的广泛应用性;
情感、态度和价值观:
进一步树立辩证唯物主义观点,增强热爱家乡,热爱祖国的民族情感。

2学情分析
集合是一种数学语言,是对数学的进一步抽象,对于刚学习的高一新生来说会有一定的困难,而子集的应用是集合当中的一个重点,因此在研究子集与推出关系时,可以列举一些学生比较熟悉的实例,让学生理解集合的包含关系,实际上等价于集合元素所具有的性质的推出关系,学会借助子集关系进行推理的方法。

3重点难点
教学重点及难点
教学重点:集合间的包含关系与推出关系的理解与运用;
教学难点:子集与推出关系等价性。

4教学过程
4.1第一学时
教学活动
1【导入】子集与推出关系
一、课程引入
师:请同学们回顾一下子集的概念、充分、必要条件概念?
生:甲同学回答相应的概念。

(可能不完整)
师:简单小结回顾准确的概念。

上海昂立智立方数学高中 高一(秋季班) 高一新课-05-集合与命题章节复习-教师版-李栋

上海昂立智立方数学高中 高一(秋季班) 高一新课-05-集合与命题章节复习-教师版-李栋

高一数学(教师版)教师日期学生课程编号课型复习课课题集合与命题章节复习教学目标1.理解集合的意义,掌握集合的表示方法;2.掌握子集的概念及“交、并、补”运算;3.理解充分条件、必要条件与充要条件的意义,会判断条件的充分性、必要性或充分必要性,并由判断依据进行计算.教学重点1.集合“交、并、补”运算;2.命题的证明,充分条件、必要条件、充要条件的判别;3.集合子集与推出关系的判定和计算.教学安排版块时长1例题解析602巩固训练303师生总结304课后练习301、集合的概念(1)集合:能够确切指定的一些对象组成的整体叫做集合,简称集。

集合中的各个对象叫做这个集合的元素。

集合常用大写字母C B A 、、…来表示,集合中的元素用c b a 、、…表示。

(2)集合的性质:集合中的元素具有确定性、互异性、无序性。

(3)元素与集合之间的关系:①若a 是集合A 的元素,就记作A a ∈,读作“a 属于A ”; ②若a 不是集合A 的元素,就记作A a ∉,读作“a 不属于A ”(4)常用的数集:自然数集N ,正整数集*N ;整数集Z ;有理数集Q ;实数集R ;集合与命题章节复习知识梳理常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;(5)点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合 (6)集合的分类:有限集、无限集和空集2、集合的表示方法:列举法、描述法①列举法:将集合中的元素一一列举出来②描述法:将集合中的元素所具有的性质描述出来,其形式为}{p x x A 满足性质=,其中x 为元素的一般形式,p 为元素的公共属性;③有时集合也可用图示法(数轴、韦恩图)来表示;3、集合之间的关系(1)子集:如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作:A B ⊆或B A ⊇,读作“A 包含于B 或B 包含A ”。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—15—指数函数—周宝瑞-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—15—指数函数—周宝瑞-教师版

高一数学秋季班(教师版)教师日期学生课程编号课型专题课题指数函数教学目标1.掌握指数函数的概念,明确指数函数的定义域;2.掌握指数函数图象,学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型;3.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法.教学重点1、指数函数的图像与性质及应用;2、有关指数函数的复合函数的单调性.教学安排版块时长1 知识梳理102 例题解析503 巩固训练304 师生总结205 课后练习101.根式的运算性质:(1)当n 为任意正整数时,()n=a(2)当n 为奇数时,n n a =a ;当n 为偶数时,n na =|a |=⎩⎨⎧<-≥)0()0(a a a a(3)根式的基本性质:n m npmp a a =,(a ≥0) 2.分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+3.指数函数 函数名称 指数函数定义函数且叫做指数函数图 象定义域值域过定点 图象过定点,即当时,.奇偶性非奇非偶n a (0xy a a =>1)a ≠1a >01a <<R (0,)+∞(0,1)0x =1y =知识梳理xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =指数函数单调性在上是增函数 在上是减函数变化对图象的影响 在第一象限内,越大图象越高;在第二象限内,越大图象越低.1、3a a a ⋅⋅的分数指数幂表示为【难度】★ 【答案】43a2、函数xy 2=的值域是【难度】★★ 【答案】),1[+∞3、函数21(0,1)x y aa a -=+>≠且的图像必经过点【难度】★★ 【答案】)2,2(4、下列函数中值域是+R 的是( )A 、125xy -= B 、113xy -⎛⎫= ⎪⎝⎭C 、112xy ⎛⎫=+ ⎪⎝⎭D 、21x y =-【难度】★★ 【答案】B5、已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,比较()x f b 与()x f c 的大小关系 R R a a a 热身练习【难度】★★★【答案】∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增.若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.考点一、指数函数的概念和性质【例1】在下列函数中,是指数函数的有_________________①1()2x y =②11()2x y -=③23x y =•④(0,0,1)xy a x a a =≥>≠⑤1xy =⑥21()2x y =⑦12y x =【难度】★ 【答案】①⑥【例2】函数2(33)xy a a a =-+是指数函数,求a 的值 【难度】★★ 【答案】2【例3】函数12(0.58)xy -=-的定义域是【难度】★★ 【答案】(),3-∞-【例4】函数()xa a x f ⎪⎭⎫ ⎝⎛-=1在()+∞∞-∈,x 上是减函数,求a 的取值范围【难度】★★例题解析【答案】1515⎛⎛-+- ⎝⎭⎝⎭U【巩固训练】1.指出下列函数哪些是指数函数?(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2x y a a a =->≠且;(6)4x y -=. 【难度】★【答案】(1)(5)(6)2.作出函数12x y -=与12x y -=的图像.【难度】★★ 【答案】3.已知x>0, 函数2(8)xy a =-的值恒大于1,则实数a 的取值范围是_____________ 【难度】★★【答案】33a ora ><-4.函数(0,1)xy a a a =>≠在区间[1,2]上的最大值比最小值大2a,则实数a 的值是_____ 【难度】★★ 【答案】1322or5.函数2xy =的图像与函数12xy ⎛⎫= ⎪⎝⎭的图像关于_________对称,它们的交点坐标是______【难度】★★ 【答案】.y 轴,()0,1考点二、指数函数的图像及其应用【例5】指数函数①()x f x m =②()x g x n =满足不等式01m n <<<,则它们的图象是 ( )【难度】★★ 【答案】C【例6】(1)函数2xy -=-的图象一定过____________象限.(2)函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是_________.(3)函数3xy -=与___________的图象关于y 轴对称.【难度】★★ 【答案】(1)=,它可以看作是指数函数图象作关于轴对称的图象,因此一定过第三象限和第四象限. (2) 的图象可以看作把 的图象向右平移一个单位再向上平移3个单位而得到,且 一定过点 ,则应过点.(3)图象与 关于轴对称的函数为.【例7】方程22x x +=的实根的个数为_______________. 【难度】★★ 【答案】2【例8】.比较下列各组数的大小:(1) 0.17(和0.27(;(2) 163()4和154()3-;(3) 20.8-和125()3-;(4) 13a 和12a (0a >,1a ≠);(5)31.1和 1.71.1;(6)2306.-和340.6-。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—08—基本不等式—翁军成-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—08—基本不等式—翁军成-教师版

高一数学秋季班(教师版)教师日期学生课程编号08课型同步复习课题基本不等式教学目标1.掌握基本不等式的概念;2.掌握几个重要不等式;3.掌握比较法,综合法,分析法证明不等式的基本思路;4.掌握简单基本不等式的相关证明问题;教学重点1.掌握不等式的使用条件;2.掌握不等式的变形;3.掌握多次使用不等式的方法;教学安排版块时长1知识梳理10 2例题解析60 3巩固训练40 4师生总结10 5课后练习60一、基本不等式:1.若,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号2.(1)“积定和最小”:ab b a 2≥+⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值2P ;(2)“和定积最大”:22⎪⎭⎫ ⎝⎛+≤b a ab ⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S 。

3.若,a b R +∈,2222a b a b ab ++≥≥ 加权平均》算术平均》几何平均二、均值不等式:若a 、b 为正数,则2a b ab +≥,当且仅当a b =时取等号变式:222()22a b a b ab ++≥≥ 推广:123,,,,n a a a a L 是n 个正数,则12na a a n+++L 称为这n 个正数的算术平均数,12n n a a a ⋅⋅⋅L 称为这n 个正数的几何平均数, 它们的关系是:1212n nn a a a a a a n++⋅⋅⋅+≥⋅⋅⋅⋅⋅⋅,当且仅当12n a a a ===L 时等号成立。

知识梳理基本不等式一、简单基本不等式问题【例1】条件“0>a 且0>b ”是结论“ab ba ≥+2”成立的 条件。

【难度】★【答案】充分非必要条件【例2】已知正数y x ,满足12=+y x ,求yx 11+的最小值。

判断下述解法正确与否,若不正确,请给出正确的解法,若正确,则说明理由。

y x xyxy y x xy y x y x 112422221,2110,0+∴≥∴≥+=≥+∴>>ΘΘ的最小值为24【难度】★【答案】不正确,忽略了前两个小不等式中的取等条件,当时,即,取得最小值。

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—05—不等式基本性质—李新媛-教师版

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—05—不等式基本性质—李新媛-教师版

高一数学秋季班(教师版)教师日期学生课程编号课型同步复习课题不等式基本性质教学目标1.理解和掌握不等式的基本性质,掌握不等式各个性质之间条件与结论的逻辑关系;2.熟练运用作差法和做商法比较大小,熟知作商法的条件;3.能熟练解决二元一次线性域值问题.教学重点1.运用不等式的基本性质判断大小关系;2.利用做差或作商法判断大小.3.不等式范围问题.教学安排版块时长1 知识梳理102 例题解析603 巩固训练304 师生总结205 课后练习30一、不等式的性质: (1);a b b a <⇔> (2) (3);c b c a b a +>+⇒> (4);,d b c a d c b a +>+⇒>>(5);0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>> (6);0,0bd ac d c b a >⇒>>>> (7);0nn b a b a >⇒>>、 (8);0n nb a b a >⇒>>(9);11,0,ba b a ab b a <⇒>≠且同号、 (10).b a b a b a +≤±≤-注:在高考中,不等式性质的判断题常有出现,一般我们判断此类问题主要采用两种方法: 其一:按照性质进行判断,此种方法要求我们对不等式性质有一个全面熟练的掌握。

其二:采用赋值法/特殊值法进行判断,此种方法对于证明假命题非常适用;二、比较两式大小的常见方法:作差法、作商法作差法:作差是两式比较大小的常用方法,基本步骤如下: 第一步:作差;第二步:变形,常采用配方,因式分解等恒等变形手段;第三步:定号,重点是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.;,c a c b b a >⇒>>不等式基本性质知识梳理注1:有的问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到比较易于判断符号时,再作差,予以比较;注2:含参不等式的大小判断要注意符号问题,具体根据不等式性质判断.注意分类合理恰当. 作商法:注:在两式无法确定正负号或是否可能为0的情况下无法适用.作商法的基本步骤是:①求商,②变形,③与1比大小从而确定两个数的大小.一、不等式基本性质【例1】设和都是非零实数,不等式和同时成立的充要条件是_______ 【难度】★【答案】0,0a b >< 【解析】110b a a b ab->⇒>Q ,根据,可知要使两者同时成立,则0,0a b ><.【例2】下列四个命题中,为真命题的是( )A. 若a b >,则22ac bc >B. 若a b >,c d >则a c b d ->-C. 若a b >,则22a b >D. 若a b >,则11a b< 【难度】★★ 【答案】C【解析】此题是2016年模考题,较主流的一种出法,利用不等式基本性质即得,较常规【例3】设0ab >,下面四个不等式中,正确的是________ ①||||a b a +>②||||a b b +<③||||a b a b +<-④||||||a b a b +>-A 、①和②B 、①和③C 、①和④D 、②和④a b b a >ba 11>b a >例题解析【难度】★★ 【答案】C【解析】0ab >Q ,所以,a b 同号,再根据不等式性质即可求得【例4】已知101a b c <-<<<<,则下列不等式成立的是_________A 、22b c a <<B 、1ab c ab +<C 、111b a c<< D 、2b ab bc ac >-+ 【难度】★★ 【答案】C【解析】本题,,a b c 的范围均限制的非常具有区分度,此类问题可以采用赋值法的方式进行排除判断,本题是此类方法较为典型的例题,赋值法也是考试中较为快捷的排除手段,准确率高【例5】已知三个不等式: (1);0>ab (2);bda c > (3).ad bc > 以其中两个作为条件,余下一个作结论,则可以组成_____个正确命题. 【难度】★★ 【答案】3【解析】解法一:显然0()(),011ab c d ab ab bc ad c da b a bab c dbc ad bc ad ab ab a b >⎧⎪⇒⋅>⋅⇒>⎨>⎪⎩>⎧⇒⋅>⋅⇒>⎨>⎩ 第三个命题是".0,,">>>ab ad bc bda c 则且若下面证明这个命题也正确.首先,由b d a c >知,0,.0<≠ab ab 若则由b d a c >可得,即ad bc ab bdab a c <⋅<⋅),()(这与bc>ad 矛盾.因此只能ab>0.综上所述,可以组成3个正确命题.解法二:由式(2)00,c d c d bc ada b a b ab->⇔->⇔>式(1)就是分母大于0,式(3)等价于分子大于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学秋季班(教师版)一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。

2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。

3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。

相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。

4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。

二、四种命题形式1、一个数学命题用条件,结论表示就是“如果 α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。

2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。

如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。

3、命题、的否定分别记作α、β。

4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。

5、四种命题形式及其相互关系:命题和充要条件知识梳理6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。

叫做的必要条件。

2、充要条件:α⇔,那么既是的充分条件又是的必要条件,如果既有,又有,即有β这时我们就说是的充要条件。

一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【难度】★【答案】⑴是命题;⑵不是命题;⑶不是命题;⑷不是命题;⑸是命题.【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗(2)垂直于同一条直线的两条直线必平行吗(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星. 【难度】★【答案】(1)是命题,且是真命题.(2)不是命题,这是疑问句,没有对垂直于同一条直线的两直线是否平行作出判断. (3)不是命题,是祈使句. (4)是开语句,不是命题. (5)是命题.但目前无法判断真假.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【难度】★★ 【答案】A例题解析【解析】①假命题,如12a =;②假命题,集合N 中最小的数是0,如01a b ==,;③假命题,{}11,与集合元素的互异性矛盾.【例4】下列判断中正确的是( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【难度】★★ 【答案】C【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题: ①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个 【难度】★★★ 【答案】A【解析】记,,A B C 三点的坐标分别为()()(),,,,,A A B B C C x y x y x y , 则+≥A C C B A C C B A B A B AC CB x x x x y y y y x x y y AB +=-+--+--+-=,当,C C x y 都分别在,A B x x 与,A B y y 之间时,上面的不等式取到等号,故①正确,③不一定; 对于②,取(00)(01)(10),,,,,C A B ,则②中等式左边112=+=,右边2(11)4=+=,故②假.【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )【难度】★ 【答案】真2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________ 【难度】★★ 【答案】[)1,2【解析】[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则2,514x x x <>⎧⎨≤≤⎩或3、已知,A B 是两个集合,下列四个命题: ①B ,A x A x B ⇔∈∉不包含于对任意有 ②B A A B ⇔⋂=∅不包含于 ③B A A ⇔不包含于不包含B④B ,A x A x B ⇔∈∉不包含于存在 其中真命题的序号是 【难度】★★ 【答案】③④【解析】①反例:{}{}1,2,3,2,3,4A B ==4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个【难度】★★ 【答案】A【解析】①假命题,集合N 中最小的数是0; ②假命题,如12a =;③假命题,如0,1a b ==;④假命题,{}1,1与集合元素的互异性矛盾.二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【难度】★★【答案】逆命题:若||||x y =,则x y = (假,如1x =,1y =-)否命题:若x y ≠,则||||x y ≠ (假,如1x =,1y =-) 逆否命题:若||||x y ≠,则x y ≠ (真,∵||||x y x y =⇒=)【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球; (4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【难度】★★ 【答案】(3)【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假. 【难度】★★【答案】逆命题:若b a +是偶数,则b a ,都是偶数,它是假命题; 否命题:若b a ,不都是偶数,则b a +不是偶数,它是假命题; 逆否命题:若b a +不是偶数,则b a ,不都是偶数,它是真命题.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”; 【难度】★★【答案】⑴逆命题:若一个数的平方是正数,则它是负数.(假) 否命题:若一个数不是负数,则它的平方不是正数.(假) 逆否命题:若一个数的平方不是正数,则它不是负数.(真) ⑵逆命题:若a b +是偶数,则a 和b 都是偶数.(假) 否命题:若a 和b 不全是偶数,则a b +不是偶数.(假)逆否命题为:若a b +不是偶数,则a 和b 不都是偶数.(真)⑶分析:“当0c >时”是大前提,写其他命题时应该保留,原命题的条件是a b >,结论是ac bc >. 逆命题:当0c >时,若ac bc >,则a b >.(真) 否命题:当0c >时,若a b ≤,则ac bc ≤.(真) 逆否命题:当0c >时,若ac bc ≤,则a b ≤.(真) ⑷逆命题:若3x =且2y =,则5x y +=.(真) 否命题:若5x y +≠,则3x ≠或2y ≠.(真) 逆否命题:若3x ≠或2y ≠,则5x y +≠.(假)【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【难度】★★★【答案】由命题p 可以得到:2400m m ⎧∆=->⎨>⎩∴2m >由命题q 可以得到:2(2)160m ∆=--< ∴26m -<< 因为,p q 有且仅有一个为真当p 为真,q 为假时,262,6m m m or m >⎧⇒≥⎨≤-≥⎩当p 为假,q 为真时,22226m m m ≤⎧⇒-<≤⎨-<<⎩所以,m 的取值范围为{|6m m ≥或22}m -<≤.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( )A .1B .2C .3D .4 【难度】★★【答案】C【解析】①的逆命题为“若,x y 互为相反数,则0x y +=”,为真命题; ②的否命题为“不全等的三角形,面积一定不等”,为假命题;③为真命题,∵1q ≤时,一元二次方程的判别式440q ∆=-≥,故有实根,原命题为真,从而它的逆否命题为真命题; ④为真命题,“逆命题为三个内角都相等的三角形是等边三角形”.2、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4 【难度】★★【答案】C【解析】逆命题和否命题是真命题.3、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥ 【难度】★★ 【答案】D4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号). 【难度】★★【答案】①②③【解析】①、②显然正确;③当1≤m 时,有440≥m ∆=-,∴方程有实数根,即原命题为真, ∴它的逆否命题也为真;④A B B =则B A ⊆,∴原命题为假,因而其逆否命题也为假. 5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【难度】★ 【答案】D【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【难度】★★ 【答案】D【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。

相关文档
最新文档