6.5二次曲面方程的化简与位置确定
二次曲线方程的化简和作图

目录摘要 (2)关键词 (2)1引言 (2)2预备知识 (2)3二次曲线的分类 (4)4二次曲线方程的化简 (4)4.1中心二次曲线方程的化简 (4)4.2无心二次曲线方程的化简 (7)4.3线心二次曲线方程的化简 (10)参考文献 (12)英文题目 (12)英文摘要 (12)英文关键词 (12)二次曲线方程的化简与作图曾XX 2008111XXXX数学科学学院数学与应用数学专业 2008级汉班指导老师李XX摘要:二次曲线方程的化简是解析几何中的重难点之一,本文简单介绍了二次曲线方程的分类,将其分为中心、无心、线心曲线三类,并运用待定系数法与配方法相结合的方法,详细介绍了这三类曲线方程的化简,并举例进行了说明.关键词:二次曲线、方程、待定系数、化简1引言我们知道,在不同的坐标系下,同一点有不同的坐标,因而同一图形有不同的方程,方程的形式越简单,它的图形的几何性质就越明显.对于给定的图形,我们就需要选取合适的坐标系,使它的方程更简单,这就涉及到方程的化简问题.二次曲线方程的化简与作图是大学空间解析几何的重点内容之一,它也是解析几何中的一个难点.如何把二次方程代表的曲线化简并作图,以便更容易看出方程所代表的二次曲线的类型,确定曲线的性质、形状以及在坐标中的位置,这具有重要的意义。
纵观有关资料对此问题的研究与讨论,给出了以下几种二次曲线方程化简的方法:坐标变化法、主直径法、不变量与半变量法、参数法、配方法、正交配方法、因式分解法等,这些方法各有优劣。
本文经过深入分析有关二次曲线方程化简的知识,在已知二次曲线分类的基础上,通过对二次曲线化简后所得方程以及其图形形状的探索,运用待定系数法与配方法、因式分解法相结合的方法求出二次曲线方程化简过程中所要知道的未知量,从而求出简化方程,为学习二次曲线方程的化简提供了一定的指导.2预备知识定义1 在平面直角坐标系中,由二元二次方程221112221323332220a x a xy a y a x a y a +++++= (2221112220a a a ++≠) (1) 表示的曲线称为二次曲线.为了方便起见,引进下面一些记号:22111222132333(,)222F x y a x a xy a y a x a y a =+++++;1111213(,)F x y a x a y a =++; 2122223(,)F x y a x a y a =++; 3132333(,)F x y a x a y a =++;11122I a a =+;1112221122121222a a I a a a a a ==-; 1112133122223132333a a a I a a a a a a =. 定义2 把一个点对于某一坐标系的坐标变换为同一个点对于另外一个坐标系的坐标,这种变换称为坐标变换.设在直角坐标系xoy 里给定了两条互相垂直的直线1111:0l A x B y C ++=,2222:0l A x B y C ++=如果取直线1l 为新坐标的横轴''o x ,而直线2l 为纵轴''o y ,并设平面上任意点p 的旧坐标与新坐标分别是(,)x y 与''(,)x y ,则由点到直线的距离公式我们有''x y ⎧=⎪⎪⎨⎪=⎪⎩去掉绝对值便有''x y ⎧=⎪⎪⎨⎪=⎪⎩ (2)其中正负号的选取要使'x 中的x 与'y 中的y 的系数同号.3二次曲线的分类4二次曲线方程的化简4.1中心二次曲线方程的化简对于中心二次曲线方程的化简,实质上是把坐标轴变换到与二次曲线的对称轴(即主直径)重合的位置,坐标原点与曲线中心重合,因此,对中心二次曲线方程的化简,只要先求出曲线的两条互相垂直的主直径,然后以它们作为新坐标轴,作坐标变换即可化为最简单的形式.设中心二次曲线两条互相垂直的主直径分别a kx y +=与b x k y +-=1,则以主直径为新的x 轴、y 轴可以将原方程化0)1()(22=+-++--C b x ky B a kx y A的形式,这里理论上是可以求出待定系数的,但是比较麻烦,因此我们不妨从主直径入手,先求出主直径的方程,从而得出简化方程.二次曲线的特征方程为0-212=+I I λλ,其特征根为2422112,1I I I -±=λ,如果判别式04)(421222211221=+-=-=∆a a a I I ,那么2211a a =,012=a ,这时的中心曲线为圆(包括点圆、虚圆),它的特征根为一对二重根,)0(2211≠==a a λ,任何方向都是圆的渐进主方向,从而通过圆心的任何直线都是圆的主直径.如果特征方程的判别式04)(421222211221>+-=-=∆a a a I I ,那么特征根为两不等的非零实根1λ、2λ,则由特征根1λ与2λ确定的主方向分别为122211111211:)()(::a a a a Y X -=-=λλ, (3)122221121222:)()(::a a a a Y X -=-=λλ, (4) 从而曲线的主直径为0),(),(2111=+y x F Y y x F X 与0),(),(2212=+y x F Y y x F X ,从而我们可以将方程(1)化为0)],(),([)],(),([2221222111=++++C y x F Y y x F X B y x F Y y x F X A (5) 把他与方程(1)的系数作比较,从而可以求出待定系数C B A ,,的值.现在我们把直线0),(),(2111=+y x F Y y x F X 作为新坐标的x 轴,把直线0),(),(2212=+y x F Y y x F X 作为新坐标的y 轴,这里需要注意,一般我们常将斜率大于0的主直径作为新坐标的x 轴,以确保在旋转变换时,其转角θ为锐角.假设两主直径方程中,y x 、的系数分别为11B A 、与22B A 、,作变换⎪⎪⎩⎪⎪⎨⎧++=++=,,)],(),([1)],(),([121112121'22122222'y x F Y y x F X B A y y x F Y y x F X B A x (6)则二次曲线方程(1)可以化为0)()(2'21212'2222=++++C y B A B x B A A做适当变换即可得到下列五种曲线中的一种形式:[1]12222=+b y a x (椭圆);[2] 12222-=+by a x (虚椭圆);[3] 12222=-by a x (双曲线);[4] 02222=+by a x (点或者相交于实点的共轭虚直线);[5] 02222=-by a x (两相交直线).例1 化简二次曲线方程01616854822=--+++y x y xy x ,并作出它的图形.解 因为0365228135821≠===+=I I ,,所以曲线为中心二次曲线,曲线的特征方程是03613-2=+λλ,解得两特征根为,,942,1==λλ因而由公式(3)与(4)知,曲线的两个主方向为)(2-:1)84(:2:11=-=Y X 1:28-9:2:22==)(Y X曲线的两主直径为0)852(2428=-+-++y x y x )(与 0)852()428(2=-++++y x y x , 即 052=+-y x 与02=+y x .设原方程可以化为0)2()52(22=++++-C y x B y x A ,与原方程系数比较可得365954-===C B A ,,,由(6),作变换⎪⎪⎩⎪⎪⎨⎧+-=+=),52(51-),2(51''y x y y x x 则原方程可化为036942'2'=-+x y ,化为标准方程得1942'2'=+y x , 这是椭圆,图形如图一所示4.2无心二次曲线方程的化简由二次曲线的分类我们知道无心二次曲线可以化为02''132''22=+x a y a 的形式,设对任意给定的无心二次曲线方程可以表示为:0)()(2=+-+++b y kx B a ky x A的形式,展开得0)()2()2(22222=++-+++++bB A a y B aAk x Bk aA y Ak Akxy Ax ,将其待定系数与方程(1)对比,我们可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=+==,,22,22,22,33223131211a bB A a a B aAk a Bk aA a kA a A 解之得⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=+-+-+=+-=++==,,))((2)()(,2,,112122112311131211223121311112212211332122112311131211212211231213111112a A a a a a a a a a a a a a a a a b a a a a a a a B a a a a a a a a a k (7) 现在我们分别把直线0=++a ky x 与直线0=+-b y kx 作为新坐标的x 轴、y 轴,同样的,一般我们常将斜率大于0的直线作为新坐标的x 轴,以确保'x 轴与x 轴的夹角为锐角。
一般二次曲面方程的化简与分类研究.

一般二次曲面方程的化简与分类研究[摘 要]本文通过对一般二次曲面方程进行化简与分类,化简成五类方程和17种标准形式.最后介绍了一般二次曲面方程分类与化简的应用.[关键词]二次曲面;分类;化简;应用1 引言对于给定的二次曲面方程,通过特征方程可求出它所对应的主方向.由于二次曲面的每个特征根至少对应一个主方向,也就是说二次曲面至少有一个主径面,而二次曲面的主径面又是二次曲面的对称面,因而选取主径面作为新坐标面,或者选取主方向作为坐标轴方向,就成为化简二次曲面方程的主要方法.2 预备知识定义 2.1[3]果二次曲面的径面垂直于它所共轭的方向,那么这个径面就叫做二次曲面的主径面.显然主径面就是二次曲面的对称面.定义 2.2[4]二次曲面主径面的共轭方向(即垂直于主径面的方向),或者二次曲面的奇向,叫做二次曲面的主方向.引理 2.1[5]二次曲面平行于非渐近方向的一族平行弦中点的轨迹是一个平面.其方程为1234(,,)(,,)(,,)(,,)0X Y Z x X Y Z y X Y Z z X Y Z φφφφ+++=. (1)注1:二次曲面沿非渐近方程::X Y Z 的所有平行弦中点所在的平面叫做平面共轭于非渐进方向::X Y Z 的径面,而平行弦叫做这个径面的共轭弦.注2:如果二次曲面的径面垂直于它所共轭的方向,那么这个径面就叫做二次曲面的主径面.实际上,主径面垂直于所平分的一组弦,是二次曲面的对称平面. 引理2.2 二次曲面的特征方程为1112131322231323330a a a a a a a a a λλλ--=- 即321230I I I λλλ-+-+=.其中λ是二次曲面的特征根.引理2.3 一般二次曲面的主方向方程组()()()1112131222231323330,0,0.a X a Y a Z a X a Y a Z a X a Y a Z λλλ-++=⎧⎪+-+=⎨⎪++-=⎩ 其中::X Y Z 是二次曲面(2)的非渐近方向.引理2.4 空间直角坐标变换设在空间给定了两个由标架{};;;o i j k 与{}'''';;;o i j k 决定的右手直角坐标系,前面一个叫做旧坐标系,后面的一个叫做新坐标系.它们之间的位置关系完全可由新坐标系的原点'o 在旧坐标系内的坐标,以及新坐标系的坐标矢量在旧坐标系内的分量所决定.2.4.1移轴设'o 在旧坐标系下的坐标为{}000,,x y z ,p 为空间任意一点,它在{};;;o i j k 与{}'''';;;o i j k 下的坐标分别是{},,x y z 与{}''',,x y z .其中移轴表换公式为'0'0'0x x x y y y z z z ⎧=+⎪=+⎨⎪=+⎩, 移轴公式为'0'0'x x x y y y z z z ⎧=-⎪=-⎨⎪=-⎩.转轴经过转轴变换后,新旧坐标轴间的交角如下表所示其中转轴变换公式为:'''123'''123'''123cos cos cos ,cos cos cos ,cos cos cos .x x y z y x y z z x y z αααβββγγγ⎧=++⎪=++⎨⎪=++⎩, 其中转轴逆变换公式为:'111'222'333cos cos cos ,cos cos cos ,cos cos cos .x x y z y x y z z x y z αβγαβγαβγ⎧=++⎪=++⎨⎪=++⎩ 3 二次曲面方程的化简定理 以三个主方向所建立的右手直角坐标系为新坐标系而作坐标轴的旋转,那么曲面方程222112233121323142434442222220a x a y a z a xy a xz a yz a x a y a z a +++++++++=.(2)在新坐标系中具有如下形式:''2''2''2'''''''112233142434442220a x a y a z a x a y a z a ++++++=. (3)证明 因为二次曲面至少有一个非奇主方向,以这个主方向作为新轴方向,以共轭于这个方向的主径面作为新坐标平面'0x =,建立直角坐标系''''o x y z -,设在这个新坐标系下,曲面的方程为''2''2''2'''''''''''''''112233121323142434442222220a x a y a z a x y a x z a y z a x a y a z a +++++++++=.在新坐标系下,曲面以'x 轴方向作为主方向1:0:0,代入式(1),得与之共轭的主径面方程为'''''''111213140a x a y a z a +++=.那么这个方程表示坐标平面'0x =的充要条件是''''111213140,0a a a a ≠===.所以曲面在新坐标系下的方程为''2''2''2'''''''''11223323243444112220(0)a x a y a z a y z a y a z a a ++++++=≠.如果'230a =,那么有''2''2''2''''''11223324344411220(0)a x a y a z a y a z a a +++++=≠.如果'230a ≠,可在'''y o z 平面内,将y 轴与z 轴旋转一角度θ(保持x 轴不动),并且适合''2233'23cot 22a a a θ-=,即经直角坐标变换'''''''''''''cos sin sin cos x x y y z z y z θθθθ⎧=⎪=-⎨⎪=+⎩, 就可使yz 项系数也等于零,从而得到''''2''''2''''2''''''''''''''112233142434442220a x a y a z a x a y a z a ++++++=.由定理可知,经过适当的坐标变换,二次曲面(2)总可以化为''2''2''2''''''''11223314243444112220(0)a x a y a z a x a y a z a a ++++++=≠.4 二次曲面方程的分类下面对(3)中系数的所有可能情形加以讨论.4.1 若'22a 和'33a 都不为零,作移轴变换'''''''24'22''''34'33x xa y y a a z z a ⎧⎪=⎪⎪⎪=-⎨⎪⎪⎪=-⎪⎩,则方程(3)可化为(I ) ''''2''''2''''2''112233440a x a y a z a +++= 4.2 若'22a 和'33a 中有一个为零,不妨假设'330a =,'220a ≠,则方程(3)化为 ''2''2''''''1122243444220a x a y a y a z a ++++=. (4) ① 若'340a ≠,作移轴变换'''''''24'22'''2'''224424''22342x x a y y a a a a z z a a ⎧⎪=⎪⎪⎪=-⎨⎪⎪-⎪=-⎪⎩, 则方程(4)化为(II ) '''2'''2''''11223420a x a y a z ++=② 若'340a =,作移轴变换'''''''24'22,x x a y y a ⎧=⎪⎨=-⎪⎩, 方程(4)化为(III ) '''2'''211220a x a y c ++=若'24a 和'34a 都为零,则方程(3)化为''2'''''11243444220a x a y a z a +++= (5)③ 若'24a 和'34a 不全部为零,因平面'''''243444220a y a z a ++=.与坐标平面'0x =垂直,则利用坐标变换''''''''''x x y ⎧=⎪⎨=⎪⎩使这个平面作为新坐标平面'0y =,此时方程(5)化为(IV ) '''2'''112420a x a y +=.④ ''24340a a ==,则方程(5)化为 (V ) '''2'11440a x a +=.综合以上的讨论,二次曲面方程(1)经过直角坐标变换总可以化为以下五种形式之一:(I ) 2220Ax By Cz D +++= (0ABC ≠);(II ) 2220Ax By Pz ++= (0ABP ≠); (III ) 220Ax By E ++= (0AB ≠); (IV ) 220Ax QY += (0AQ ≠); (V ) 20Ax R += (0A ≠);这同中心分类是一致的.下面对二次曲面(1)的五种形式中的每一个就系数可能出现的情况作进一步的讨论,以便得出二次曲面的详细分类.5 二次曲面标准形式分类5.1 在方程(I )中, 若0D ≠,把方程(I )的两端除以D 并令222111,,,A B C D a D b D c=±=±=±其中正负号的选取使,,a b c 都是实数. ① 若,,A B C 同号,但与D 异号,则方程(I )化为2222220x y z a b c++=. (6)它表示椭球面.②,,,A B C D 都同号,则得22222x y z a b+=±. (7)它表示虚椭球面.③ 若,,A B C 中有两个同号,且D 与另一个同号,则得22222x y z a b-=±. (8)它表示单叶双曲面.④ 中有两个同号,且D 与这两个同号,则得22221x y a b+=. (9)它表示双叶双曲面.5.2 在方程(I )中,若0D =,在方程(I )中,令222111,,A B C a b c =±=±=±. ① 若,,A B C 中有两个同号,则方程(I )化为2222220x y z a b c+-=. (10) 它表示二次锥面.② 若,,A B C 同号,则得2222220x y z a b c++=. (11)它表示虚二次锥面由此可知,中心型二次曲面有且仅有六种. 5.3 在方程(II )中,令2211,A B P a P b=±=±. ① 若,A B 同号,则得22222x y z a b+=±. (12)它表示椭圆抛物面.② 若,A B 异号,则得22222x y z a b-=±. (13)它表示双曲抛物面.5.4 在方程(III )中,若0E ≠,令2211,A B E a E b=±=±. ① 若,A B 同号,且与E 异号,则得22221x y a b+=. (14) 它表示椭圆柱面.② 若,A B 同号,且与E 同号,则得22221x y a b+=-. (15) 它表示虚椭圆柱面.③ 若,A B 异号,则得22221x y a b-=±. (16)它表示双曲柱面.5.5 在方程(III )中,若0E =① 若,A B 异号,则得22220x y a b-=. (17) 它表示一对相交平面. ② 若,A B 同号,则得22220x y a b+=. (18) 它表示一对虚相交平面或z 轴.5.6 方程(IV )可以化为22x py =. (19) 它表示抛物柱面.5.7 在方程(V ) (ⅴ)中,若0R ≠① 若,A R 异号,则得220x a -=. (20) 它表示一对平行平面.② 若,A R 同号,则得220x a +=. (21) 它表示一对虚平行平面.5.8 在方程(V )中,若0R =,则得20x =. (22) 它表示一对重合平面.由上可知,非中心型二次曲面有且仅有11种.综上所述,一般二次曲面(2)经过坐标变换,总可以简化成十七种标准方程中的一种.6 二次曲面方程的化简与应用例1 化简二次曲面方程2225622666100x y z xy xz yz x y z ++--+-+-+=.解 二次曲面的矩阵为13133113115333310---⎛⎫ ⎪- ⎪ ⎪-- ⎪--⎝⎭, 1237,0,36I I I ===-,所以曲面的特征方程为327360λλ-+-=,即 (6)(3)(2)0λλλ--+=, 因此二次曲面的三特征根为6,3,2λ=-.(1) 与特征根6λ=对应的主方向::X Y Z 由方程组530,350,0X Y Z X Y Z X Y Z ---=⎧⎪--+=⎨⎪-+-=⎩决定,所以对应于特征根6λ=主方向为::X Y Z =311553::511335----------=8:8:161:1:2-=-, 与它共轭的主径面为20x y z -++=.(2) 与特征根3λ=对应的主方向::X Y Z 由方程组230,320,20X Y Z X Y Z X Y Z ---=⎧⎪--+=⎨⎪-++=⎩决定,所以对应于特征根3λ=的主方向为::X Y Z =311223::211332----------=5:5:(5)1:(1):1--=-, 与它共轭的主径面为30x y z -+-=.(3) 与特征根2λ=-对应的主方向为::X Y Z 由方程组330,330,70.X Y Z X Y Z X Y Z --=⎧⎪-++=⎨⎪-++=⎩决定,所以主方向为::X Y Z =311333::177111----=20:20:01:1:0=, 与它共轭的主径面为0x y +=.取这三主径面为新坐标平面作坐标变换,得变换公式为:'''x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩解出,,x y z 得''''''''1,1,1,x x y z y x y z z x y ⎧=+++⎪⎪⎪=+-⎨⎪⎪=++⎪⎩代入原方程得曲面得简化方程为'2'2'263210x y z +-+=.曲面的标准方程为'2'2'21111632x y z +-=-. 这是一个双叶双曲面.例2 化简二次曲面方程22222342246230x y z xy xz yz x y z +++++-+-+=.解 因为1237,10,0I I I ===,所以曲面的特征方程为327100λλλ-+-=,特征根为 5,2,0λ=.非零特征根5λ=所对应的主方向由方程组320,230,20X Y Z X Y Z X Y Z -++=⎧⎪-+=⎨⎪+-=⎩决定,所以与5λ=所对应的主方向为::1:1:1X Y Z =,与这主方向共轭的主径面为0x y z ++=.非零特征根2λ=所对应的主方向由方程组20,20,0Y Z X Z X Y Z +=⎧⎪+=⎨⎪++=⎩决定,所以与2λ=所对应的主方向为::1:1:(2)X Y Z =-,与这主方向共轭的主径面为22430x y z +-+=.取上面的两个主径面分别作为新坐标系''''o x y z -的'''y o z 和'''x o z 坐标面,再任意取与这两主径面都垂直的平面,比如 0x y -+=,为'''x o y 坐标面,作坐标变换,得变换公式为'''x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩解出,,x y z 得''''''''1,241,41,332x y z y x y z z x y ⎧=--⎪⎪⎪⎪=+-⎨⎪⎪=-+⎪⎪⎩代入原方程得'2'2'95204x y +++=, 所以'2'2'52040x y z +++=. 再作移轴''''''''',,40x x y y z z ⎧⎪=⎪⎪=⎨⎪⎪=-⎪⎩得曲面的简化方程为''2''2''520x y ++=.这是一个椭圆抛物面.7 小结二次曲面方程的化简二次曲线一样,它的关键是适当选取坐标系,如果所取的坐标系深红x )是曲面的对称面,那么新方程里只含有这个对应坐标(例如x)的有一坐标面(例如0平平方项,曲面的方程就比较简单了,二次曲面的主径面就是它的对称面,因而选取主径面作为新坐标面,或者选取主方向为坐标轴的方向,就成为化简二次曲面方程的主要方法了.参考文献[1] 吕林根等.解析几何(第三版)[M].北京:高等教育出版社,2001.[2] 吴大任等.解析几何引论(第二版)[M].北京:高等教育出版社,1989.[3] 朱鼎勋.空间解析几何[M].上海:上海科学技术出版社,1986.[4] 李厚源.空间解析几何[M].山东:山东科学技术出版社,1983.[5] 南开大学编写组.空间解析几何引论[M]. 北京:高等教育出版社,1989.[6] 郑文晶.解析几何[M].哈尔滨:哈尔滨工业大学出版社,2008.6.[7] 崔冠之.唐宗李等编,空间解析几何.北京:中央民族学院出版社.1989.11[8] 华东师范大学数学系几何教研室,解析几何习题集, 华东师范大学出版社,1982.[9] (前苏联)A.B.波格列诺夫、姚志亭译,人民教育出版社,1982.[10] 陈绍菱、傅若男,空间解析几何习题试析,北京师范大学出版社,1984.Classification and Simpification of Generalquadric surface equationLei Song(Grade 06, Class 5, Major in Mathematics and Applied Mathematics, Department of Mathematics, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi)Tutor: Sangang GuoAbstract:This article through carries on the simplification and the classification to the generalquadric equation, simplifies five class equations and 17 standard forms. Finally introduced the generaltwo tunesKey words:Quadratic surface; Classification; Simplification; Using。
第六章 二次曲面的一般理论

第六章 二次曲面的一般理论教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类.研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充.教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念二次曲面: 在空间,由三元二次方程022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1)所表示的曲面.虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点二次曲面的一些记号≡),,(z y x F 44342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φz a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φz a y a x a z y x 3323133),,(++≡Φ z a y a x a z y x 3424144),,(++≡Φ即有恒等式成立: ≡),,(z y x F ),,(),,(),,(),,(4321z y x F z y x zF z y x yF z y x xF +++),,(),,(),,(),,(321z y x z z y x y z y x x z y x Φ+Φ+Φ≡Φ二次曲面),,(z y x F 的系数矩阵: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=44342414343323132423221214131211a a a a a a a a a a a a a a a a A 而由),,(z y x Φ的系数矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛=*332313232212131211a a a a a a a a a A 二次曲面(1)的矩阵A 的第一,第二,第三,与第四行的元素分别是),,(1z y x F ,),,(2z y x F ,),,(3z y x F ,),,(4z y x F 的系数。
二次曲线方程的化简与分类

(x0 cos y0 (x0 sin
sin )
y0 cos
)
(5.6-4)
平面直角坐标变换公式(5.6-3)是由新坐标系原
点的坐标 (x0, y0 ) 与坐标轴的旋转角 决定的。
确定坐标变换公式,除了上
面的这种情况外,还可以有
其它的方法。
y
M x/ y/
例如给出了新坐标系 的两坐标轴在旧坐标
tg Y a12 a11 , X a22 a12
(aa1211X()aX22a12)YY
0, 0.
ctg 2
1 tg 2 2tg
1 (
2
a12 )2 a22 a12
a22
1 ( a12 )( a11 )
a22 a12
2a12
a11 a22 2a12
a22
因此,上面介绍的通过转轴与移轴来化简二 次曲线方程的方法,实际是把坐标轴变换到与二 次曲线的主直径(即对称轴)重合的位置。
例 1 已知两垂直的直线 l1: 2x y 3 0 与
l2 : x 2 y 2 0 ,取 l1为Ox 轴,l2 为Oy 轴,求
坐标变换公式。
解 设 M (x, y) 的新坐标为 (x, y),那么有
x x 2 y 2 , y 2x y 3 ,
5
5
根据上面的符号选取法则得变换公式为
项系数仅与原方程的二次项系数及旋转角有关,而
与一次项系数及常数项无关。
2o 一次项系数一般要改变。新方程的一次
项系数
a13 a13 cos a23 sin , a23 a13 sin a23 cos ,
解出 a13, a23 得
a13 a13 cos a23 sin , a23 a13 sin a23 cos ,
数学专业毕业论文_二次曲线方程的化简及应用

二次曲线方程的化简及应用作 者:。
0 引言二次曲线方程的化简是二次曲线理论的重要内容,是《解析几何》课程教学的一个难点.文献[1]给出的化简方法(坐标变换法和不变量法)各有优缺点,具有一定的局限性.为此,文献[2-4]利用参数法将坐标变换和主直径有机地结合起来,给出方程化简第一种较简便的方法;文献[5]和文献[6]从坐标变换下二次曲线方程系数变化规律入手,给出了第二种新的化简方法;文献[7]借助多项式可约性及因式分解给出第三种化简方法;文献[8]和文献[9]分别利用矩阵理论及六元非线性方程给出了另外两种化简方法.但文献给出的化简方法均未涉及到方法之间的内在联系.本文归纳总结了二次曲线方程的一般化简方法,进一步探讨了坐标变换法和不变量法的内在联系,在文献[2]的基础上通过进一步论证,又得到了三个新的定理,并借助实例,探究了这种方法在问题过程中的具体应用. 1 预备知识 1.1 定义[]1定义1 在平面上,由二次方程()22111222132333,2220F x y a x a xy a y a x a y a =+++++= (*)所表示的曲线,叫做二次曲线[]1.定义2 有唯一中心的二次曲线叫做中心二次曲线;没有中心的二次曲线叫做无心二次曲线;有一条中心直线的二次曲线叫做线心二次曲线.无心二次曲线与线心二次曲线统称为非中心二次曲线[]1.定义 3 把一个点对于某一坐标系的坐标变换称为同一个点对于另一种坐标系的坐标,这种变换称为坐标变换[]1.定义4 由曲线方程的系数给出的函数,如果在经过任意一个直角坐标变换后,它的函数值不变,就称这个函数是该曲线的一个正交不变量,简称不变量.定义5 二次曲线的垂直于其共轭弦的直径叫做二次曲线的主直径. 1.2 直角坐标变换下二次曲线方程的系数变化规律 1.2.1 移轴对二次曲线方程系数的影响规律[]1二次曲线方程(*)在移轴公式'0'0x x x y y y ⎧=+⎪⎨=+⎪⎩下,其中(,)x y 表示平面内一点P 的旧坐标,(,)x y ''表示P 点的新坐标, (,)x y ''表示新坐标系的原点在旧坐标系下的坐标,二次曲线方程系数分别为:'''111112122222'1311012013100'2312022023200'3300,,(,)(,)(,)a a a a a a a a x a y a F x y a a x a y a F x y a F x y ====++==++==由此可知系数变化规律为: 1)二次项系数不变;2)一次项系数变为),(22001'13y x F a =,),(22002'23y x F a =;3) 常数项变为),(00'33y x F a =. 根据上述规律,通过计算可以得到:'1'22'1122111I a a a a I =+=+=,'22'12'22'112122211221212112I a a a a a a a a a a I =-=-==,33323132322121312113I a a a a a a a a a I '==.1.2.2 转轴对二次曲线方程系数的影响规律[]1二次曲线方程(*)在转轴公式''''cos sin sin cos x x y y x y αααα⎧=-⎪⎨=+⎪⎩下,其中, α为坐标轴的旋转角. 二次曲线方程系数分别为:33'332313'232313'1322212211'22121122'1222212211'11cos sin sin cos cos 2sin sin 2cos 2sin )(21sin 2sin cos a a a a a a a a a a a a a a a a a a a a =+-=+=+-=+-=++=αααααααααααα由此可知系数变化规律为:1)二次项系数的变化仅与原方程的二次项系数和转角有关;2)一次项系数的变化仅与原方程的一次项系数和转角有关,特别是,当原方程无一次项时,转轴后也无一次项;二次曲线方程的化简及应用3)常数项不变.根据上述规律,通过计算可以得到:'1'22'1122111I a a a a I =+=+=,'22'12'22'1121222112I a a a a a a I =-=-=2 二次曲线方程的化简方法 2.1 参数法若(,)0F x y =(0222212211≠++a a a )为中心二次曲线,其中心为),(000y x P 则过),(000y x P 的任一直线的参数方程为()00cos 0sin x x t y y t ααπα=+⎧≤<⎨=+⎩ 将上式代入(,)0F x y =得:2()(,)0o o t F x y λα+=其中22111222()cos 2cos sin sin a a a λααααα=++引理[]21 设(,)0F x y =)0(222212211≠++a a a 为中心二次曲线若()λα定号:当0),()(<o o y x F αλ时,二次曲线为实椭圆,方程可化简为1)()(min2'max 2'22=+t yt x 当()0,)(00>y x F αλ时,二次曲线为虚椭圆;当()00,0F x y =时,二次曲线为点椭圆.若)(αλ变号:当0),()(<o o y x F αλ时,二次曲线为双曲线,方程可化简为'2'222min max1()()x y t t -=当0),(=o o y x F 时,二次曲线为两相交直线. 例1 化简二次曲线方程01656522=-++y xy x .解 由于01635522>=-⨯=I ,故二次曲线为椭圆型中心曲线.解⎩⎨⎧=+=+0530350000y x y x 得 ⎩⎨⎧==0000y x 即二次曲线的中心为坐标原点. 设过中心的任一直线的参数方程为cos (0)sin x t y t ααπα=⎧≤<⎨=⎩,其中t 为参数.将参数方程代入二次曲线的原方程得222(5cos 6cos sin 5sin )160t αααα++-=令22()5cos 6cos sin 5sin 53sin 2λαααααα=++=+ 当22πα=,即max ()84παλα==时,,当232πα=,即min 3()24παλα==时,, 故2816)(8216)(min 22max 22=--===--==t b t a ,, 即原方程化简为1282'2'=+y x .2.2 不变量法[]5引理[]12 如果0,032≠≠I I , 则二次曲线(*)为中心曲线,那么它的方程总可以化简为'2'231220I x y I λλ++= (012>a ) 其中,1λ,2λ为二次曲线特征方程的两个根.如果0,032≠=I I , 则二次曲线(*)为无心曲线,那么它的方程总可以化简为210I y '±= 如果0,032==I I ,则二次曲线(*)为线心曲线,那么它的方程总可以化简为'21110K I y I += 其中,33232322331313111a a a a a a a a K +=例2 (1) 化简22442210x xy y x y -++--=. 解 由题意可得123121125,0,241124111I I I --====--=---- 所以二次曲线为无心曲线,由不变量法知可化简为'2'50y ±=.即'2'y x =或'2'y x =.二次曲线方程的化简及应用(2)021*******=+-++-y x y xy x解 由题意可得 45215551235231,45123231,2321-=----=-=--==I I I 所以二次曲线为中心二次曲线, 而主方向特征方程为0212=+-I I λλ,即04522=--λλ, 所以252121=-=λλ 故由不变量法可知二次曲线可化简为 02522=+'+'-y x(3) 0124422=+-++-y x y xy x解 由题意可得 012112112124,01224,5321=----==--==I I I 所以二次曲线为线心二次曲线, 又415121211111433232322331313111=--+=+=a a a a a a a a K所以由不变量法可化简为 04352=+'y用不变量法化简二次曲线,可直接由公式得到化简方程,计算比较简单,但无法确定二次曲线在坐标系中的确切位置,故还不能直接由此做出图形,仍需要进一步的确定计算.2.3 坐标变换法[]72.3.1 利用系数的影响规律化简方程[]1当02≠I 时,二次曲线()*为中心二次曲线,其中心00(,)x y 满足⎩⎨⎧++=++=230220122130120111),(),(a y a x a y x F a y a x a y x F o o o o 根据移轴对二次曲线方程系数的影响规律,若取00(,)x y 为坐标原点,则二次曲线方程可化简为:02'332'22''122'11=+++a y a y x a x a其中),(,00'332211'22'11y x F a a a a a =+=+由此可知中心二次曲线的化简一般是先移轴后转轴.当02=I 时,即(*)为非中心二次曲线,如果012≠a 时,取转角α满足12221122cot a a a -=α, 使得0)sin (cos cos sin )(22121122'12=-+-=ααααa a a a 从而消去方程中的交叉项,由此可知非中心二次曲线的化简一般是先转轴后移轴. 例3 化简024222=--++-y x y xy x ,并作出几何草图.解 因0434111212112≠=-=--=I ,故曲线为中心二次曲线.解11021202x y x y ⎧-+=⎪⎪⎨⎪-+-=⎪⎩ 得000,2x y ==, 取(0,2)为坐标原点,作移轴''2x xy y ⎧=⎪⎨=+⎪⎩ 根据移轴对系数的影响规律,可将方程化简为 '2'''260x x y y -+-=再作转轴消去''y x 交叉项,令022cot 122211=-=a a a α, 取,4πα=得cos αα==二次曲线方程的化简及应用作转轴 ⎪⎪⎩⎪⎪⎨⎧''+''=''-''=)(21)(21''y x y y x x经转轴后曲线的方程化为:0623212''2''=-+y x 图形如下图1对于坐标变换法,一般需先求旋转角,算出转轴公式,再代入二次曲线的方程,算出新方程的系数,然后再移轴,确定图形位置,虽然方法简单,但计算量大,且灵活性较强,不易掌握.2.3.2主直径法[]1对于中心二次曲线,我们取它的一对既共轭又互相垂直的主直径作为坐标轴,则方程可化为''2''2'1122330a x a y a ++=.对于无心二次曲线,取它的唯一主直径为'x 轴,而过顶点(即主直径与曲线的交点)且与非渐近主方向为方向的直线(即过顶点垂直与主直径的直线)为'y 轴建立坐标系.则方程可化为''2''221320a y a x +=.对于线心二次曲线,我们取它的中心直线(即曲线的唯一直径也是主直径)为'x 轴,任意垂直它的直线为'y 轴建立坐标系.则方程可化为''2'22330a y a +=.例 4 化简2222220x xy y x y -++--=,并做出草图. 解 因为123111112,0,111011112I I I --====--=---所以曲线为线心曲线.故有唯一的直径即中心线,其方程为10x y -+=取它为新坐标系的'x 轴,再取任意垂直于此中心线的直线0x y +=为新坐标系的'y 轴,作坐标变换,这时的变换公式为''x y ⎧=⎪⎪⎨⎪=⎪⎩解,x y 得''''122212x x y y y ⎧=--⎪⎪⎨⎪=+⎪⎩代入已知方程,经过整理得'2230y -=.即'y =或'y =.二次曲线方程的化简及应用显然用坐标变换法化简二次曲线的方程,计算量大,但能做出几何图形. 下面将探究坐标变换法和不变量法的内在联系,给出了三个新定理及证明,使二次曲线的化简计算量小,同时还能快速做出图形. 2.4 主要结果的证明及应用 2.4.1主要的定理及证明定理1 []12 二次曲线(*)为非圆时,在坐标变换''''cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩ 下方程总可以化简为:'2'231220I x y I λλ++= 其中),(o o y x 为中心坐标,)2,0(2cot 21122211πα∈-=a a a arc 且1212()0a λλ->, 12,λλ是特征方程2120I I λλ-+=的特征根.二次曲线(*)为圆时,在坐标变换⎪⎩⎪⎨⎧+=+=0''y y y x x x 下方程总可以化简为 0232'222'11=++I I y a x a 其中),(o o y x 为中心坐标.证明 将坐标变换公式y x ,代入二次曲线方程(*)得到'''(,)0F x y =, 经整理,系数变为:),(cos ),(sin ),(sin ),(cos )(cos 2sin sin 2cos 2sin )(21sin 2sin cos '3321'232,1'1322212211'22121122'1222212211'11o o o o o o o o o o y x F a y x F y x F a y x F y x F a a a a a a a a a a a a a =+-=+=+-=+-=++=αααααααααααα 因为),(o o y x 为二次曲线的中心,所以12(,)0,(,)0o o o o F x y F x y =='1312(,)cos (,)sin 0o o o o a F x y F x y αα=+=0cos ),(sin 2'23=+=ααo o y x F a .由于转角)2,0(2cot 21122211πα∈-=a a a arc ,且此时有αα2sin )(2cos 2221112a a a -= )]cos 2sin sin ()sin 2sin cos [(2)(2222122112221221112122211ααααααa a a a a a a a a a +--++='-' ()]2sin 22cos [212221112ααa a a a +-=()αα2sin 42cos 2212221112a a a a +-=()02sin ]4[21222211>+-=αa a a即方程最终可化为:0'332''222''11=++a y a x a又2'22'1112211'22'11,I a a I a a a a ==+=+,根据根与系数的关系得'22'11a a 与是特征方程2120I I λλ-+=的两根,且1212()0a λλ->.令2'221'11,λλ==a a 则12,λλ分别是二次曲线的特征根.由于),(o o y x 是中心坐标,且22312131102232213120,I a a a a y I a a a a x -=='3301023(,)(,)(,)(,)o o o o o o o o a F x y x F x y y F x y F x y ==++13023033a x a y a =++121311131112132333222312231222232a a a a a a a a a a a a a a a I I I -+==因此非圆的中心二次曲线方程在坐标变换''''0cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩下总可以化简为'2'231220I x y I λλ++=. 当二次曲线为圆时,同理可证曲线方程总可以化简为0232'222'11=++I I y a x a . 定理1证毕.定理2[]7 无心二次曲线(,)0F x y =()012≠a 在坐标变换二次曲线方程的化简及应用''''cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩ 下方程总可以化简为'2'10I y -= 其中),(00y x 为二次曲线的顶点,1112tan a a α=-,且cos α与12a 同号.证明 将y x ,代入二次曲线方程(*)中, 曲线方程可化简为:''2'''''2'''''1112221323332220a x a x y a y a x a y a +++++=因为1112tan a a α=-且cos α与12a 同号,可得cos αα==将1112tan a a α=-代入''1122,a a 得 ()1112222222212211'11tan 2tan cos sin cos sin 2cos a a a a a a a ++=++=ααααααα2cos 1112111221211222=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-⋅+⎪⎪⎭⎫ ⎝⎛-⋅=a a a a a a a α()'222211122222111222sin sin 2cos cos tan 2tan a a a a a a a αααααα=-+=-+2212111111122222111212122a a a a a a a a a a ⎡⎤⎛⎫⎛⎫⎢⎥=⋅--⋅-+ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎣⎦1122a a =+)12()()1cos 2(cos sin )(2cos 2sin )(212122112121221221112212211111112212112212112212=-+++⋅+-⋅-=-+-=+-='a a a a a a a aa a a a a a a a a a a ααααα'13100200(,)cos (,)sin a F x y F x y αα=+212211112302212212211121312011)()(a a a a y a x a a a a a y a x a o o +⋅++-+⋅++=22112132223131222311212211231113122a a aa a a a a a a a a a a a ++--=+-=== 由于()00,x y 是顶点,故1110012200(,)(,)0a F x y a F x y +=,所以'23100200122001110012(,)sin (,)cos cos [(,)(,)]a F x y F x y a F x y a F x y a ααα=-+=+ 0=0'33=a因此无心曲线方程在坐标变换''0''cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩下总可以化简为'2'10I y -= 定理2证毕.定理3[]7 线心二次曲线(,)0F x y =在坐标变换''''cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩ 下方程总可以化简为:'21110K I y I += 其中13230011221122,a a x y a a a a =-=-++,1112tan aa α=-且cos α与12a 同号.二次曲线方程的化简及应用证明 将y x ,代入二次曲线方程(*) 曲线方程可化简为0222'33''23''132''22'''122''11=+++++a y a x a y a y x a x a由于转角为1112tan a a α=-.由定理2的证明过程可知 ''1122112210,a a a a I ==+=由于13230011221122,a a x y a a a a =-=-++代入可得),(132211231222111311130120111=++-++-=++=a a a a a a a a a a y a x a y x F o o,232211232222111312230220122=++-++-=++=a a a a a a a a a a y a x a y x F o o )(所以0'23'13==a a .'333001302303322132333112211221113222313332333112211(,)a F x y a x a y a a a a a a a a a a a a a a a a a a K I ==++--=+++++=+=因而线心曲线方程在坐标变换''''cos sin sin cos x x y x y x y y αααα⎧=-+⎪⎨=++⎪⎩下总可以化简为 '21110K I y I += 2.4.2主要结果的应用举例例5 求曲线012656522=-+-+-y x y xy x 的简化方程并做出草图.解 因为01653351021≠=--==I I ,,即二次曲线为中心二次曲线.由⎩⎨⎧=++=--01530335000y x y x 得中心坐标为⎪⎪⎩⎪⎪⎨⎧-==17717600y x 由1222112cot 21a a a arc -=α知,取4πα=,则 21cos ,21sin ==αα又481131533353-=----=I , 故3164823-=-=I I . 又因为.0312<-=a 即由定理1知21λλ<而21,λλ又是特征方程016102=+-λλ的两根,所以8221==λλ,.所以曲线方程在坐标变换()()⎪⎪⎩⎪⎪⎨⎧-+=+-=1772117621''''y x y y x x 下可化简以为03822'2'=-+y x图形如下二次曲线方程的化简及应用图3例6 求二次曲线01610222=+--+-y x y xy x 简化方程并做出草图. 解 123115112,0,11364,11531I I I ---====--=----即曲线为无心曲线.由定理4知1211tan a a -=α且cos a 与12a 同号,故 21sin ,21cos -=-=αα由()()()00002200000015130210610x y x y x x y y x y ⎧-⋅--+⋅-+-=⎪⎨-+--+=⎪⎩得顶点坐标为001212x y ⎧=⎪⎪⎨⎪=-⎪⎩ 因为0112<-=a ,由定理2知''1122a a <即''112211220,2a a a a ==+=所以曲线的方程在坐标变换''''1212x x y y x y ⎧=++⎪⎪⎨⎪=--⎪⎩下可以化简为.03222'2'=±x y即'2'y =或'2'.y =-图形如下图4例7 化简2244210x xy y x y -++-+=并做出草图.解 由于012112112124,01224,5321=----==--==I I I ,故为线心二次曲线. 由定理3知 0011,,510x y =-= 又由2tan 1211=-=a a α且cos α与12a 同号知 52sin ,51cos -=-=αα433121211111433232322331313111=--+=+=a a a a a a a a K所以曲线的方程在坐标变换''''15110x x y y x y ⎧=+-⎪⎪⎨⎪=-+⎪⎩下总可以化简为'23504y +=图形如下图5结束语二次曲线方程的化简是大学空间几何研究的重点内容之一,且对二次曲线内容的教学有非常重要的指导作用.本文就二次曲线方程的化简与作图,介绍了五种方法,分别是二次曲线方程的化简及应用参数法、不变量法、坐标变换法、主直径法、与上述四种方法相比较稍微简单的一种新方法.本文通过归纳以上前四种方法之间的联系,即从应用不变量法来化简方程与应用移轴、转轴来作图,给出一种相对于前四种方法更为简洁的方法,得出三个新定理的证明及具体应用.本文通过借鉴国内二次曲线方程化简与作图的方法,寻找它们之间的联系,找到一种即易于化简又易于作图的方法,从而告诉我们,思维要善于发散,对于同一道题,要应用不同的方法进行解答,再从所有的解法中找出一种最简便的方法,同时这对深入研究中学数学数学二次曲线也提供了相应的指导.本文针对所查文献资料给出的四种方法进行归纳,并结合这四种方法给出一种既易于二次曲线方程的化简又易于作图的简便方法.这种新方法是否就是最简单的方法还有待于进一步考证.二次曲线是中学平面解析几何的重点内容之一,是高考的一个热点,也是教师的教和学生的学的一大难点.如何更好地把大学空间解析几何里的研究二次曲线的相关内容与高中二次曲线的内容有机地结合起来,更好地指导中学二次曲线的教学,为学生的学习提供相应的帮助是一个值得进一步去研究的方法.今后可在不同的几何观点下去研究二次曲线的相关问题,而用高观点去指导中学有关内容的教学.参考文献[1] 吕林根,许子道.解析几何[M].北京:高等教育出版社,1987.[2] 张卯.化简二次曲线方程的一种简捷方法[J].周口师专学报,1996,13(4):11-16.[3] 翟娟,席芳渊.参数法化简二次曲线方程[J].中学数学教学,1994,(4):24-25.[4] 苏婷.二次曲线方程化简[J].陕西师范大学继续教育学报,2006,23:247-249.[5] 文开庭.二次曲线的一种化简方法[J].毕节师专学报,1995,(2):66-71.[6] 林梦雷.二次曲线方程的化简[J].漳州师范学院学报,1999,12(1):22-26.[7] 席高文,刘晓君.二次曲线方程分类与化简的新方法[J].许昌师专学报,2001,20(2):6-13.[8] 李永林,陈点波,孙维君.二次曲线方程的化简和位置的确定[J].淄博学院学报,2001,3(3):5-8.[9] 李根友,二次曲线方程的化简和讨论[J]. 湖州师范学院学报,1990,S(1):29-34.[10] 廖民勋.二次曲线方程的化简及作图[J].广西师院学报,1997,14(2):76-81.[11] 于中文.平面解析几何学习指导[M].济南:山东教育出版社.1982:240-250.[12] 崔萍,高真秋.二次曲线方程化简与作图的简易方法[J].曲靖师范学院学报.2007,11(16):26-87.。
二次曲面方程的标准化及其图形实质

(b1′ , b2 ′ )=( B Tη 1,
2 2 ( BTη BTη 2) +( 3))
( 5)
根据定理 1 与定理 2 , 我们有以下结论 。 定理 3 : 空间中任意二次曲面方程经过 一次旋转变 换 和一次平移变换总可以化为标准方程 。 定理 4 : 已知曲面 ∑ 的方程 F (x , y , z )=0 先通过 一 次旋转变换 σ: X = PX 1 p 11 p 12 p 13 x x1 , X 1 = y1 z1 , 这里矩阵 P = p 21 p 22 p 23 , X = y
cos θ -sin θ =Λ
而 B PQ =B T ( η Q 1 η 2 η 3)
第 3 期 贡韶红 : 二次曲面方程的标准化及其图形实 质 的列向量 。 示什么曲面 ? 0 解: 这里矩阵 A = 1 1 1
· 51 ·
0 1 , 解特征方程 λ E -A
1 1 0 =0 , 得 λ 1 =2 , λ 2 =λ 3 =-1 同前 , 可求得矩 阵 A 对应 于 λ 1 =2 , λ 2 =λ 3 = -1 的 单位正交特征向量 1 1 1 T 1 1 , , , - ,0 ,η 2= 3 3 3 2 2 1 1 2 T , , η 3 =η 1 ×η 2= 6 6 6 1 1 1 3 2 6 η 1= 构造矩阵 P = 1 3 1 3 x 作旋转变换 y z 形
2 λ ′ x 1 +b 2 ″ y1 1 x 2 +b 1
其中 b′ = PE 0 下 , 曲面方程也变换为标准形 +c = 0 , 这里(b 1 ′ , b 2′ )=( B η 1,
T T 2 T 2
( B η B η 2) +( 3) ) 证明 : 显然这里 X = PX 1 是旋转变换 。 记矩阵 P = (η 1, η 2,η 3) , 1 0 则 P A P =P
二次曲面的一般理论

第六章 二次曲面的一般理论教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类.研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充.教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念二次曲面: 在空间,由三元二次方程022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1)所表示的曲面.虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点二次曲面的一些记号≡),,(z y x F 44342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φz a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φz a y a x a z y x 3323133),,(++≡Φ z a y a x a z y x 3424144),,(++≡Φ即有恒等式成立: ≡),,(z y x F ),,(),,(),,(),,(4321z y x F z y x zF z y x yF z y x xF +++),,(),,(),,(),,(321z y x z z y x y z y x x z y x Φ+Φ+Φ≡Φ二次曲面),,(z y x F 的系数矩阵: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=44342414343323132423221214131211a a a a a a a a a a a a a a a a A 而由),,(z y x Φ的系数矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛=*332313232212131211a a a a a a a a a A 二次曲面(1)的矩阵A 的第一,第二,第三,与第四行的元素分别是),,(1z y x F ,),,(2z y x F ,),,(3z y x F ,),,(4z y x F 的系数。
一般二次曲线的化简与分类

THANKS
感谢观看
结构设计
在建筑和土木工程中,二次曲线 可以用来描述结构的形状和受力 情况,例如拱桥的拱形结构和高 层建筑的抗风设计。
机械设计
在机械设计中,二次曲线可以用 来描述机器零件的形状和运动轨 迹,例如曲轴和凸轮的设计。
航空航天
在航空航天领域中,二次曲线可 以用来描述飞行器的飞行轨迹和 气动外形,例如飞机和导弹的设 计。
二次曲线标准形式的性质
总结词
二次曲线的标准形式具有一些重要的几何和代数性质。
详细描述
例如,圆的标准形式是$x^2 + y^2 = r^2$,它表示一个以原点为中心、半径 为$r$的圆;双曲线的标准形式是$x^2 - y^2 = r^2$或$y^2 = mx + n$,表 示两条渐近线与坐标轴成45°的角。这些性质在解决几何问题时非常有用。
未来研究方向与展望
研究方向
未来对于二次曲线化简与分类的研究可 以从多个方向展开,如探索新的化简与 分类方法、研究二次曲线的性质和特点 、将二次曲线化简与分类应用于实际问 题中等。
VS
展望
随着数学和其他学科的发展,二次曲线化 简与分类的研究将不断深入,有望在理论 和应用方面取得更多的突破和创新。同时 ,随着计算机技术的发展,也可以利用计 算机进行二次曲线化简与分类的计算和模 拟,提高研究的效率和精度。
虚轴焦点
当判别式小于0时,二次曲线与x轴无交点,但与y 轴有两个交点,即有两个虚轴焦点。
无焦点
当判别式等于0时,二次曲线与x轴只有一个交点 ,即没有焦点。
根据对称性的分类
对称二次曲线
当二次曲线关于x轴或y轴对称时,称 为对称二次曲线。
非对称二次曲线
当二次曲线既不关于x轴也不关于y轴 对称时,称为非对称二次曲线。
利用二次曲面的主径面化简二次曲面课件

得出曲面的简化方程.
例2 化简二次曲面方程 x2 y2 5z2 6xy 2xz 2yz 6x 6y 6z 10 0
解
二次曲面的矩阵为 1 3 1 3
3
1
1 1
1 5
3
3 0
I1 7, I2 10, I3 36
当=0时,与它相应的主方向为二次曲面的奇向;
当≠0时,与它相应的主方向为非奇主方向,将非奇主方向
(X,Y,Z)代入(6.4-1),就得共轭于这个非奇主方向的主径面.
例1 求二次曲面 3x2 y2 3z2 2xy 2xz 2yz 4x 14y 4z 23 0 的主方向与
主径面.
解 二次曲面的矩阵是
垂直,所以有
(a11X a12Y a13Z ) : (a12 X a22Y a23Z ) : (a13X a23Y a33Z ) X :Y : Z,
从而得
aa1112XX
a12Y a22Y
a13Z a23Z
X Y
, ,
a13 X a23Y a33Z Z.
因此方向(X,Y,Z)成为二次曲面(6.1-1)的主方向的充要 条件是存在使得上式成立,
定义3 二次曲面主径面的共轭方向(即垂直于主径面的方向), 或者二次曲面的奇向,称为二次曲面的主方向.
设二次曲面方程为(6.1-1),方向(X,Y,Z)
如果(X,Y,Z)是(6.1-1)的渐近方向,那么它成为(6.1-1)的 主方向的条件是
aa1121
X X
a12Y a22Y
a13Z a23Z
与它共轭的主径面为 x y 2z 0.
同理得,特征根 =3对应的主方向
(X,Y,Z)=(-5,5,-5)= -5(1,-1,1)
二次曲线的化简性质及应用1

a11 a22 , I2
a11 a12
a12 ,
a22
a11 I3 a12
a13
a12 a22 a23
, a13
a23 a33
K1
a11 a13
a13 a22 a33 a23
a23 a33
例 2 求二次曲线
5x2 6xy 5y2 6 2x 2 2 y 4 0
的简化方程.
解 因为 I1 =10
第 6 页 (共 13 页)
2 二次曲线的性质
2.1 二次曲线的曲率
在解析几何中,我们学习了曲线论,知道曲线在平面中的一些性质, 我们学习了如何用曲线的主直径,渐近线,渐进方向和曲线的中心来刻 画曲线的性质.而在微分几何中我们进一步学习了曲线在空间中的性 质,我们用曲率 4 来刻画空间曲线在某点邻近的弯曲程度.我们知道二 次曲线的三大代表类型有椭圆、抛物线、双曲线,现在我们由曲率来 推导一些二次曲线的性质.
61
f E A 1
6
6 1
7
5
即 A 的特征值 1 7 , 2 5
当 1 7 , 2 5 时 A 的特征向量分别为1 1,1 ,2 1,1
单位化得
1
1, 2
1 2
,
2
1, 2
1 2
第 5 页 (共 13 页)
1
以 1, 2 为列向量作正交矩阵 Q
2 1
2
1
2
,
x 2 - 5 y =0.
因此,上面介绍的通过转轴与移轴来化简二次曲线的方法,实际上
是把坐标轴变换与二次曲线的主直径(即对称轴)重合的位置.如果
是中心曲线,坐标原点与曲线的中心重合;如果是线心二次曲线,坐标
利用二次曲面的主径面化简二次曲面

将=0 代入(6.4-2),得 3X Y Z 0, NhomakorabeaX
Y
Z
0,
X Y 3Z 0.
解该方程组,得对应于特征根的主方向为
(X,Y,Z)=(1:2:1), 这一主方向为二次曲面的奇向(注意:奇向没有对应的主径面).
二次曲面特征根的性质:
主径面.
解 二次曲面的矩阵是
3
1
1 1
1 1
2
7
1 1 3 2
2
7
2
23
I1 31 3 7,
则
3 1 3 1 1 1
I2 1
1 1
3 1
12 3
3 1 1 I3 1 1 1 0.
1 1 3
二次曲面的特征方程为 3 72 12 0 ,
所以特征根为=4,3,0 .
将=4 代入(6.4-2),得
X Y Z 0, X 3Y Z 0, X Y Z 0.
解该方程组,得对应于特征根 =4的主方向为
(X,Y,Z)=(1,0,- 1), 将其代入主径面方程(6.4-1)即有
3x y z 2 x y 3z 2 0
此,
a11 a12
a13
a12 a22 a23 0
a13
a23 a33
(6.4-3)
即
3 I1 2 I2 I3 0
定义4 方程(6.4-3)称为二次曲面(6.1-1)的特征方程, 特征 方程的根称为二次曲面(6.1-1)的特征根。
显然,这里的特征方程与不变量一节中的特征方程是完全相同的.
二次曲面和二次曲线方程的化简

A 1) T
=0. a44 1
( x, y, z )可以表示成 ( x, y, z) T A
记:
1 ( x, y, z ) a11 x a12 y a13 z,
2 ( x, y, z ) a12 x a22 y a23 z,
' 1 x2 2 y2 2a34 z a44 0.
则有
(1) a34 0,再作移轴
化简得:
7o 12 >0,则同于形式
x2 y 2 2 2 z. 2 a b
x" x' " ' y y ' a z " z ' 44 2a 34
0
2 2
1o 1 , 2 , 3与a44同号,则同于形式
x y z 虚椭球面 1 0 . 2 2 2 a b c
2
2o 1 , 2 , 3同号但与a44异号,则同于形式
x2 y2 z2 2 2 1 0. 2 a b c
椭球面
3o a44与1 , 2 , 3中的一个同号,则同于形式
则有:
F ( x, y, z )
2 2 2 a34 2 a14 a34 a14 2 a24 2 a24 1 ( x ) 2 ( y ) 3 ( z ) a44 1 2 3 1 2 3
0
令常数项为 a ( 1) a
' 44
' 44 ,得
2 2 2 ' 1 x 2 y 3 z a44 0
记F ( x, y, z )的二次部分为 ( x, y , z ) a11 x 2 a22 y 2 a33 z 2 2a12 xy 2a13 xz 2a23 yz
二次曲线化简的方法

首先求曲线的中心坐标由方程组:
得
X = 0,y = 2,所以曲线的中心坐标是(0,2)
故可取(0,2)为新原点,作移轴变换
原方程可变为:
再由转轴消 xy,可得
从而可取 α = Π/4,故转轴公式为:
所以经转轴后曲线的方程为:
标准形式为: 显然是一个椭圆,作得其图形为:
例 3【线心二次曲线】 x2+2xy+y2+2x+2y =0.
而 I3=I3’
所以 故可以推知上述内容 ② 无心二次曲线的简化方程是: (正负号任意选取) 分析:如果是无心二次曲线则有: 其简化方程为:
因此有:I1’=a22’=I1
而 I3’=I3,所以
从而推知上述内容 ③ 线心二次曲线的简化方程是:
分析:如果是线心二次曲线则有: 其简化方程为: 因此有 I1’=a22’=I1 而 K1 是线心曲线的不变量,从而我们有 K1’=K1 所以 从而推知上述内容
2y250标准方程y252方法的比较直角坐标变换用不变量化简二次曲线优点有助于准确作出在原坐标系图形强调代数方法可以快速知道方程表示什么类型的曲线计算量相对较小缺点计算量大过程繁琐无法准确作出在原坐标系的图形tips
思维导图
二次曲线化简的方法
二次曲线化简的 方法
平面直角坐标变 换
应用不变量化简 二次曲线的方程
为 x 轴,任意垂直于它的直线为 y 轴,建立坐标系,设曲线的方程为:
由于线心二次曲线的中心直线方程是: 中的任意一个,其中第二个方程表示 x 轴的条件为:a12=a23=0,a22≠0,而第一个方程 在 a12=0 的条件下不可能再表示 x 轴,所以它必须是恒等式,因而有 a11=a13=0 所以线心曲线的方程为
坐标变换
二次曲面方程化简方法

二次曲面方程化简方法探讨[摘要] 三元二次方程表示的是三维空间的二次曲面,如果能选择适当的坐标系将三元二次方程化为标准形式,该二次曲面的形状也就容易判定了。
空间解析几何中给出了由旋转或平移化简二次曲面方程的方法,但是旋转所采用的坐标变换却不容易求得。
而旋转的作用恰好是将二次型化为标准型,于是可以借助二次型的知识化简二次曲面方程。
本文介绍了将一般二次曲面方程化为标准方程的几种常用方法。
[关键词] 二次曲面方程标准方程正交变换合同变换偏导数二次曲面的一般方程为:一般二次曲面或是基本类型二次曲面,共9种;或是退化二次曲面,共5种;或是无轨迹(虚图形),共3种。
为了便于判定以一般方程给出的二次曲面方程的类型,有必要把一个二次曲面的一般方程化为标准方程。
二次曲面的标准方程:1)没有坐标的交叉项xy,xz,yz;2)如果有某个坐标的二次项,就没有这个坐标的一次项;3)如果有某个坐标的一次项,就没有其他坐标的一次项,并且这时方程的左边不再有常数项。
满足上述3个条件的二次曲面方程称为标准方程。
[1]定理1:任意二次曲面(1)通过适当的的旋转,都可以使新坐标系中不再含有形如的交叉项,即在新的坐标系中方程化为:(a,b,…,d)为新的系数,为新坐标)[1]定理2:对于不含交叉项xy,xz,yz的二次曲面方程:可以适当的坐标变换进一不化简,使它成为如下5种方程之一: 定理1,定理2给出了化简一般二次曲面方程的一般步骤:第一步:将一般二次曲面方程中的交叉项去掉,即将方程中的二次项部分化为平方和;第二步:将新的只剩平方项、一次项、常数项的方程化为标准方程。
注:第一步消去方程中的交叉项实质上是将方程中的二次项部分化为标型(二次型→标准型),而问题的关键就在这一步,于是问题转化为:先求实二次型的标准型,再作一次可逆线性替换。
遵循以上两步,应用二次型的知识,可以用如下几种方法化简一般二次曲面方程:一、正交变换法:使它成为有平方项的二次齐次式,有了平方项后,集中含有某一个有平方的变量的所有项,然后配方,对剩下的两个变量进行同样的变形,化成平方项后,再经过可逆线性变换就得到标准型。
二次曲线方程的化简

二次曲线方程的化简一、平面坐标变换1.移轴和转轴:如果平面内一点的旧坐标与新坐标分别为 (x, y)与(x', y'),则移轴公式为或式中(x0, y0)为新坐标系原点在旧坐标系里的坐标. 转轴公式为或式中α为坐标轴的旋转角. 前一公式为正变换公式,后一公式为逆变换公式. 注意两个变换的矩阵互为逆矩阵,因是正交变换,从而互为转置矩阵.2. 一般坐标变换公式为或3.设在直角坐标系里给定了两条相互垂直的直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,其中A1A2+B1B2=0,如果取l1 为新坐标系中的横轴O'x',而直线l2为纵轴O'y',并设平面上任意点M的旧坐标与新坐标分别是 (x, y)与 (x',y'), 则有其中正负号的选取应使第一式右端x的系数与第二式右端y的系数相等,即要使得这两项的系数是同号的.二、坐标变换对二次曲线方程系数的影响1.在移轴下,二次曲线F(x, y)≡a11x2 + 2a12xy+a22y2+2a13x+2a23y+a33=0的方程变为即新方程为这里因此,在移轴下,二次曲线方程系数的变化规律为:(1)二次项系数不变;(2)一次项系数变为 2F1(x0, y0)与 2F2(x0, y0);(3)常数项变为F(x0, y0).从而当二次曲线有中心时,可作移轴,使原点与二次曲线的中心重合,则在新坐标系下二次曲线的新方程中一次项消失.2.在转轴下,二次曲线F(x, y)≡a11x2 + 2a12xy+a22y2+2a13x+2a23y+a33=0的方程变为即新方程为这里因此,在转轴下,二次曲线方程系数的变化规律为:(1)二次项系数一般要改变. 新方程的二次项系数仅与原方程的二次项系数及旋转角有关,而与一次项系数及常数项无关.(2)一次项系数一般要改变. 新方程的一次项系数仅与原方程的一次项系数及旋转角有关,而与二次项系数及常数项无关. 当原方程有一次项时,通过转轴不能完全消去一次项,当原方程无一次项时,通过转轴也不能产生一次项.(3)常数项不变. 从而当二次曲线方程中a12≠0时,选取旋转角α,使,则在新坐标系下二次曲线的新方程中xy项消失.三、二次曲线的方程化简1.利用坐标变换化简二次曲线的方程,在中心曲线时一般应先移轴后转轴;在非中心曲线时则一般应先转轴后移轴.例1.利用移轴与转轴, 化简下列二次曲线的方程,并画出它们的图形.(1)5x2+4xy+2y2-24x-12y+18=0;(2)x2+2xy+y2-4x+y-1=0;(3)5x2+12xy-22x-12y-19=0;(4)x2+2xy+y2+2x+2y=0.解:(1)因为I2==6≠0,所以曲线为中心曲线,由解得中心为(2, 1),作移轴变换代入曲线原方程,整理得5x'2+4x'y'+2y'2-12=0.由ctg2α=,即,得 tgα=-2,tgα=.不妨取tgα=,则由图5-1可得sinα=,cosα=,作转轴变换代入上述化简方程得6 x"2+y"-12=0.即.(如图5-2).(2)因为I2==0,故曲线为无心曲线,由ctg2α==0,得α=.作转轴变换代入原方程,整理得= 0,配方得=0.作移轴变换得到x"2+y"=0, 即x"2=-y". (如图5-3).(3)因为I2==-36≠0,所以曲线是中心曲线,由,得中心 (1, 1),作移轴变换代入原方程,整理得5x'2+12x'y'-36=0.由ctg2α=, 即,解得tg α=-,tg α=.不妨取tg α=,则由图5-4可得sinα=,cosα=,作转轴变换代入上述方程整理得9 x"2-4y"2=36,即.(如图5 – 5).(4)因为I2==0,故曲线为线心曲线,由ctg2α==0,得α=,作转轴变换代入原方程,整理得=0, 配方:. 作移轴变换就有x"2=, (如图5- 6).2. 利用转轴来消去二次曲线方程的xy项,其几何意义,就是把坐标轴旋转到与二次曲线的主方向平行的位置.如果二次曲线的特征根确定的主方向为,则由得,所以.因此通过转轴与移轴来化简二次曲线方程的方法,实际上就是把坐标轴变换到与二次曲线的主直径(即对称轴)重合的位置. 如果是中心曲线,坐标原点与曲线的中心重合;如果是无心曲线,坐标原点与曲线的顶点重合;如果是线心曲线,坐标原点可以与曲线的任何一个中心重合. 因此二次曲线方程的化简,也可以先求出二次曲线的主直径,以它作为新坐标轴,作坐标变换即可.例2. 以二次曲线的主直径为新坐标轴,化简下列方程,写出相应的坐标变换公式,并作出图形.(1)8x2+4xy+5y2+8x-16y-16 =0;(2)x2-4xy-2y2+10x+4y =0;(3)4x2-4xy+y2+6x-8y+3=0;(4)4x2-4xy+y2+4x-2y=0.解:(1)因为I1=8+5=13,I2==36≠0,故曲线为中心曲线,特征方程为λ2-13λ+36=0,解之得λ1=4,λ2=9,由它们确定的非渐近主方向分别为X1 : Y1=-1:2,X2 : Y2=2:1.由于F1(x, y)=8x+2y+4,F2(x, y)=2x+5y-8,从而由λ1,λ2确定的主直径分别为x-2y+5=0, (x')2x+y=0, (y')得坐标变换公式为从而有正变换公式(注意此变换的系数矩阵就是上一变换矩阵的转置矩阵)代入原方程并整理得9 x'2+4y'2-36=0,即.同时 cosα=,sinα=,(x0, y0)=(-1, 2),由图6-7可得tgα=,从而可确定α并作出图形,如图5-8.(2)因为I1=1-2=-1,I2==-6 ≠0,故曲线为中心曲线,特征方程为λ2+λ-6=0.解之得λ1=2,λ2=-3,由它们确定的非渐近主方向分别为X1 : Y1=-2: 1,X2 : Y2=1: 2,由于F1(x, y)=x-2y+5,F2(x, y)=-2x-2y+2,从而由λ1,λ2确定的主直径分别为2x-y+4=0, (x')x+2y-3=0, (y')得坐标变换公式为从而有正变换公式代入原方程并整理得-3 x'2+2y'2-1=0.即-.同时sinα=,cosα=,(x0, y0)=(-1, 2),如图5—10.(3)因为I1=4+1=5, I2==0,,故曲线为无心曲线,特征方程为λ2-5λ=0,解之得λ1=5,λ2=0,由λ1确定的非渐近主方向X1 : Y1=-2: 1,由λ2确定的渐近主方向为X2 : Y2=1: 2,由于F1(x, y)=4x-2y+3,F2(x, y)=-2x+y-4,,从而由λ1确定的唯一主直径为2x-y+2=0,将它取为O'x'轴,由解得曲线的顶点为,过它且垂直于2x-y+2=0的直线方程为x+2y+=0,将它取为轴O 'y',得坐标变换公式为,从而有正变换公式代入原方程并整理得5y' 2 -x'=0.即y' 2 =x'.同时sinα=,cosα=,(x0, y0)=, 如图5-12.(4)因为I1=4+1=5, I2==0, ,故曲线为线心曲线,特征方程为λ2-5λ= 0,解之得λ1=5,λ2=0,由λ1确定的非渐近主方向X1 : Y1=-2: 1,由λ2确定的渐近主方向为X2 : Y2=1: 2,由于F1(x, y)=4x-2y+2,F2(x, y)=-2x+y-1,从而由λ1确定的唯一主直径为2x-y+1=0,将它取为O'x'轴,过原点与它垂直的直线x+2y=0取为O'y'轴,得坐标变换公式为从而有正变换公式代入原方程并整理得5y' 2 -1=0,即y' 2 =.同时 sinα=,cosα=,(x0, y0)=,如图5-14.四、二次曲线的分类1.不论采用哪种方法化简方程,尽管所化简的曲线方程其形式可能不一致,但它们所刻划的几何图形相对于原坐标系而言是完全一致的.2.适当选取坐标系,二次曲线的方程总可以化成下列三个简化方程中的一个:(I) 中性心线:a11x2+a22y2+a33=0,a11a22≠ 0;(II)无心曲线: a22y2+2a13 x=0,a22a13≠ 0;(III) 线心曲线: a22y2+a33=0,a22≠ 0.3.二次曲线以上三种简化方程总可以写成下面九种标准方程的一种形式:(I) 中性心线:[1] = 1 (椭圆);[2] =-1 (虚椭圆);[3] = 1 (双曲线);[4] = 0 (点或称两相交于实点的共轭虚直线);[5] = 0 (两相交直线);(II) 无心曲线:[6] y2=2px (抛物线);(III) 线心曲线:[7] y2=a2 (两平行直线);[8] y2=-a2 (两平行共轭虚直线);[9] y2= 0 (两重合直线).例3. 试证中心二次曲线ax2+2hxy+ay2=d的两条主直径为x2-y2=0,曲线的两半轴的长分别是及.证明:因为曲线为中心曲线,所以I1=a+a=2a,I2==a2-h2 ≠ 0, a ≠±h,特征方程为λ2-2aλ+(a2-h2)= 0,解之得λ1=a+h,λ2=a-h,由它们确定的非渐近主方向分别为X1 : Y1=1: 1,X2 : Y2=-1: 1,由于F1(x, y)=ax+hy,F2(x, y)=hx+ay,从而由λ1,λ2确定的主直径分别为x+y=0, (y') x-y=0, (x')即曲线的两条主直径为x2-y2=0. 将它们分别取作O'y'轴与O'x'轴,得坐标变换公式为从而求得正变换公式代入曲线原方程整理得(依题意d ≠0),即.所以两半轴长分别为和.例4. 已知≠0,且a1 a2+b1 b2=0,试求二次曲线(a1x+b1y+c1)2+(a2x+b2y+c2)2=1的标准方程与所用的坐标变换公式.解:因为a1 a2+b1 b2=0,所以直线a1x+b1y+c1=0 与a2x+b2y+c2=0互相垂直,分别取为O'y'轴与O'x'轴,得坐标变换公式为[其中a i, b i (i=1,2)不全为0]式中正负号的选取使得第一式中x的系数与第二式中y的系数相同,代入原方程得.由a1 a2+b1 b2=0 知λ≠ 0则a1=λb2,b1=-λa2,从而,注意到a2,b2不全为0,≠ 0, 代入得=1,或令λ'=≠ 0,有=1.作业题:1. 试证在任意转轴下,二次曲线新旧方程的一次项系数满足关系式.2. 利用坐标变换方法或主直径方法,化简下列二次曲线的方程,并画出它们的图形.(1) 2xy-4x-2y+3=0;(2) 5x2+8xy+5y2-18x-18y+9=0;(3) x2+2xy+y2-4x+y-1=0;(4) x2-3xy+y2+10x-10y+21=0;(5) x2-xy+y2+2x-4y=0;(6) x2+6xy+y2+6x+2y-1=0;(7) x2-2xy+y2+2x-2y-3=0;(8) x2+2xy+y2+2x+y=0.。
第3讲_二次曲面方程的化简

第1节 二次型的概念 节 第2节 二次型的矩阵处理 节 第3节 二次曲面的化简 节
第3节 二次曲面的化简 节
二次曲面的一般形式为 若令 并记 则二次曲面方程可写为 因 A 为实对称矩阵,所以存在正交变换的x=Py,使得 其中 当的正交变换,消 去二次曲面中的交叉项,化为如下形式 这样再对上式作一次平移变换就能将其化为易于判断形状的 标准方程了。 例:化二次曲面 为标准方程,并判断此二次曲面是什么形状。 解:令
则原方程可写为
求得 A 的特征值与特征向量
若记
即有 若令
则有
这是一个椭圆抛物面。 这是一个椭圆抛物面。
二次曲线方程的化简与分类

-92-§5.8 二次曲线方程的化简与分类1.坐标变换下二次曲线方程的系数变化规律设二次曲线Γ 的方程为F (x , y )≡022233231322212211=+++++a y a x a y a xy a x a(1)为了选择适当的坐标变换以使曲线Γ在新坐标系下的方程最为简单,我们必须先了解在坐标变换下二次曲线方程的系数的变化规律.因为一般的坐标变换总可以看成是由移轴与转轴组成的,我们首先分别考察在移轴与转轴下,二次曲线Γ 的方程(1)的系数是怎样变化的.在移轴(5.7-1)⎩⎨⎧+'=+'=00y y y x x x下,设二次曲线Γ 的新方程为 ))((2)(),(0012201100y y x x a x x a y y x x F +'+'++'≡+'+'0)(2)(2)(330230132022=++'++'++'+a y y a x x a y y a化简整理得:022233231322212211='+''+''+''+'''+''a y a x a y a y x a x a这里⎪⎪⎩⎪⎪⎨⎧=+++++='=++='=++='='='='),(222),(),(,,00330230132022001220113300223022012230011301201113222212121111y x F a y a x a y a y x a x a a y x F a y a x a a y x F a y a x a a a a a a a a (2)因此可得命题5.8.1 在移轴(5.7-1)下,二次曲线方程(1)的系数的变换规律为: 1°二次项系数不变;2°一次项系数变为),(2001y x F 与),(2002y x F ; 3°常数项变为),(00y x F .因为当(x 0,y 0)为二次曲线(1)的中心时,有),(001y x F = 0,0),(002=y x F ,所以当二次曲线有中心时,作移轴使新原点与二次曲线的中心重合,则在新坐标系下二次曲线的新方程中就不再包含一次项.把转轴公式(5.7-3),即⎩⎨⎧'+'='-'=ααααcos sin sin cos y x y y x x 代入(1),得在转轴(5.7-3)下二次曲线(1)的新方程为022233231322212211='+''+''+''+'''+''a y a x a y a y x a x a这里-93-⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧='+-='+='+-='-+-='++='3333231323231313222122112222121122122221221111cos sin sin cos cos cos sin 2sin )sin (cos cos sin )(sin cos sin 2cos a a a a a a a a a a a a a a a a a a a a αααααααααααααααα (3)于是有命题5.8.2 在转轴(5.7-3)下,二次曲线方程(1)的系数的变换规律为: 1°二次项系数一般要改变.新方程的二次项系数仅与原方程的二次项系数及旋转角有关,而与一次项系数及常数项无关.2°一次项系数一般要改变.新方程的一次项系数仅与原方程的一次项系数及旋转角有关,与二次项系数及常数项无关.3°常数项不变. 从(3)中的ααααcos sin sin cos 231323231313a a a a a a +-='+='中解出2313,a a ,得ααααcos sin sin cos 231323231313a a a a a a '+'='-'=则可看到,在转轴下,二次曲线方程(1)的一次项系数2313a a 、的变换规律与点的坐标x ,y 的变换规律完全一致.当原方程有一次项时,通过转轴不能完全消去一次项;当原方程无一次项时,通过转轴也不会产生一次项.二次曲线方程(1)里,若012≠a ,我们往往使用转轴使新方程中的012='a .为此,只要取旋转角α,使0)sin (cos cos sin )(2212112212=-+-='ααααa a a a 即可. 令 02cos 22sin )(121122=+-ααa a a 得 12221122cot a a a -=α (5.8-1)因为余切的值可以是任意实数,所以总有α 满足(5.8-1),也就是说总可以经过适当的转轴消去(1)中的xy 项.2.确定坐标变换步骤的基本原则对任何一条二次曲线的方程,我们都可以先移轴、后转轴进行坐标变换,也可以先转轴、后移轴进行坐标变换,两种方法都可以将方程化简.如果决定先转轴,则根据(5.8-1)可以确定坐标系的旋转角.因而无论对于何种类型的二次曲线,先转轴总是可行的.如果决定先平移,就得先确定把旧坐标系的原点移到何处.对于中心二次曲线,我们一般把新坐标系的中心定为曲线的中心,而中心可以先求出.但对于无心二次曲线,为了得到曲线的标准方程,应该把新坐标系的中心定为曲线的顶点,而顶点却不易先求出.于是,我们在利用坐标变换对二次曲线的方程进行化简时,一般都按照下面的原则进行: 先根据I 2判断曲线的类型.如果I 2 ≠ 0,说明曲线是中心型的.应先求出中心,再移轴,然后转轴.-94-如果I 2=0,说明曲线是非中心型的,先转轴,消去交叉项xy 后把所得的方程配方,一般就可以确定新坐标系的原点,再移轴.经验证明,这里给出的原则可以在一定程度上减少方程化简的运算量.3.二次曲线方程的化简实例与方法分析以下通过对几个例题的分析,说明如何具体地对一个给定的二次曲线方程进行化简. 例1 化简二次曲线方程01124422=+-+++y x y xy x ,并画出它的图形. 解 I 2 = 1 × 4 - 2 2 = 0,曲线是抛物型(非中心型)的,应先转轴. 设旋转角为α,则应有:434412cot -=-=α 即 43tan 2tan 12-=-αα所以 02tan 3tan 22=--αα从而得 21tan -=α 或 tan α=2取tan α=2(若取tan α=- 1 / 2,同样可将原方程化简),则有51cos ,52sin ==αα所以得转轴公式为⎪⎪⎩⎪⎪⎨⎧'+'='-'=)2(51)2(51y x y y x x 代入原方程化简整理得转轴后的新方程为01555252=+'-'+'y x x配方得05552='-⎪⎪⎭⎫⎝⎛+'y x 再作移轴⎪⎩⎪⎨⎧'=''+'=''y y x x 55曲线方程就化为最简形式052=''-''y x或写成标准方程为y x ''=''52这是一条抛物线.它的顶点是新坐标系O"-x"y" 的原点,原方程的图形可以根据它在坐标系O"-x"y" 中的标准方程作出,如图5.8.1所示.作图要点:坐标系O -xy 旋转角度︒≈44.63)5/2arcsin(,成O'-x'y',再把坐标系O'-x'y' 平移到(5/5-,0),图5.8.1-95-得 O"-x"y".在新坐标系O"-x"y" 中可 根据抛物线的标准方程y x ''=''52作图.为了看出曲线在原坐标系中的位置,作图时需要将新旧坐标系同时画出. 例2 化简二次曲线方程018122424522=+--++y x y xy x并画出它的图形.解 因 I 2=5 × 2 - 22=6≠0,所以曲线为中心二次曲线.解方程组⎩⎨⎧=-+≡=-+≡0622),(01225),(21y x y x F y x y x F 得中心为 (2,1).取 (2,1) 为新原点,作移轴⎩⎨⎧+'=+'=12y y x x 原方程变为0424522=-'+''+'y y x x①这里实际上只需计算F (2,1)=- 4,因为移轴时二次项系数不变.再转轴消去y x ''项.令434252cot =-=α 即 43tan 2tan 12=-αα所以 02tan 3tan 22=-+αα从而得 21tan =α 或 tan α=- 2取tan α=1 / 2,可得51sin ,52cos ==αα,用转轴公式 ⎪⎪⎩⎪⎪⎨⎧''+''='''-''='y x y y x x 52515152代入①,可将方程化简为12622=''+''y x标准方程是112222=''+''y x 这是一个椭圆,它的图形如图5.8.2图5.8.2所示.要比较准确地画出新旧坐标系和曲线的图形,必须掌握好比例、新旧原点的位置以及坐标轴的旋转角.本题中坐标轴的旋转角︒≈=6.26)5/1arcsin(α.注 本题转轴时若取tan α=- 2,则可得52s i n ,51c o s -==αα(旋转角是︒-≈-=4.6352arcsin α),所得的转轴公式是-96-⎪⎪⎩⎪⎪⎨''+''-='y x y 515255 得到的标准方程为 121222=''+''y x ,图形相对于原坐标系的位置不变.此时O"x"轴的正向恰好是图5.8.2中y" 轴的反向.利用转轴消去二次曲线方程的xy 项的几何意义,就是把坐标轴旋转到与二次曲线的主方向平行的位置.这是因为,如果二次曲线的特征根λ确定的主方向为X ︰Y ,那么有⎩⎨⎧=-+=+-0)(0)(22121211Y a X a Y a X a λλ 由此可得平行于主方向的斜率为12112212tan a a a a X Y-=-==λλα ∴122211221212112212221222212222121tan 2tan 12cot a a a a a a a a a a a a a -=-⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-⋅⎪⎪⎭⎫ ⎝⎛--=-=λλλλλααα 因此,上面介绍的通过转轴与移轴来化简二次曲线方程的方法,实际上是把坐标轴变换到与二次曲线的主直径(即对称轴)重合的位置.如果是中心曲线,坐标原点与曲线的中心重合;如果是无心曲线,坐标原点与曲线的顶点重合;如果是线心曲线,坐标原点可以与曲线的任何一个中心重合.根据消去二次曲线方程中交叉项的几何意义,我们在化简二次曲线(1)的方程时,也可以先求出曲线的主直径,然后以它作为新坐标轴,作坐标变换.例3 化简二次曲线方程021*******=+-++-y x y xy x并作出它的图形.解法1 I 2=1 × 1 - 45232-=⎪⎭⎫⎝⎛- < 0,所给的二次曲线是双曲型的.令 ⎩⎨⎧=-+-=+-0102301032y x y x解得中心坐标为 (- 2,2) . 作坐标平移⎩⎨⎧+'=-'=22y y x x 就将原方程化为01322=+'+''-'y y x x令 03112cot =--=α 得转轴应取的旋转角为 π / 4.故转轴xx'yy'x"y"OO'图5.8.3-97-⎪⎪⎩⎪⎪⎨''+''=')(212y x y就把二次曲线的方程化简为01252122=+'+'-y x 即15/2222='-'y x 这是一条双曲线,其图形如图5.8.3所示.解法2I 1=1 + 1=2, I 2=1 × 1 - 45232-=⎪⎭⎫⎝⎛-于是曲线的特征方程是04522=--λλ 解得两特征根为25,2121=-=λλ因而曲线的两个主方向为1X ︰231-=Y ︰1)121(=--︰12X ︰232-=Y ︰1)125(-=-︰1曲线的两条主直径为0523523=⎪⎭⎫⎝⎛-+-+⎪⎭⎫ ⎝⎛+-y x y x与0523523=⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+--y x y x 即x + y =0 与x - y + 4=0取x - y + 4=0为x' 轴,x + y =0为y' 轴,根据(5.7-7)可取坐标变换公式为⎪⎪⎩⎪⎪⎨⎧+--='+='242y x y y x x 反解出x 与y 得⎪⎪⎩⎪⎪⎨⎧+'+'=-'-'=2212122121y x y y x x代入已知曲线方程,经过整理得曲线在新坐标系下的标准方程为15/2222='-'y x 这是一条双曲线.在作图时,必须首先确定x' 轴的正向.在变换公式的x' 表达式的右端,x 项的系数为,21y 项的系数为,21把这些系数与公式(5.7-7)比较就知道21cos ,21sin ==αα,-98-因此x' 轴与x 轴的交角为4π=α,同时从坐标变换公式也可以直接看到新坐标系的原点的旧坐标是 (- 2,2).当新坐标系确定之后,曲线就可以在新坐标系里按标准方程作出,其图形还是图3-7,可认为移轴和转轴是一次完成的. 两种解法相比,解法1显得简便一些,其计算量小,步骤也比较规范,具有较强的“可操作性”.但解法2强调直接根据主直径得出一般坐标变换公式,在理论上有一定的价值.无心二次曲线只有一条主直径,若按解法2选其为坐标轴后,另一条坐标轴如何确定呢?我们可以求出这条主直径与二次曲线的交点——二次曲线的顶点,然后取过顶点垂直于已知主直径的直线作为另一条坐标轴,则可写出一般坐标变换公式,进而将二次曲线的方程化简.例4 化简二次曲线方程02222=++++y x y xy x .解 由于I 1 = 1 + 1 = 2,I 2 = 1 × 1 - 12= 0,曲线是非中心型的. 解特征方程022=-λλ,得特征根为 λ 1 = 2, λ 2 = 0.曲线的非渐近主方向为对应于λ 1 = 2的主方向X ︰Y =1︰1,所以曲线的主直径为021)1(=⎪⎭⎫ ⎝⎛+++++y x y x即 x + y +43= 0将此主直径的方程与原曲线的方程02222=++++y x y xy x 联立,即求得曲线的顶点为(3 / 16,-15 / 16).过顶点且以求得的非渐近主方向为方向的直线为116/15116/3+=-y x 即 x - y -89= 0这也是过顶点垂直于主直径的直线.取主直径043=++y x 为新坐标系的x' 轴,取直线089=--y x 为y' 轴,作坐标变换,则变换公式为⎪⎪⎩⎪⎪⎨⎧++='--='24/328/9y x y y x x 解出x 与y 得到 ⎪⎪⎩⎪⎪⎨⎧-'+'-=+'+'=1615)(21163)(21y x y y x x代入已知方程,经过整理得02222='+'x y ,化为标准方程就是 x y '-='422 这是一条抛物线.若要画出这条抛物线,必须确定代表x' 轴的直线的正向.设x' 轴与x 轴的交角为α,则根据变换公式有21sin -=α,21cos =α,因此4π-=a ,于是x '轴的正向就能确定了.新坐标轴作出后,就能在新坐标系下,根据抛物线的标准方程来作出它的图形(图形略).-99-例5 化简二次曲线的方程 0322222=--++-y x y xy x . 解 所给二次曲线的矩阵为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----311111111 A 的第一行和第二行的元素成比例,这表示F 1 (x ,y ) = 0和F 2 (x ,y ) = 0是同一条直线,曲线为线心曲线,它的惟一的一条直径即曲线的中心直线,也就是曲线的主直径,其方程就是F 1 (x , y ) = 0:x - y + 1 = 0取其为新坐标系的x' 轴,再取任意垂直于此中心直线的直线,比如x + y =0为新坐标系的y' 轴作坐标变换,则变换公式为⎪⎪⎩⎪⎪⎨⎧+--='+='212y x y y x x 解出x 与y ,得⎪⎪⎩⎪⎪⎨⎧+'+'=-'-'=212121212121y x y y x x代入已知方程,经过整理得0422=-'y即 2y '= 2 或 y'=2± 这是两条平行直线(图5.8.4).对于线心曲线,我们可以直接从原方程分解为两个一次因式,从而可立即作出它的图形.如例5的方程可以改写为 03)(2)(2=--+-y x y x 就是 0)1)(3(=--+-y x y x因此原方程表示两条直线图5.8.4x - y + 3 = 0 与 x - y - 1 = 0它们的图象如图5.8.4所示.当二次曲线的方程表示两条实直线时,直接分解得到两个一次方程通常是最简单有效的化简方法,因为这样可避免进行坐标变换.除了线心曲线外,中心二次曲线是两条相交直线时,也可对原方程直接分解.例6 化简二次曲线方程021*******=+---+y x y xy x .解 计算得I 2 < 0,I 3 = 0,可知所给二次曲线是退化的双曲型曲线,表示两条相交直线.直接将原方程左边分解因式,得(x - y + 3)(2x + 3y - 7) = 0故原二次曲线的方程表示两条相交直线x - y + 3 = 0 和 2x + 3y - 7 = 0-100- 4.二次曲线的简化方程通过上面的例子,我们可以得出下面的一般结论.命题 5.8.3 通过适当的坐标变换,二次曲线的方程总可以化成下面三个简化方程中的一个:(I )0,0221133222211≠=++a a a y a x a ;(II )0,021********≠=+a a x a y a ; (III )0,02233222≠=+a a y a .证 二次曲线可分为中心曲线、无心曲线与线心曲线三类,现按这三种情况来讨论. 1°当已知二次曲线为中心曲线时,取它的一对既共轭又相互垂直的主直径作为坐标轴建立直角坐标系.设二次曲线在这样的坐标系下的方程为022233231322212211=+++++a y a x a y a xy a x a因为这时原点就是曲线的中心,所以方程中没有一次项,即02313==a a其次,二次曲线的两条主直径(即坐标轴)的方向为1︰0与0︰1,它们互相共轭,因此必有012=a .所以曲线的方程为(I )033222211=++a y a x a又因为它是中心曲线,所以又有0221121222112≠=-=a a a a a I2°当已知二次曲线为无心曲线时,取它的惟一主直径为x 轴,取过顶点(即主直径与曲线的交点)且以非渐近主方向为方向的直线(即过顶点垂直于主直径的直线)为y 轴建立坐标系,这时假设曲线的方程为022233231322212211=+++++a y a x a y a xy a x a因为这时主直径的共轭方向为X ︰Y =0︰1,所以主直径的方程为0232212=++a y a x a它就是x 轴,即与直线y =0重合,所以有0,0222312≠==a a a又因为顶点与坐标原点重合,所以 (0,0) 满足曲线方程,从而又有a 33 = 0.其次,由于曲线为无心曲线,所以231322121211a aa a a a ≠=,而,0,02212≠=a a 所以有0,01311≠=a a .因而曲线的方程为(II )0,02132213222≠=+a a x a y a3°当已知二次曲线为线心曲线时,取它的中心直线(即曲线的惟一直径,也是主直径)为x 轴,任意垂直于中心直线的直线为y 轴建立坐标系,设曲线的方程为022233231322212211=+++++a y a x a y a xy a x a因为线心曲线的中心直线的方程是0131211=++a y a x a与0232212=++a y a x a中的任何一个,而第二个方程表示x 轴的条件为-101-02312==a a ,022≠a但第一个方程在012=a 的条件下,不可能再表示x 轴,所以它必须是恒等式,因而有01311==a a ,所以线心曲线的简化方程为: (III )0,02233222≠=+a a y a命题证毕.5.二次曲线的分类根据命题5.8.3中二次曲线的三种简化方程系数的各种不同情况,我们可以写出二次曲线的各种标准方程,从而得出二次曲线的分类.(I )中心曲线0,0221133222211≠=++a a a y a x a当033≠a 时,方程可化为122=+By Ax其中 33223311,a a B a a A -=-=. 如果A > 0,B > 0,那么设221,1b B a A ==就得方程[1]12222=+b y a x (椭圆) 如果A < 0,B < 0,那么设221,1b B a A -=-= 就得方程[2]12222-=+b y a x (虚椭圆) 若A 与B 异号,不失一般性,可设A >0,B <0(在相反情况下,只要把两坐标轴Ox 和Oy 对调).设221,1b B a A -==则得方程[3]12222=-by a x (双曲线) 当033=a 时,如果a 11与a 22同号,可以假设a 11>0,a 22>0(在相反情况只要在方程两边同乘 - 1),再设2222111,1b a a a ==就得方程[4]02222=+b y a x (点椭圆,也可看作相交于实点的二共轭虚直线) 如果a 11与a 22异号,那么类似地有-102- [5] 02222=-b y a x (两相交直线) (II )无心曲线0,021********≠=+a a x a y a不妨设a 13与a 22异号(同号时令x = - x',y = y'即异号),令p a a =-2213,即得 [6] px y 22= (抛物线)(III )线心曲线033222=+a y a ,a 22≠0 方程可以改写为:22332a a y -= 当a 33与a 22异号时,设2233a a -2a =,则得方程 [7] 22a y = (两平行实直线)若a 33与a 22同号,设2233a a 2a =,则得方程 [8]22a y -= (两平行共轭虚直线) 当a 33=0时,得方程为[9] 02=y (两重合实直线) 于是我们就得到了下面的命题:命题5.8.4 通过适当地选取坐标系,二次曲线的方程总可以写成下面9种标准方程中的一种形式: [1] 12222=+b y a x (椭圆); [2] 12222-=+b y a x (虚椭圆); [3] 12222=-b y a x (双曲线); [4] 02222=+b y a x (点椭圆,或看成相交于实点的两共轭虚直线); [5] 02222=-b y a x (两相交直线); [6] px y 22=(抛物线); [7]22a y = (两平行直线); [8] 22a y -= (两平行共轭虚直线);[9] 02=y (两重合直线).根据此命题,二次曲线共分为9类.其中,把圆、虚圆和点圆分别归入 [1]、[2] 和 [4]类中.。
二次曲面方程化简方法

二次曲面方程化简方法探讨[摘要] 三元二次方程表示的是三维空间的二次曲面,如果能选择适当的坐标系将三元二次方程化为标准形式,该二次曲面的形状也就容易判定了。
空间解析几何中给出了由旋转或平移化简二次曲面方程的方法,但是旋转所采用的坐标变换却不容易求得。
而旋转的作用恰好是将二次型化为标准型,于是可以借助二次型的知识化简二次曲面方程。
本文介绍了将一般二次曲面方程化为标准方程的几种常用方法。
[关键词] 二次曲面方程标准方程正交变换合同变换偏导数二次曲面的一般方程为:一般二次曲面或是基本类型二次曲面,共9种;或是退化二次曲面,共5种;或是无轨迹(虚图形),共3种。
为了便于判定以一般方程给出的二次曲面方程的类型,有必要把一个二次曲面的一般方程化为标准方程。
二次曲面的标准方程:1)没有坐标的交叉项xy,xz,yz;2)如果有某个坐标的二次项,就没有这个坐标的一次项;3)如果有某个坐标的一次项,就没有其他坐标的一次项,并且这时方程的左边不再有常数项。
满足上述3个条件的二次曲面方程称为标准方程。
[1]定理1:任意二次曲面(1)通过适当的的旋转,都可以使新坐标系中不再含有形如的交叉项,即在新的坐标系中方程化为:(a,b,…,d)为新的系数,为新坐标)[1]定理2:对于不含交叉项xy,xz,yz的二次曲面方程:可以适当的坐标变换进一不化简,使它成为如下5种方程之一: 定理1,定理2给出了化简一般二次曲面方程的一般步骤:第一步:将一般二次曲面方程中的交叉项去掉,即将方程中的二次项部分化为平方和;第二步:将新的只剩平方项、一次项、常数项的方程化为标准方程。
注:第一步消去方程中的交叉项实质上是将方程中的二次项部分化为标型(二次型→标准型),而问题的关键就在这一步,于是问题转化为:先求实二次型的标准型,再作一次可逆线性替换。
遵循以上两步,应用二次型的知识,可以用如下几种方法化简一般二次曲面方程:一、正交变换法:使它成为有平方项的二次齐次式,有了平方项后,集中含有某一个有平方的变量的所有项,然后配方,对剩下的两个变量进行同样的变形,化成平方项后,再经过可逆线性变换就得到标准型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.5 二次曲面方程的化简与位置确定本节重点:掌握利用不变量化简二次曲面的方法并能确定新坐标系的位置 一有心二次曲面对于有心二次曲面,取其一个中心为新坐标原点'O ,这时在新坐标系下,'O 的坐标为)0,0,0(,它满足关于中心的方程⎪⎩⎪⎨⎧=+++=+++=+++000'34''33''32''31'24''23''22''21'14''13''12''11a z a y a x a a z a y a x a a z a y a x a (6.5.1) 把)0,0,0(代入(6.5.1)便得到'34'24'14a a a ==,因此有 6.5.1定理 若取有心二次曲面的一个中心为原点,则这个二次曲面在这个坐标系下的一次项系数为0。
结合上节结果得到,若二次曲面是有心二次曲面,则取其一个中心为新原点,对应于两个相异特征根21,λλ的两个单位特征向量为新坐标向量→→'',j i ,取另一个坐标向量为→→→⨯='''j i k ,那么在这个新坐标系下,二次曲面的方程为0'442'32'22'1=+++a z y x λλλ其中3λ是这个二次曲面的另一个特征根,至于'44a 可用下面方法得到 (1) 用中心的坐标表示'44a ,因为转轴不改变常数项,因此常数项由移轴决定,由(6.3.20)可得),,(000'44z y x F a =其中),,(000z y x 是新原点上的坐标。
但因为),,(),,(),,(),,(),,(0004000300002000010000z y x F z y x F z z y x F y z y x F x z y x F +++=而),,(000z y x 是二次曲面中心,因此)3,2,1(),,,(000=i z y x F i 因此),,(0004'44z y x F a =(2) 用不变量求'44a若二次曲面是中心二次曲面,则3I 是其中心方程组的系数行列式,因此03≠I ,即00000321321'33≠===λλλλλλI I而'44321'44321'44000000000a a I I λλλλλλ===因此34'44I I a =二、无心二次曲面在§6.4中我们看到无心二次曲面只有两种抛物面和抛物柱面。
(1)抛物面抛物面的最简方程为02''342'22'1=++z a y x λλ其中21,λλ是这个抛物面的两个非零特征根。
因此,2'3421'34'3421'44000000000a a a I I λλλλ-=== 因此214'34λλI a -±=,其正负号由所取坐标向量的指向确定。
为确定的位置,先考察它的最简方程,→→'',j i 分别是21,λλ对应的特征向量,它们所对应的主径面分别是'''z O y 面和'''zO x 面,新原点'O 在该曲面上。
从上面分析得到,对于抛物面,可取其两个非零特征根对应的单位特征向量为新标向量→→'',j i ,从而得到另一坐向量→→→⨯='''j i k ,→→'',j i 所对应的主径面分别为'''z O y 面和'''z O x 面,两主径面的交线为'z 轴,'z 轴与曲面的交点为新原点'O ,现在→→→''',,k j i 的指向已完全确定。
由(6.3.22)得到()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000044434241343332312423222114131211333'34z y x a a a a a a a a a a a a a a a a Z Y X a 其中},,{333Z Y X 是→'k 的坐标,),,(000z y x 是新原点的坐标。
由于→'k 是对应于特征根0=λ的特征向量,所以从上式得343243143'34a Z a Y a X a ++=(2)抛物柱面抛物柱面的最简方程为02''242''33=+y a z a ,其中'33a 为其唯一的非零特征根,与它对应的特征向量与'z 轴共线。
这个特征向量所对应的主径面为'''y O x 面,'x 轴是这个主径面与二次曲面的交线。
由此我们得到化简这类曲面的方法:先求出其唯一的非零特征根3λ,3λ所对应的单位特征向量为→'k ,→'k 所对应的主径面取为'''y O x 面,'''y O x 面与曲的交线取为'x 轴,'x 轴上可任取一点为新原点'O ,这时得到一个直角坐标变换,在这样取定的新坐标系下,二次曲面的方程为02''242'3=+y a z λ其中3λ是唯一的非零特征根,类似抛物面情形中求'34a 的方法,'24a 可直接计算如下:()34224214200044434241343332312423222114131211222'2410a Z a Y a X z y x a a a a a a a a a a a a a a a a Z Y X a ++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 其中},,{222Z Y X 是新坐标向量→'j 的坐标,),,(000z y x 是新原点坐标。
例1、化简二次曲面方程并给出得到化简方程的坐标变换公式:0106662265222=+-+-+--++z y x yz xz xy z y x解:二次曲面的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10333351131133131 3607321-===I I I曲面特征方程为036723=-+-λλ解得三个特征根为2,3,6321-===λλλ与61=λ对应的特征向量由方程组⎪⎩⎪⎨⎧=-+-=+--=---0053035Z Y X Z Y X Z Y X 决定。
解此方程组得}62,61,61{-是与61=λ对应的特征向量。
取它为→'i 。
由方程组⎪⎩⎪⎨⎧=++-=+--=---02023032Z Y X Z Y X Z Y X 解得与32=λ对应的单位特征向量}31,31,31{-,取它为→'j , 则 }0,21,21{}31,31,31{}62,61,61{'=-⨯-=→k 再由方程组⎪⎩⎪⎨⎧=-++-=+++-=---035033033000000000z y x z y x z y x 解得唯一中心)1,1,1(-1)1,1,1(4=-F由此得到简化方程为012362'2'2'=+-+z y x坐标变换公式为⎪⎪⎪⎩⎪⎪⎪⎨⎧++=-+-=+++-=1316212131611213161''''''''y x z z y x y z y x x例2、化简二次曲面方程03264224322222=+-+-+++++z y x yz xz xy z y x解:二次曲面的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----313213113122212212501074321-====I I I I特征方程为 010723=-+-λλλ 解得特征根为 0,2,5321===λλλ方程组⎪⎩⎪⎨⎧=-++=+++=-++01303220222000000000z y x z y x z y x 的前两个方程矛盾,所以方程组无解,因此,这是无心二次曲面,又因为它有两个非零特征根,因此它是一个抛物面,其简化方程为02525'2'2'=±+z y x例3、试求例2中得到简化方程的坐标变换 解:在例2中,由方程组⎪⎩⎪⎨⎧=-+=+-=++-02032023Z Y X Z Y X Z Y X 解得对应于特征根51=λ的单位特征向量}31,31,31{,取为→'i ,由方程组⎪⎩⎪⎨⎧=++=+=+00202Z Y X Z X Z Y 解得对应于特征根22=λ的单位特征向量}62,61,61{-,取为→'j}0,21,21{'''-=⨯=→→→j i k与}31,31,31{共轭的主径面为0=++z y x与}62,61,61{-共轭的主径面为03422=+-+z y x这两个主径面与二次曲面的公共交点由方程组⎪⎩⎪⎨⎧=+-+-+++++=+-+=++03264224322034220222z y x yz xz xy z y x z y x z y x 决定,解得交点为}21,4019,401{--取为原点,由此得到坐标变换公式 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=-++=--+=2162314019216131401216131''''''''y x z z y x y z y x x二次曲面在新坐标系下的方程为02525'2'2'=++z y x例4、化简二次曲面042210642222=+---++z y x xy y x 解:二次曲面的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----4253200050223022004321===I I I特征方程为 0423=+-λλ 解得特征根为 4032,1==λλ方程组⎪⎩⎪⎨⎧==-+=-+02052203220000y x y x 是矛盾方程,因此,该二次曲面是无心二次曲面,又因为它只有一个非零特征根,因此是抛物柱面。
非零特征根43=λ,对应的特征向量为方程组⎪⎩⎪⎨⎧=-=-=+-04022022Z Y X Y X 确定,因此}0,21,21{是对应于43=λ的特征向量,取→'k 与}0,21,21{共轭的主径面为0844=-+y x它是唯一的主径面,它与二次曲面交线为⎩⎨⎧=+---++=-+0422106422084422z y x xy y x y x 即⎩⎨⎧=-=-+02202z y y x 它的一个单位向量为}22,21,21{--,取为→'i ,则 }22,21,21{'''--=⨯=→→→i k j ,因此,2222)5(21)3)(21('24-=--+--=a 所以该二次曲面的简化方程为044'2'=-y z即0'2'=-y z例5、求二次曲面012322226633222=-++--+-++z y x yz xz xy z y x 的简化方程。