中考数学阅读理解专题
中考数学专题复习(有答案)阅读理解
专题三 阅读理解类型一 新定义1.对非负实数x ”四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是 13≤x <15 .2.阅读材料:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i )+(6-2i )=(4+6)+(1-2)i =10-i ;(2-i )(3+i )=6-3i +2i -i 2=6-i -(-1)=7-i ;(4+i )(4-i )=16-i 2=16-(-1)=17;(2+i )2=4+4i +i 2=4+4i -1=3+4i .根据以上信息,完成下面计算:(1+2i )(2-i )+(2-i )2= 7-i .3.(2020宁波节选)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ︵=BD ︵,四边形ABCD 的外角平分线DF 交⊙O于点F ,连接BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠EBO =12∠ABC ,∠ECD =12∠ACD . ∴∠E =∠ECD -∠EBD =12(∠ACD -∠ABC )=12∠A =12α. (2)如图2,延长BC 至点T .∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°.又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC .∵DF平分∠ADE,∴∠ADF=∠FDE.∵∠ADF=∠ABF,∴∠ABF=∠FBC.∴BE是∠ABC的平分线.∵AD︵=BD︵,∴∠ACD=∠BFD.∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线.∴∠BEC是△ABC中∠BAC的遥望角.类型二 新运算1.(2020十堰)对于实数m ,n ,定义运算m *n =(m +2)2-2n .若2*a =4*(-3),则a = -13 . 2.定义一种新运算ʃa b n ·x n -1dx =a n -b n ,例如ʃk n 2xdx =k 2-n 2,若ʃm 5m x -2dx =-2,则m =( B )A .-2B .-25C .2D .25 3.(2020青海)对于任意两个不相等的数a ,b ,定义一种新运算”⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4= 2 . 4.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中的较大值,如max {-3,4}=4,按照这个规定,方程max {x ,-x }=3x +2x 的解为 x =3+172或x =-1或x =-2 .5.(2020潍坊)若定义一种新运算:a ⊗b =⎩⎪⎨⎪⎧a -b (a ≥2b ),a +b -6(a <2b ),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函数y =(x +2)⊗(x -1)的图象大致是( A ),A) ,B),C) ,D) 6.给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,求方程y ′=12的解.解:由函数y =x 3,得n =3,∴y ′=3x 2.∵y ′=12,∴3x 2=12,解得x 1=2,x 2=-2.类型三 新方法(2020扬州节选)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的”整体思想”.解决问题:(1)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x -y = -1 ,x +y = 5 ; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?解:(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元.依题意,得⎩⎪⎨⎪⎧20m +3n +2p =32,①39m +5n +3p =58,② 由①×2-②可得m +n +p =6,∴5m +5n +5p =5×6=30(元).答:购买5支铅笔、5块橡皮、5本日记本共需30元.。
中考数学专题复习2:阅读理解题
中考数学专题复习2:阅读理解题Ⅰ、综合问题精讲:阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.Ⅱ、典型例题剖析【例1】(,模拟,9分)如图 2-7-1所示,正方形ABCD和正方形EFGH的边长分别为2 2 和2 ,对角线BD、FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线l上平移时,正方形 EFH也随之平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D=_______,O2 F=______;(2)当中心O2在直线 l上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.(3)随着中心 O2在直线 l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)解:(1)O1D=2,O2 F=1;(2)O1 O2 =3;(2)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;当O1 O2=1时,两个正方形有无数个公共点;当1<O1 O2<3时,两个正方形有2个公共点.点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d与半径R和r的数量关系,五种位置关系主要由两个因素确定:①公共点的个数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.【例2】(,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
初三数学阅读试题及答案
初三数学阅读试题及答案一、选择题(每题3分,共30分)1. 已知函数y=2x+3,当x=2时,y的值为:A. 7B. 5C. 9D. 11答案:A解析:将x=2代入函数y=2x+3,得到y=2*2+3=7。
2. 下列哪个选项是一次函数的图像?A. 直线B. 曲线C. 抛物线D. 双曲线答案:A解析:一次函数的图像是一条直线。
3. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B解析:根据勾股定理,如果a^2 + b^2 = c^2,那么三角形ABC 是一个直角三角形。
4. 已知x^2 - 5x + 6 = 0,那么x的值为:A. 2B. 3C. 2或3D. 无解答案:C解析:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3)=0,所以x=2或x=3。
5. 已知一个圆的半径为r,那么这个圆的面积为:A. πr^2B. 2πrC. πrD. πr^3答案:A解析:圆的面积公式为A=πr^2。
6. 如果一个数的绝对值等于它本身,那么这个数是:A. 正数B. 负数C. 非负数D. 非正数答案:C解析:一个数的绝对值等于它本身,说明这个数是非负数。
7. 已知一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长为:A. 16B. 21C. 17D. 22解析:等腰三角形的周长等于底边长加上两倍的腰长,即6+5+5=21。
8. 已知一个二次函数y=ax^2+bx+c,当a>0时,这个函数的图像开口方向是:A. 向上B. 向下C. 不能确定D. 无意义答案:A解析:二次函数y=ax^2+bx+c中,如果a>0,那么函数的图像开口向上。
9. 已知一个数列1, 3, 5, 7, ...,那么这个数列的第n项可以表示为:B. 2n+1C. 2nD. n^2答案:A解析:这是一个等差数列,公差为2,所以第n项可以表示为2n-1。
中考数学复习专题9:阅读理解型问题(含详细参考答案)
中考数学复习专题九:阅读理解型问题一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、中考考点精讲 考点一: 阅读试题提供新定义、新定理,解决新问题例1 (•十堰)阅读材料:例:说明代数式221(3)4x x ++-+的几何意义,并求它的最小值.解:221(3)4x x ++-+=222(0)1(3)2x x -++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则2(0)1x -+可以看成点P 与点A (0,1)的距离, 22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB ,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32.根据以上阅读材料,解答下列问题:(1)代数式22(1)1(2)9x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式22491237x x x ++-+的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.专题:探究型.解析:(1)先把原式化为222(1)1(2)3x x -++-+的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为222(0)7(6)1x x -++-+的形式,故得出所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可.解答:解:(1)∵原式化为222(1)1(2)3x x -++-+的形式, ∴代数式222(1)1(2)3x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B (2,3)的距离之和,故答案为(2,3);(2)∵原式化为222(0)7(6)1x x -++-+的形式, ∴所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和, 如图所示:设点A 关于x 轴的对称点为A′,则PA=P A′,∴PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,∴PA′+PB 的最小值为线段A′B 的长度,∵A (0,7),B (6,1)∴A′(0,-7),A′C=6,BC=8,∴A′B=222268A C BC '+=+=10,故答案为:10.点评:本题考查的是轴对称-最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.考点二、阅读试题信息,归纳总结提炼数学思想方法例2 (•赤峰)阅读材料:(1)对于任意两个数a 、b 的大小比较,有下面的方法:当a-b >0时,一定有a >b ;当a-b=0时,一定有a=b ;当a-b <0时,一定有a <b .反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a 、b 的大小时,我们还可以用它们的平方进行比较:∵a 2-b 2=(a+b )(a-b ),a+b >0∴(a 2-b 2)与(a-b )的符号相同当a 2-b 2>0时,a-b >0,得a >b当a 2-b 2=0时,a-b=0,得a=b当a 2-b 2<0时,a-b <0,得a <b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1= (用x、y的式子表示)W2= (用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1= km(用含x的式子表示);②在方案二中,a2= km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.考点:轴对称-最短路线问题;整式的混合运算.专题:计算题.分析:(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案;③求出a12-a22=6x-39,分别求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.解答:(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1-W2=(3x+7y)-(2x+8y)=x-y,∵x>y,∴x-y>0,∴W1-W2>0,得W1>W2,所以张丽同学用纸的总面积大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B 作BM ⊥AC 于M ,则AM=4-3=1,在△ABM 中,由勾股定理得:BM 2=AB 2-12=x 2-1,在△A′MB 中,由勾股定理得:AP+BP=A′B=22248A M BM x '+=+,故答案为:248x +.③解:a 12-a 22=(x+3)2-(248x +)2=x 2+6x+9-(x 2+48)=6x-39,当a 12-a 22>0(即a 1-a 2>0,a 1>a 2)时,6x-39>0,解得x >6.5,当a 12-a 22=0(即a 1-a 2=0,a 1=a 2)时,6x-39=0,解得x=6.5,当a 12-a 22<0(即a 1-a 2<0,a 1<a 2)时,6x-39<0,解得x <6.5,综上所述当x >6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x <6.5时,选择方案一,输气管道较短.点评:本题考查了勾股定理,轴对称-最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论例3 (•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l 上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l 看成一条直线(图(2)),问题就转化为,要在直线l 上找一点P ,使AP 与BP 的和最小.他的做法是这样的:①作点B 关于直线l 的对称点B′.②连接AB′交直线l 于点P ,则点P 为所求.请你参考小华的做法解决下列问题.如图在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC=6,BC 边上的高为4,请你在BC 边上确定一点P ,使△PDE 得周长最小.(1)在图中作出点P (保留作图痕迹,不写作法).(2)请直接写出△PDE 周长的最小值: .考点:轴对称-最短路线问题.分析:(1)根据提供材料DE 不变,只要求出DP+PE 的最小值即可,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)如图,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)∵点D 、E 分别是AB 、AC 边的中点,∴DE 为△ABC 中位线,∵BC=6,BC 边上的高为4,∴DE=3,DD′=4,∴D′E=222234DE DD '+=+=5,∴△PDE 周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE 周长的最小值,求出DP+PE 的最小值即可是解题关键.考点四、阅读试题信息,借助已有数学思想方法解决新问题例4 (•重庆)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=6,AB=3.E 为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.考点:相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.专题:代数几何综合题.分析:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤43时,当43<t≤2时,当2<t≤103时,当103<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB-BG=3-x,∵GF∥BE,∴△AGF∽△ABC,∴AG GF AB BC=,即336x x -=,解得:x=2,即BE=2;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=83,∴t=BB′=BC-B′E-EC=6-2-83=43,∵ME=2-12t,∴FM=12t,当0≤t≤43时,S=S△FMN=12×t×12t=14t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•DHCH=34(4-t)=3-34t,∴FK=2-EK=34t-1,∵NL=23AD=43,∴FL=t-43,∴当43<t≤2时,S=S△FMN-S△FKL=14t2-12(t-43)(34t-1)=-18t2+t-23;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=83,∴EC=4-t=B′C-2=23,∴t=103,∵B′N=12B′C=12(6-t)=3-12t,∵GN=GB′-B′N=12t-1,∴当2<t≤103时,S=S梯形GNMF-S△FKL=12×2×(12t-1+12t)-12(t-43)(34t-1)=-38t2+2t-53,④如图⑥,当103<t≤4时,∵B′L=34B′C=34(6-t),EK=34EC=34(4-t),B′N=12B′C=12(6-t)EM=12EC=12(4-t),S=S梯形MNLK=S梯形B′EKL-S梯形B′EMN=-12t+52.综上所述:当0≤t≤43时,S=14t2,当43<t≤2时,S=-18t2+t-23;当2<t≤103时,S=-38t2+2t-53,当103<t≤4时,S=-12t+52.点评:此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.四、中考真题演练1.(•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.考点:图形的剪拼;平行四边形的性质;菱形的性质;作图—应用与设计作图.分析:(1)①根据邻边长分别为2和3的平行四边形进过两次操作即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.解答:解:(1)①利用邻边长分别为2和3的平行四边形进过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.2.(•淮安)阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.解答:解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C 重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角,∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.3.(•南京)下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m 的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD 的内部,AB ∥A′B′,AD ∥A′D′,且AD :AB=2:1,设AB 与A′B′、BC 与B′C′、CD 与C′D′、DA 与D′A′之间的距离分别为a 、b 、c 、d ,要使矩形A′B′C′D′∽矩形ABCD ,a 、b 、c 、d 应满足什么条件?请说明理由.考点:相似多边形的性质;一元二次方程的应用.分析:(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm ,则长为2xm ,然后由题意得方程23124112y y y y ---=--- =2,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD ,利用相似多边形的性质,可得A D ADA B AB''='',即 ()2()1AD a c AB b d -+=-+,然后利用比例的性质,即可求得答案.解答:解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由. 在“设矩形蔬菜种植区域的宽为xm ,则长为2xm .”前补充以下过程: 设温室的宽为ym ,则长为2ym .则矩形蔬菜种植区域的宽为(y-1-1)m ,长为(2y-3-1)m . ∵23124112y y y y ---=--- =2,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD , 就要A D ADA B AB''='',即()2()1AD a c AB b d -+=-+, 即2()2()1AB a c AB b d -+=-+,即a cb d++=2. 点评:此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.4.(•鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.考点:相似形综合题;解一元二次方程-因式分解法;平行四边形的判定;矩形的性质;相似三角形的判定与性质.分析:(1)解一元二次方程,求出OA、OB的长度,从而得到A、B点的坐标;(2)△APQ与△AOB相似时,存在两种情况,需要分类讨论,不要遗漏,如图(2)所示;(3)本问关键是找齐平行四边形的各种位置与性质,如图(3)所示.在求M1,M2坐标时,注意到M1,M2与Q点坐标的对应关系,则容易求解;在求M3坐标时,可以利用全等三角形,得到线段之间关系.解答:解:(1)解方程x2-7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t,AQ=5-2t.△APQ与△AOB相似,可能有两种情况:(I)△APQ∽△AOB,如图(2)a所示.则有AP AQAO AB=,即5235t t-=,解得t=1511.此时OP=OA-AP=1811,PQ=AP•tanA=2011,∴Q(2011,1811);(II)△APQ∽△ABO,如图(2)b所示.则有AP AQAB AO=,即5253t t-=,解得t=2513.此时AQ=2513,AH=AQ•cosA=913,HQ=AQ•sinA=1213,OH=OA-AH=3013,∴Q(1213,3013).综上所述,当t=1511秒或t=2513秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(2011,1811)或(1213,3013).(3)结论:存在.如图(3)所示.∵t=2,∴AP=2,AQ=1,OP=1.过Q点作QE⊥y轴于点E,则QE=AQ•sin∠QAP=45,AE=AQ•cos∠QAP=35,∴OE=OA-AE=125,∴Q(45,125).∵▱APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(45,25);∵▱APQM2,∴QM2⊥x轴,且QM2=AP=2,∴M2(45,225);如图(3),过M3点作M3F⊥y轴于点F,∵▱AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,∴△M3PF≌△QAE,∴M3F=QE=45,PF=AE=35,∴OF=OP+PF=85,∴M3(-45,85).∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(45,25),M2(45,225),M3(-45,85).点评:本题是动点型压轴题,综合考查了相似三角形的判定与性质、全等三角形的判定与性质、解一元二次方程、平行四边形等知识点.本题难点在于分类讨论思想的应用,第(2)(3)问中,均涉及到多种情况,需要逐一分析不能遗漏;另外注意解答中求动点时刻t和点的坐标的过程中,全等三角形、相似三角形、三角函数等知识发挥了重要作用,这是解答压轴题的常见技巧,需要熟练掌握.5.(•长春)如图,在Rt △ABC 中,∠ACB=90°,AC=8cm ,BC=4cm .D 、E 分别为边AB 、BC 的中点,连接DE .点P 从点A 出发,沿折线AD-DE-EB 运动,到点B 停止.点P 在线段AD 上以5cm/s 的速度运动,在折线DE-EB 上以1cm/s 的速度运动.当点P 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 在线段AQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示). (2)当点N 落在AB 边上时,求t 的值.(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S 与t 的函数关系式.(4)连接CD ,当点N 与点D 重合时,有一点H 从点M 出发,在线段MN 上以2.5cm/s 的速度沿M-N-M 连续做往返运动,直至点P 与点E 重合时,点H 停止往返运动;当点P 在线段EB 上运动时,点H 始终在线段MN 的中点处,直接写出在点P 的整个运动过程中,点H 落在线段CD 上时t 的取值范围.考点:相似形综合题.分析:(1)点P 在AD 段的运动时间为2s ,则DP 的长度为(t-2)cm ;(2)当点N 落在AB 边上时,有两种情况,如图(2)所示.利用运动线段之间的数量关系求出时间t 的值;(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有两种情况,如图(3)所示.分别用时间t 表示各相关运动线段的长度,然后利用“S=S 梯形AQPD -S △AMF =12(PG+AC )•PC -12AM•FM”求出面积S 的表达式;(4)本问涉及双点的运动,首先需要正确理解题意,然后弄清点H 、点P 的运动过程:当4<t <6时,此时点P 在线段DE 上运动,如图(4)a 所示.此时点H 将两次落在线段CD 上;当6≤t≤8时,此时点P 在线段EB 上运动,如图(4)b 所示.此时MN 与CD 的交点始终是线段MN 的中点,即点H .解答:解:(1)∵在Rt △ABC 中,AC=8cm ,BC=4cm , ∴AB=22228445AC BC +=+=,D 为AB 中点,∴AD=25,∴点P 在AD 段的运动时间为255=2s . 当点P 在线段DE 上运动时,DP 段的运动时间为(t-2)s , ∵DE 段运动速度为1cm/s ,∴DP=(t-2)cm .(2)当点N 落在AB 边上时,有两种情况,如下图所示:①如图(2)a,此时点D与点N重合,P位于线段DE上.由三角形中位线定理可知,DM=12BC=2,∴DP=DM=2.由(1)知,DP=t-2,∴t-2=2,∴t=4;②如图(2)b,此时点P位于线段EB上.∵DE=12AC=4,∴点P在DE段的运动时间为4s,∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4.∵PN∥AC,∴PN:PB=AC:BC=2,∴PN=2PB=16-2t.由PN=PC,得16-2t=t-4,解得t=203.所以,当点N落在AB边上时,t=4或t=203.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况,如下图所示:①当2<t<4时,如图(3)a所示.DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t.∵MN∥BC,∴FM:AM=BC:AC=1:2,∴FM=12AM=12t.S=S梯形AQPD-S△AMF=12(DP+AQ)•PQ-12AM•FM=12[(t-2)+(2+t)]×2-12t•12t=-14t2+2t;②当203<t<8时,如图(3)b所示.PE=t-6,∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t,∴FM=12AM=6-12t,PG=2PB=16-2t,S=S梯形AQPD-S△AMF=12(PG+AC)•PC-12AM•FM=12[(16-2t)+8]×(t-4)-12(12-t)•(6-12t)=-54t2+22t-84.综上所述,S与t的关系式为:S=2212(24)45202284(8)43t t tt t t⎧-+<<⎪⎪⎨⎪-+-<<⎪⎩。
中考数学总复习训练 阅读理解问题(含解析)
阅读理解问题1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a42.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= .3.定义新运算“⊗”,,则12⊗(﹣1)= .4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= ,O2F= .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有种不同的选法;(2)从7个人中选取4人,排成一列,有种不同的排法.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).阅读理解问题参考答案与试题解析1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4【考点】正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.【解答】解:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a2.故选:B.【点评】本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.2.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= (a+b)(a+b+c).【考点】因式分解﹣分组分解法.【专题】压轴题;阅读型.【分析】首先进行合理分组,然后运用提公因式法和公式法进行因式分解.【解答】解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).【点评】此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式.3.定义新运算“⊗”,,则12⊗(﹣1)= 8 .【考点】代数式求值.【专题】压轴题;新定义.【分析】根据已知可将12⊗(﹣1)转换成a﹣4b的形式,然后将a、b的值代入计算即可.【解答】解:12⊗(﹣1)=×12﹣4×(﹣1)=8故答案为:8.【点评】本题主要考查代数式求值的方法:直接将已知代入代数式求值.4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= 2 ,O2F= 1 .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= 3 .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).【考点】四边形综合题.【分析】(1)根据正方形对角线是正方形边长的倍可得正方形的对角线长,除以2即为所求的线段的长;(2)此时中心距为(1)中所求的两条线段的和,若只有一个公共点,则点D与点F重合,由此可得出答案.(3)动手操作可得两个正方形的边长可能没有公共点,有1个公共点,2个公共点,或有无数个公共点,据此找到相应取值范围即可.【解答】解:(1)O1D=2×÷2=2;O2F=×÷2=1.故答案为:2,1;(2)点D、F重合时有一个公共点,O1O2=2+1=3.故答案为:3;(3)两个正方形的边长有两个公共点时,1<O1O2<3;无数个公共点时,O1O2=1;1个公共点时,O1O2=3;无公共点时,O1O2>3或0≤O1O2<1.【点评】考查正方形的动点问题;需掌握正方形的对角线与边长的数量关系;动手操作得到两正方形边长可能的情况是解决本题的主要方法.5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是15 .【考点】分式方程的应用.【专题】阅读型.【分析】题中给出了调和数的规律,可将x所在的那组调和数代入题中给出的规律里,然后列出方程求解.【解答】解:根据题意,得:.解得:x=15经检验:x=15为原方程的解.故答案为:15.【点评】此题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的依据.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为24 .【考点】一元一次不等式的应用.【专题】压轴题.【分析】首先理解“可连数”的概念,再分别考虑个位、十位、百位满足的数,用排列组合的思想求解.【解答】解:个位需要满足:x+(x+1)+(x+2)<10,即x<,x可取0,1,2三个数.十位需要满足:y+y+y<10,即y<,y可取0,1,2,3四个数(假设0n就是n)因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.则小于200的三位“可连数”共有的个数=4×3×1=12;小于200的二位“可连数”共有的个数=3×3=9;小于200的一位“可连数”共有的个数=3.故小于200的“可连数”共有的个数=12+9+3=24.【点评】解决问题的关键是读懂题意,依题意列出不等式进行求解,还要掌握排列组合的解法.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3 .【考点】一元一次不等式组的整数解.【专题】压轴题;新定义.【分析】先根据题意列出不等式,根据x的取值范围及x为整数求出x的值,再把x的值代入求出y的值即可.【解答】解:由题意得,1<1×4﹣xy<3,即1<4﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=﹣2﹣1=﹣3.【点评】此题比较简单,解答此题的关键是根据题意列出不等式,根据x,y均为整数求出x、y的值即可.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有56 种不同的选法;(2)从7个人中选取4人,排成一列,有840 种不同的排法.【考点】有理数的混合运算.【专题】压轴题;阅读型.【分析】(1)利用组合公式来计算;(2)都要利用排列公式来计算.【解答】解:(1)C83==56(种);(2)A74=7×6×5×4=840(种).【点评】本题为信息题,根据题中所给的排列组合公式求解.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).【考点】四边形综合题.【分析】(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可;(2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为: ==tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′.【解答】解(1)在方形环中,∵M′E⊥AD,N′F⊥BC,AD∥BC,在△MM′E与△NN′F中,,∴△MM′E≌△NN′F(AAS).∴MM′=N′N;(2)法一∵∠NFN′=∠MEM′=90°,∠FNN′=∠EM′M=α,∴△NFN′∽△M′EM,∴=.∵M′E=N′F,∴==tanα(或).①当α=45°时,tan α=1,则MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).法二在方形环中,∠D=90°.∵M′E⊥AD,N′F⊥CD,∴M′E∥DC,N′F=M′E.∴∠MM′E=∠N′NF=α.在Rt△NN′F与Rt△MM′E中,sinα=,cosα=,即=tanα(或).①当α=45°时,MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).【点评】此题主要考查了相似三角形、全等三角形的判定和性质以及解直角三角形的应用等知识.。
中考数学专题14阅读理解问题(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
专题14 阅读理解问题一、选择题目1.(2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.7292.(2017贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.1903.(2017四川泸州第10题)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=12,若一个三角形的三边长分别为2,3,4,则其面积是( )二、填空题目1.(2017四川宜宾第16题)规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7; ③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点. 三、解答题1.(2017浙江衢州第22题)定义:如图1,抛物线与轴交于A ,B 两点,点P 在抛物线上(点P 与A ,B 两点不重合),如果△ABP 的三边满足,则称点P 为抛物线的勾股点。
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.阅读下列有关材料并解决有关问题.我们知道|x|={x (x>0) 0 (x=0)−x (x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称-1,2分别为|x+1|与|x−2|的零点值).在有理数范围内,零点值x=−1和x=2可将全体有理数分成不重复且不遗漏的三种情况:①x<−1;②−1≤x<2;③x≥2.化简|x+1|+|x−2|时,对应三种情况为:①当x<−1时,原式=−(x+1)−(x−2)=−2x+1;②当−1≤x<2时,原式=(x+1)−(x−2)=3;③当x≥2时,原式=(x+1)+(x−2)=2x−1.通过以上阅读,请你解决问题:(1)|x−3|+|x+4|零点值是_________和__________;(2)化简代数式|x−3|+|x+4|;(3)解方程|x−3|+|x+4|=9;(4)|x−3|+|x+4|+|x−2|+|x−2020|的最小值为_________,此时x的取值范围为____________.2.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式x2−xy+4x−4y和a2−b2−c2+2bc.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:(1)x2−xy+4x−4y=(x2−xy)+(4x−4y)=x(x−y)+4(x−y)=(x−y)(x+4)(2)a2−b2−c2+2bc=a2−(b2+c2−2bc)=a2−(b−c)2=(a+b−c)(a−b+c)这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)m3−2m2−3m+6(2)x2−2xy−9+y23.阅读下列材料:已知实数x y 满足(x 2+y 2+1)(x 2+y 2−1)=63 试求x 2+y 2的值.解:设x 2+y 2=a 则原方程变为(a +1)(a −1)=63 整理得a 2−1=63 a 2=64 根据平方根意义可得a =±8 由于x 2+y 2⩾0 所以可以求得x 2+y 2=8.这种方法称为“换元法” 用一个字母去代替比较复杂的单项式、多项式 可以达到化繁为简的目的.根据阅读材料内容 解决下列问题:(1)已知实数x y 满足(2x +2y +3)(2x +2y −3)=27 求x +y 的值.(2)已知a b 满足方程组{3a 2−2ab +12b 2=472a 2+ab +8b 2=36;求1a +12b 的值; (3)填空:已知关于x y 的方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 则关于x y 的方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2的解是_______. 4.例:解不等式(x ﹣2)(x +3)>0解:由实数的运算法则:“两数相乘 同号得正”得①{x −2>0x +3>0 或②{x −2<0x +3<0解不等式组①得 x >2解不等式组②得 x <﹣3所以原不等式的解集为x >2或x <﹣3.阅读例题 尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式x+1x−2的值为负数 求x 的取值范围.5.定义:有一个内角为90° 且对角线相等的四边形称为准矩形.(1)如图1 准矩形ABCD 中 ∠ABC =90° 若AB =2 BC =3 则BD =_____;(2)如图2 正方形ABCD中点E F分别是边AD AB上的点且CF∠BE 求证:四边形BCEF是准矩形;(3)已知准矩形ABCD中∠ABC=90° ∠BAC=60° AB=2 当△ADC为等腰三角形时求这个准矩形的面积.6.仔细阅读下面例题解答问题.【例题】已知:m2−2mn+2n2−8n+16=0求m n的值.解:∠m2−2mn+2n2−8n+16=0∠(m2−2mn+n2)+(n2−8n+16)=0∠(m−n)2+(n−4)2=0∠m−n=0n−4=0∠m=4n=4.∠m的值为4 n的值为4.【问题】仿照以上方法解答下面问题:(1)已知x2+2xy+2y2−6y+9=0求x y的值.(2)在Rt∠ABC中∠C=90°三边长a b c都是正整数且满足a2+b2−12a−16b+100=0求斜边长c的值.x+4与x轴y轴分别交于点A和点B.7.如图直线y=43(1)求A B两点的坐标;(2)过B点作直线与x轴交于点P 若∠ABP的面积为8 试求点P的坐标.(3)点M是OB上的一点若将∠ABM沿AM折叠点B恰好落在x轴上的点B1处求出点M的坐标.(4)点C在y轴上连接AC 若∠ABC是以AB为腰的等腰三角形请直接写出点C的坐标.8.定义:把斜边重合且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图1 在△ABC和△DBC中∠A=90∘,AB=3,AC=4,BD=2,CD=√21说明△ABC 和△DBC是共边直角三角形.(2)问题探究:如图2 △ABC和△DBC是共边直角三角形E F分别是AD BC的中点连结EF求证EF⊥AD.(3)拓展延伸:如图3 △ABC和△DBC是共边直角三角形且BD=CD连结AD求证:AD平分∠BAC.9.【定义】如果1条线段将一个三角形分成2个等腰三角形那么这1条线段就称为这个三角形的“好线” 如果2条线段将一个三角形分成3个等腰三角形那么这2条线段就称为这个三角形的“好好线”.【理解】如图① 在△ABC中∠A=27° ∠C=72° 请你在这个三角形中画出它的“好线” 并标出等腰三角形顶角的度数.如图② 已知△ABC是一个顶角为45°的等腰三角形请你在这个三角形中画出它的“好好线” 并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中已知一个内角为24° 若它只有“好线” 请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中∠C=27° AD和DE分别是△ABC的“好好线” 点D在BC边上点E在AB边上且AD =DC BE=DE 根据题意写出∠B的度数的所有可能值.10.【阅读】如图1 若ΔABD∽ΔACE且点B,D,C在同一直线上则我们把ΔABD与ΔACE称为旋转相似三角形.【理解】(1)如图2 ΔABC和ΔADE是等边三角形点D在边BC上连接CE.求证:ΔABD与ΔACE是旋转相似三角形.【应用】(2)如图3 ΔABD与ΔACE是旋转相似三角形AD//CE.求证:AC=DE.【拓展】(3)如图4 AC是四边形ABCD的对角线∠D=90°∠B=∠ACD BC=25AC=20AD= 16.试在边BC上确定一点E使得四边形AECD是矩形并说明理由.11.定义:如果三角形上有两点其中一点为一边的中点且这两点的连线将三角形分成周长相等的两部分我们就称这条线段为该三角形的“等分周线”.如图1 在△ABC中D是BC的中点点E在AB上若BD+BE=CD+AC+AE则DE为△ABC的一条“等分周线”.概念理解:(1)任意三角形的“等分周线”有______条若某三角形的一条“等分周线”有一个端点是三角形的顶点则这个三角形是______.规律探究:(2)如图1 在△ABC中DE为△ABC的一条“等分周线”.若AB>AC∠A=αAC=m求DE 的长.(用含mα的代数式表示).拓展应用(3)如图2 在四边形ABCD中BC=2CD AC平分∠BCD BA⊥AC点E在线段AC上连接ED EB 且AB=√3EC=√3+1∠BEC=120°求ED的长.12.(1)如图① 四边形ABCD中AB=AD ∠B=∠ADC=90°.E F分别是BC CD上的点且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G 使DG=BE 连结AG.先证明△ABE≌△ADG再证明△AEF≌△AGF从而得出∠EAF=∠GAF 最后得出∠EAF与∠BAD之间的数量关系是.(2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②)其余条件不变上述数量关系是否成立成立请证明;不成立说明理由(3)如图③ 中俄两国海军在南海举行联合军事演习中国舰艇在指挥中心(O)北偏西30°的A处俄罗斯舰艇在指挥中心南偏东70°的B处两舰艇到指挥中心距离相等.接到行动指令后中国舰艇向正东方向以60海里/小时的速度前进俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进2小时后指挥中心观测到两舰艇分别到达E F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.13.定义:如图1 点M N把线段AB分割成AM MN和BN若以AM MN BN为边的三角形是一个直角三角形则称点M N是线段AB的勾股点.已知点M N是线段AB的勾股点若AM=1 MN=2 则BN =.(1)【类比探究】如图2 DE是△ABC的中位线M N是AB边的勾股点(AM<MN<NB)连接CM CN 分别交DE于点G H.求证:G H是线段DE的勾股点.(2)【知识迁移】如图3 C D是线段AB的勾股点以CD为直径画∠O P在∠O上AC=CP连结P A PB若∠A=2∠B求∠B的度数.(x>0)上的动点直线y=−x+2与坐标轴(3)【拓展应用】如图4 点P(a b)是反比例函数y=2x分别交于A B两点过点P分别向x y轴作垂线垂足为C D且交线段AB于E F.证明:E F是线段AB的勾股点.14.【了解概念】有一组对角互余的凸四边形称为对余四边形连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图① 对余四边形ABCD中AB=5 BC=6 CD=4 连接AC.若AC=AB求sin∠CAD的值;(2)如图② 凸四边形ABCD中AD=BD AD∠BD当2CD2+CB2=CA2时判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中点A(﹣1 0)B(3 0)C(1 2)四边形ABCD是对余四边形点E=u点D的纵坐标为t请直接写出u关于t 在对余线BD上且位于∠ABC内部∠AEC=90°+∠ABC.设AEBE的函数解析式.15.定义:若四边形有一组对角互补一组邻边相等且相等邻边的夹角为直角像这样的图形称为“直角等邻对补”四边形简称“直等补”四边形根据以上定义解决下列问题:(1)如图1 正方形ABCD中E是CD上的点将ΔBCE绕B点旋转使BC与BA重合此时点E的对应点F在DA的延长线上则四边形BEDF为“直等补”四边形为什么?(2)如图2 已知四边形ABCD是“直等补”四边形AB=BC=5CD=1AD>AB点B到直线AD的距离为BE.①求BE的长.②若M N分别是AB AD边上的动点求ΔMNC周长的最小值.16.定义:在平行四边形中若有一条对角线是一边的两倍则称这个平行四边形为两倍四边形其中这条对角线叫做两倍对角线这条边叫做两倍边.如图1 四边形ABCD是平行四边形BE//AC延长DC交BE于点E连结AE交BC于点F AB=1AD=m.(1)若∠ABC=90°如图2.①当m=2时试说明四边形ABEC是两倍四边形;②是否存在值m使得四边形ABCD是两倍四边形若存在求出m的值若不存在请说明理由;(2)如图1 四边形ABCD与四边形ABEC都是两倍四边形其中BD与AE为两倍对角线AD与AC为两倍边求m的值.17.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.【问题理解】(1)如图1 点A B C在∠O上∠ABC的平分线交∠O于点D 连接AD CD.求证:四边形ABCD是等补四边形;【拓展探究】(2)如图2 在等补四边形ABCD中AB=AD 连接AC AC是否平分∠BCD?请说明理由;【升华运用】(3)如图3 在等补四边形ABCD中AB=AD 其外角∠EAD的平分线交CD的延长线于点F.若CD=6 DF =2 求AF的长.18.我们把方程(x−m)2+(y−n)2=r2称为圆心为(m,n)半径长为r的圆的标准方程.例如圆心为(1,−2)半径长为3的圆的标准方程是(x−1)2+(y+2)2=9.在平面直角坐标系中⊙C与x轴交于点A B且点B的坐标为(8,0)与y轴相切于点D(0,4)过点A B D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)求抛物线的解析式;(3)试判断直线AE与⊙C的位置关系并说明理由.19.定义:点P(a b)关于原点的对称点为P' 以PP'为边作等边∠PP'C则称点C为P的“等边对称点”;(1)若P(1 √3)求点P的“等边对称点”的坐标.(x>0)上一动点当点P的“等边对称点”点C在第四象限时(2)若P点是双曲线y=2x①如图(1)请问点C是否也会在某一函数图象上运动?如果是请求出此函数的解析式;如果不是请说明理由.②如图(2)已知点A(1 2)B(2 1)点G是线段AB上的动点点F在y轴上若以A G F C 这四个点为顶点的四边形是平行四边形时求点C的纵坐标y c的取值范围.20.【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”两条弦所在直线..的交点为等垂弦的分割点.如图① AB CD是∠O的弦AB=CD AB∠CD垂足为E则AB CD是等垂弦E为等垂弦AB CD的分割点.【数学理解】(1)如图② AB是∠O的弦作OC∠O A OD∠OB分别交∠O于点C D连接CD.求证:AB CD是∠O的等垂弦.(2)在∠O中∠O的半径为5E为等垂弦AB CD的分割点BEAE =13.求AB的长度.【问题解决】(3)AB CD是∠O的两条弦CD=12AB且CD∠AB垂足为F.①在图③中利用直尺和圆规作弦CD(保留作图痕迹不写作法).②若∠O的半径为r AB=mr(m为常数)垂足F与∠O的位置关系随m的值变化而变化直接写出点F 与∠O的位置关系及对应的m的取值范围.参考答案1.解:(1)令x−3=0和x+4=0解得:x=3和x=−4故答案为:3 ﹣4.(2)当x<−4时|x−3|+|x+4|=−(x−3)−(x+4)=−2x−1;当−4≤x<3时|x−3|+|x+4|=−(x−3)+(x+4)=7;当x≥4时|x−3|+|x+4|=x−3+x+4=2x+1综上所述|x−3|+|x+4|={−2x−1,x<−4 7,−4≤x<32x+1,x>3.(3)当x<−4时3−x−x−4=9解得x=−5;当−4≤x<3时3−x+x+4=9方程无解;当x≥3时x−3+x+4=9解得x=4;∠方程的解为x=−5或x=4.(4)|x−3|+|x+4|+|x−2|+|x−2020|中的零点值分别为:x=3,x=−4,x=2,x=2020当x<−4时|x−3|+|x+4|+|x−2|+|x−2020|=3−x−x−4−x+2−x+2020=−4x+2021;当−4≤x<2时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4−x+2−x+2020=−2x+ 2029;当2≤x≤3时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4+x−2−x+2020=2025;当3<x<2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2−x+2020=2x+ 2019;当x≥2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2+x−2020=4x−2021;显然当2≤x≤3时原式取得最小值最小值为2025故答案为:2025 2≤x≤3.2.解:(1)m3−2m2−3m+6=m2(m−2)−3(m−2)=(m−2)(m2−3);(2)x2−2xy−9+y2=x2−2xy+y2−9=(x−y)2−32=(x−y+3)(x−y−3).3.解:(1)设2x +2y =a 则原方程变为(a +3)(a −3)=27整理 得:a 2−9=27 即a 2=36解得:a =±6则2x +2y =±6∴x +y =±3;(2)令a 2+4b 2=x ab =y则原方程变为:{3x −2y =472x +y =36解之得:{x =17y =2 ∠a 2+4b 2=17 ab =2∠(a +2b )2=a 2+4ab +4b 2=17+8=25∠a +2b =±5∠1a +12b =2b+a2ab =±54; (3)由方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2 得{a 1x 2−2a 1x +a 1+b 1y =c 1a 2x 2−2a 2x +a 2+b 2y =c 2整理 得:{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 ∴方程组{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2的解是:{(x −1)2=9y =5 ∴x −1=±3 且y =5解得:{x =4y =5 或{x =−2y =5. 4.解:(1)解不等式x 2﹣9>0 即为解(x +3)(x −3)>0根据“两数相乘 同号得正”得①{x −3>0x +3>0 或②{x −3<0x +3<0解不等式组①得 x >3解不等式组②得 x <﹣3∠原不等式的解集为x >3或x <﹣3;(2)由题得不等式x+1x−2<0根据“两数相除 同号得正 异号得负”得①{x +1>0x −2<0 或②{x +1<0x −2>0解不等式组①得−1<x<2不等式组②无解∠原不等式的解集为−1<x<2.5.解:(1)∠∠ABC=90∠BD=√AB2+BC2=√4+9=√13故答案为√13(2)∠四边形ABCD是正方形∠AB=BC,∠A=∠ABC=90°∠∠EBF+∠EBC=90°∠BE∠CF∠∠EBC+∠BCF=90°∠∠EBF=∠BCF∠∠ABE∠∠BCF(AAS)∠BE=CF 且∠CBF=90°∠四边形BCEF是准矩形;(3)∠∠ABC=90° ∠BAC=60°∠∠ACB=30°∠AB=2∠AC=4 BC=2√3准矩形ABCD中BD=AC=4①当AC=AD时则AD=AC=BD 如图1 作DE∠AB∠AE=BE=12AB=1∠DE=√AD−2AE2=√16−1=√15∠S准矩形ABCD =S△ADE+S梯形BCDE=12DE×AE+12(BC+DE )×BE=12×√15×1+12(2√3+√15)×1=√15+√3;②当CA=CD 时 则CD=CA=BD 如图2 作DF∠BC 垂足为F∠BD=CD∠BF=CF=12BC=√3∠DF=√CD 2−CF 2=√16−3=√13∠S 准矩形ABCD =S △DCF +S 梯形ABFD=12FC×DF+12(AB+DF )×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当DA=DC 如图3 取AC 中点G 连DG 则DG∠AC . 连接BG过B 作BH∠DG 垂足为H .在Rt △ABC 中 ∠ABC =90° ∠BAC =60° AB =2 G 为AC 中点∠AG=BG=12AC=AB=2∠∠ABG 为等边三角形 ∠∠BGC=120° ∠BGH=30°又BD=AC=4在Rt △BHG 中 BG=2 ∠BGH=30°∠BH=1 HG=√3在Rt △DHB 中 BH=1 BD=4∠DH=√15∠DG=DH ﹣HG=√15﹣√3∠S 准矩形ABCD =S △ABC +S △ACD=12AB×BC+12AC×DG=12×2√3×2+12×4×(√15﹣√3) =2√15;故答案为√15+√3;√39+√3;2√15.6.解:(1)∠x 2+2xy +2y 2−6y +9=0∠(x 2+2xy +y 2)+(y 2−6y +9)=0∠(x +y)2+(y −3)=20∠x +y =0,y −3=0∠x =−3,y =3(2)∠a 2+b 2−12a −16b +100=0∠(a 2−12a +36)+(b 2−16b +64)=0∠(a −6)2+(b −8)2=0∠a −6=0 b −8=0∠a =6 b =8 在Rt ∠ABC 中 ∠C =90°∠c =√a 2+b 2=√62+82=10.7.解:(1)对于y =43x +4 令y =0 即y =43x +4=0 解得x =﹣3 令x =0 则y =4 故点A B 的坐标分别为(﹣3 0) (0 4);(2)设点P (x 0)则∠ABP 的面积=12×AP ×OB =12×4×|x +3|=8 解得x =1或﹣7故点P 的坐标为(1 0)或(﹣7 0);(3)由点A B 的坐标知 OA =3 BO =4 则AB =√AO 2+BO 2=5=AB 1 故点B 1的坐标为(2 0)设点M 的坐标为(0 m )由题意得:MB =MB 1 即m 2+4=(m ﹣4)2 解得m =1.5故点M 的坐标为(0 1.5);(4)设点C (0 t )则AB =5 AC =√32+t 2当AB =BC 时 则5=|t ﹣4| 解得t =9或﹣1当AB =AC 时 即25=9+t 2 解得t =4(舍去)或﹣4故点C 的坐标为(0 9)或(0 ﹣1)或(0 ﹣4).8.解:(1)∠在△ABC 中∠BC=√32+42=5∠BD =2,CD =√21∠BD 2+CD 2=25=BC 2∠∠BCD 是直角三角形∠△ABC 和△DBC 是共边直角三角形.(2)如图 连接AE,DE∠E 点是BC 中点∠AE,DE 分别是Rt∠ABC 和Rt∠DBC 斜边上的中线∠AE=12BC DE=12BC ∠AE=DE∠∠ADE 是等腰三角形∠F 点是AD 中点∠EF∠AD ;(3)作DN∠AB DM∠AC 的延长线于M 点∠∠BAC=90°∠四边形ANDM 是矩形∠∠NDM=90°∠∠NDC+∠CDM=90°又∠BDC=90°∠∠NDC+∠BDN=90°∠∠BDN= CDM∠∠BND=∠CMD=90° BD=CD∠∠BDN∠∠CDM∠DN=DM∠AD平分∠BAC.9.解:(理解)如图① 如图②所示(应用)(1)①如图③当∠B=24° AD为“好线”则A C=AD=BD这个三角形最大内角是∠BAC=106°;②如图④当∠B=24° AD为“好线”则AB=AD AD=CD 这个三角形最大内角是∠BAC=144°;③如图⑤当∠ABC=24°时BD为“好线”则AD=BD CD=BC 故这个三角形最大内角是∠C=148°④如图⑥ 当∠B=24°时CD为“好线”则AD=CD=BC 故这个三角形最大内角是∠ACB=117°⑤如图⑦ 当∠B=24°时CD为“好线”则AD=AC CD=BD 故这个三角形最大内角是∠ACB=70°⑥如图⑧ 当∠B=24°时AD为“好线”则AB=BD AD=CD 故这个三角形最大内角是∠BAC=117°上所述这个三角形最大内角的所有可能值是70°或106°或117或144°或148°故答案为70°或106°或117或144°或148°;(2)设∠B=x°①当AD=DE时如图1(a)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠DAE=2x°∠27×2+2x+x=180∠x=42∠∠B=42°;②当AD=AE时如图1(b)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠ADE=2x°∠2x+x=27+27∠x=18∠∠B=18°.③当EA=DE时∠90﹣x+27+27+x=180∠x不存在应舍去.综合上述:满足条件的x=42°或18°.10.(1)证明:ΔABC和ΔADE是等边三角形∠AB=AC AD=AE∠BAC=∠DAE=60°∠AB AD =ACAE∠BAD=∠CAE∠ΔABD∽ΔACE又∠点B,D,C在同一直线∠ΔABD和ΔACE是旋转相似三角形.(2)证明:∠ΔABD与ΔACE是旋转相似三角形∠ΔABD∽ΔACE∠AB AC =ADAE∠BAD=∠CAE∠B=∠ACE∠∠BAC=∠DAE∠ΔABC∽Δ∠ADE∠∠B=∠ADE∠AED=∠ACB ∠ ∠ADE=∠ACE.∠AD//CE∠∠ADE=∠DEC∠ ∠ACE=∠DEC.∠∠AED=∠ACB∠∠AEC=∠DCE.又∠CE=CE∠ΔAEC≌ΔDCE(ASA)∠AC=DE.(3)解:如图过点A作AE⊥BC垂足为E连接DE.∠∠AEB=∠ADC=90°∠B=∠ACD∠ ΔABE∽ΔACD∠AB AC =AEAD∠BAE=∠CAD∠∠BAC=∠EAD ∠ΔABC∽ΔAED∠BC DE =ACAD∠ 25DE =2016∠DE=20.∠ΔABE∽ΔACD∠AE AD =BECD∠AE BE =√202−162=43.设AE=4k则BE=3k CE=25−3k在ΔACE中(4k)2+(25−3k)2=202解得k=3∠AE=12.又AD=16DE=20∠ΔADE是直角三角形∠DAE=90°.又∠AEC=∠ADC=90°∠四边形AECD是矩形.11.解:(1)∠任意三角形有三条边∠任意三角形有三条“等分周线”∠某三角形的一条“等分周线”有一个端点是三角形的顶点而另一点为一边的中点且将三角形的周长分为相等的两部分∠这个三角形是等腰三角形故答案为:3 等腰三角形;(2)延长BA 使AF=AC 连接CF 过点A 作AG∠CF 于G则∠ACF 为等腰三角形∠CG=GF=12CF ∠AGC=90° ∠ACF=∠AFC∠∠A =α 即∠BAC =α又∠BAC=∠ACF+∠AFC∠∠ACF=∠AFC=12∠BAC=12α∠ED 为∠ABC 的“等分周线”∠EB+BD=CD+CA+AE 又BD=CD∠EB=CA+AE=AF+AE=EF∠点E 为BF 的中点∠DE=12CF=CG在Rt∠AGC 中 ∠ACF=12α AC=m∠CG=m·cos 12α∠DE= m·cos 12α;(3)取BC 的中点F 连接EF 则BF=FC∠∠BEC=120°∠∠BEA=60°∠BA∠AC∠在Rt∠ABE 中 ∠ABE=30°∠AE=AB tan60∘=√3√3=1 BE=2AE=2∠EC =√3+1∠AB +AE =√3+1=EC∠BF=FC∠AB+AE+BF=CE+CF∠EF是∠ABC的一条“等分周线”由(2)知EF=AB·cos12∠BAC=√3cos45∘=√62∠BC=2CD∠CD=CF又∠AC平分∠BCD∠∠FCE=∠DCE 又CE=CE∠∠FCE∠∠DCE(SAS),∠ED=EF=√62.12.解:(1)如图① 延长FD到G 使DG=BE 连结AG.在∠ABE和∠ADG中AB=AD BE=DG ∠B=∠ADG=90°∠∠ABE∠∠ADG ∠AE=AG在∠AEF和∠AGF中AE=AG AF=AF EF=BE+FD=DG+FD=GF ∠∠AEF∠∠AGF ∠∠EAF=∠GAF=∠GAD+∠DAF=∠EAB+∠DAF∠∠BAD=∠EAF+∠EAB+∠DAF=2∠EAF∠∠EAF=12∠BAD(2)∠EAF=12∠BAD仍然成立.证明:如图② 延长FD到G 使DG=BE 连接AG.∠∠B+∠ADC=180° ∠ADC+∠ADG=180° ∠∠B=∠ADG∠∠ABE∠∠ADG(SAS).∠AE=AG ∠BAE=∠DAG.又∠EF=BE+DF DG=BE ∠EF=DG+DF=GF.∠∠AEF∠∠AGF(SSS).∠∠EAF=∠GAF.又∠∠GAF=∠DAG+∠DAF ∠∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD∠∠EAF=1∠BAD2(3)如图③ 连接EF 延长AE BF相交于点C.∠2小时后舰艇甲行驶了120海里舰艇乙行驶了160海里即AE=120 BF=160.而EF=280 ∠在四边形AOBC中有EF=AE+BF又∠OA=OB 且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∠符合(2)中的条件.∠AOB =70°.又∠∠AOB=30°+90°+(90°﹣70°)=140° ∠∠EOF=12答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.13.解:定义:∠点M N是线段AB的勾股点∠BN=√AM2+MN2=√5或BN=√MN2−AM2=√3∠BN=√3或√5.(1)如图∠CD =DA CE =EB∠DE ∠AB∠CG =GM CH =HN∠DG =12AM GH =12MN EH =12BN ∠BN 2=MN 2+AM 2∠14BN 2=14MN 2+14AM 2 ∠(12BN )2=(12MN )2+(12AM )2∠EH 2=GH 2+DG 2∠G H 是线段DE 的勾股点.(2)如图所示 连接PD∠AC =PC∠∠A =∠APC∠∠PCD =2∠A∠C D 是线段AB 的勾股点∠AC 2+BD 2=CD 2∠PC 2+BD 2=CD 2∠CD 是∠O 的直径∠∠CPD =90°∠PC 2+PD 2=CD 2∠PD=BD∠∠PDC=2∠B∠∠A=2∠B∠∠PDC=∠A在Rt∠PCD中∠∠PCD+∠PDC=90°∠2∠A+∠A=90°解得∠A=30°则∠B=12∠A=15°.(3)∠点P(a b)是反比例函数y=2x(x>0)上的动点∠b=2a.∠直线y=﹣x+2与坐标轴分别交于A B两点∠点B的坐标为(0 2)点A的坐标为(2 0);当x=a时y=﹣x+2=2﹣a∠点E的坐标为(a2﹣a);当y=2a 时有﹣x+2=2a解得:x=2﹣2a∠点F的坐标为(2﹣2a 2a ).∠BF=√(2−2a −0)2+(2a−2)2=√2(2﹣2a)EF=√(2−2a −a)2+[2a−(2−a)]2,=√2|2﹣a﹣2a| AE=√(2−a)2+[0−(2−a)]2=√2(2﹣a).∠BF2+AE2=16+2a2﹣8a+8a2﹣16a=EF2∠以BF AE EF为边的三角形是一个直角三角形∠E F是线段AB的勾股点.14.解:(1)过点A作AE∠BC于E 过点C作CF∠AD于F.∠AC=AB∠BE=CE=3在Rt∠AEB中AE=√AB2−BE2=√52−32=4∠CF∠AD∠∠D+∠FCD=90°∠∠B+∠D=90°∠∠B=∠DCF∠∠AEB=∠CFD=90°∠∠AEB∠∠DFC∠EB CF =ABCD∠3 CF =54∠CF=125∠sin∠CAD=CFAC =1255=1225.(2)如图②中结论:四边形ABCD是对余四边形.理由:过点D作DM∠DC 使得DM=DC 连接CM.∠四边形ABCD中AD=BD AD∠BD∠∠DAB=∠DBA=45°∠∠DCM=∠DMC=45°∠∠CDM=∠ADB=90°∠∠ADC=∠BDM∠AD=DB CD=DM∠∠ADC∠∠BDM(SAS)∠AC=BM∠2CD2+CB2=CA2CM2=DM2+CD2=2CD2∠CM2+CB2=BM2∠∠BCM=90°∠∠DCB=45°∠∠DAB+∠DCB=90°∠四边形ABCD是对余四边形.(3)如图③中过点D作DH∠x轴于H.∠A(﹣1 0)B(3 0)C(1 2)∠OA=1 OB=3 AB=4 AC=BC=2√2∠AC2+BC2=AB2∠∠ACB=90°∠∠CBA=∠CAB=45°∠四边形ABCD是对余四边形∠∠ADC+∠ABC=90°∠∠ADC=45°∠∠AEC=90°+∠ABC=135°∠∠ADC+∠AEC=180°∠A D C E四点共圆∠∠ACE=∠ADE∠∠CAE+∠ACE=∠CAE+∠EAB=45°∠∠EAB=∠ACE∠∠EAB=∠ADB∠∠ABE=∠DBA∠∠ABE∠∠DBA∠BE AB =AEAD∠AE BE =ADAB∠u=AD4设D(x t)由(2)可知BD2=2CD2+AD2∠(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2整理得(x+1)2=4t﹣t2在Rt∠ADH中AD=√AH2+AD2=√(x+1)2+t2=2√t∠u=AD4=√t2(0<t<4)即u=√t2(0<t<4).15.解:(1)如图1由旋转的性质得:∠F=∠BEC ∠ABF=∠CBE BF=BE ∠∠BEC+∠BED=180° ∠CBE+∠ABE=90°∠∠F+∠BED=180°∠ABF+∠ABE=90°即∠FBE=90°故满足“直等补”四边形的定义∠四边形BEDF为“直等补”四边形;(2)∠四边形ABCD是“直等补”四边形AB=BC∠∠A+∠BCD=180° ∠ABC=∠D=90°如图2 将∠ABE绕点B顺时针旋转90°得到∠CBF则∠F=∠AEB=90° ∠BCF+∠BCD=180° BF=BE∠D C F共线∠四边形EBFD是正方形∠BE=FD设BE=x 则CF=x-1在Rt∠BFC中BC=5由勾股定理得:x2+(x−1)2=25即x2−x−12=0解得:x=4或x=﹣3(舍去)∠BE=4(3)如图3 延长CD到P 使DP=CD=1 延长CB到T 使TB=BC=5,则NP=NC MT=MC,∠∠MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T M N P共线时∠MNC的周长取得最小值PT过P作PH∠BC 交BC延长线于H∠∠F=∠PHC=90°,∠BCF=∠PCH,∠∠BCF∠∠PCH,∠BC PC =BFPH=CFCH,即52=4PH=3CH解得:CH=65,PH=85,在Rt∠PHT中TH=5+5+65=565,PT =√PH 2+HT 2=8√2,∠ΔMNC 周长的最小值为8√2.16.(1)①证明:∠四边形ABCD 是平行四边形∠AB∠CD BC=AD=2∠BE//AC AB∠CE∠四边形ABEC 是平行四边形 BC =2AB∴四边形ABEC 是两倍四边形;②存在 理由如下:当AC=2AB 时 则AC=2∠∠ABC =90° ∠BC =√AC 2−AB 2=√22−12=√3,∠m=AD=BC=√3;当AC=2AD 时 则AC=2m∠m 2+12=(2m)2解得m=√33或m=-√33(舍去)∠m 的值为√3或√33时 四边形ABCD 是两倍四边形;(2)∠四边形ABCD 是两倍四边形 BD 为两倍对角线 AD 为两倍边∠AD=DG∠∠DAG=∠AGD∠四边形ABEC 是两倍四边形 AE 为两倍对角线 AC 为两倍边∠AC=AF∠∠ACF=∠AFC又∠∠DAG=∠ACF∠∠DAG=∠AGD=∠ACF=∠AFC ∠∠ADG=∠CAF又∠ADBD =12ACAE=12∠AD BD =ACAE∠∠ADB∠∠ACE又∠AB=CE∠相似比为1∠∠ADB∠∠ACE∠AC=AD作DM∠AC于M 如图1设AM=x 则AC=AD=4x在Rt∠ADM中由勾股定理得:DM=√15x在Rt∠DMC中由勾股定理得:CD=2√6x∠CD=AB=1∠ 2√6x=1∠x=√612∠AD=4x=√63即m=√63.17.(1)证明:∠四边形ABCD为圆内接四边形∠∠A+∠C=180° ∠ABC+∠ADC=180°.∠BD平分∠ABC∠∠ABD=∠CBD∠弧AD=弧CD∠AD=CD∠四边形ABCD是等补四边形(2)AC平分∠BCD 理由如下:过点A作AE∠BC于E AF∠CD于F则∠AEB=∠AFD=90°∠四边形ABCD是等补四边形∠∠ADC+∠B=180°又∠∠ADC+∠ADF=180°∠∠B=∠ADF在∠AFD与∠AEB中{∠ADF=∠B ∠AEB=∠AFD AB=AD∠ΔAFD∠ΔAEB∠AE=AF∠点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=12∠BCD同理∠FAD=12∠EAD∠∠FCA=∠FAD.又∠∠F=∠F∠∠FAD∠∠FCA∠AF DF =CFAF即AF2=DF⋅CF=DF(DF+CF)=2×(2+6)=16∠AF=418.解:(1)如图连接CD CB 过点C作CM∠AB于M 设∠C的半径为r.∠与y轴相切于点D(0 4)∠CD∠OD∠∠CDO=∠CMO=∠DOM=90°∠四边形ODCM是矩形∠CM=OD=4 CD=OM=r∠B(8 0)∠OB=8 ∠BM=8-r在Rt∠CMB中∠BC2=BM2+CM2∠ r2=42+(8−r)2解得r=5 ∠C (5 4)∠∠C 的标准方程为(x −5)2+(y −4)2=25.(2)连接AC CE .∠CM∠AB ∠AM=BM=3 ∠A (2 0) B (8 0)∠可设抛物线的解析式为y=a (x -2)(x -8)把D (0 4)代入y=a (x -2)(x -8) 可得a=14 ∠抛物线的解析式为y=14(x -2)(x -8)=14x 2−52x +4=14(x −5)2−94;(3)结论:AE 是∠C 的切线.理由:由(2)可得抛物线的顶点E (5 −94) ∠AE=√(5−2)2+(−94)2=154 CE= 4−(−94)=4+94=254 AC=5∠CE 2=AC 2+AE 2 ∠∠CAE=90° ∠CA∠AE∠AE 是∠C 的切线.19.解:(1)∠P (1 √3)∠P '(﹣1 ﹣√3)∠PP '=4设C (m n )∠等边∠PP ′C∠PC =P 'C =4∠√(m −1)2+(n −√3)2=√(m +1)2+(n +√3)2=4∠m =﹣√3n∠(﹣√3n ﹣1)2+(n ﹣√3)2=16.解得n =√3或﹣√3∠m =﹣3或m =3.如图1 观察点C 位于第四象限 则C (﹣3 √3).即点P 的“等边对称点”的坐标是(3 √3).(2)①设P (c 2c )∠P '(﹣c ﹣2c )∠PP'=2√c2+4c2设C(s t)PC=P'C=2√c2+4c2∠√(s−c)2+(t−2c )2=√(s+c)2+(t+2c)2=2√c2+4c2∠s=﹣2tc2∠t2=3c2∠t=±√3c∠C(﹣2√3c √3c)或C(2√3c﹣√3c)∠点C在第四象限c>0∠C(2√3c﹣√3c)令{x=2√3cy=−√3c∠xy=﹣6 即y=﹣6x(x>0);②当AG为平行四边形的边时G与B重合时为一临界点通过平移可求得C(1 ﹣6)∠y c≤﹣6;当AG为平行四边形的对角线时G与B重合时求得C(3 ﹣2)G与A重合时C(2 ﹣3)此时﹣3<y c≤﹣2综上所述:y c≤﹣6或﹣3<y c≤﹣2.20.解:(1)如图① 连接BC∠OC∠O A OD∠OB∠∠AOC=∠BOD=90°∠∠AOB=∠COD∠AB=CD∠AC=AC∠∠ABC=1∠AOC=45°.2∠BOD=45°同理∠∠BCD=12∠∠AEC=∠ABC+∠BCD=90°即AB∠CD∠AB=CD AB∠CD∠ AB CD是∠O的等垂弦.(2)如图② 若点E在∠O内作OH∠AB垂足为H作OG∠CD垂足为G∠AB CD是∠O的等垂弦∠AB=CD AB∠CDAB OA=OD∠AHO=∠DGO∠AH=DG=12∠∠AHO∠∠DGO∠OH=OG∠矩形OHEG为正方形∠OH=HE .∠BE AE =13又AH=BH∠AH=2BE=2OH在Rt∠AOH中AO2=AH2+OH2.即(2OH)2+OH2=AO2=25解得OH=√5则AB=4HE=4√5;若点E在∠O外同理AH=√5则AB=2AH=2√5.(3)①如图所示弦CD即为所求;②∠AB是∠O的弦∠AB≤2r 即m≤2当点F在圆上时如图所示此时AB=mr CD=mr2AD=2r由勾股定理得(mr)2+(mr2)2=(2r)2解得m=45√5因此当0<m<45√5时点F在∠O外;当m=45√5时点F在∠O上;当45√5<m≤2时点F在∠O内.。
中考数学备考专题复习: 阅读理解问题(含解析)
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
(完整版)中考数学阅读理解题试题练习题
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
中考数学专题复习《圆的阅读理解题》测试卷(附带参考答案)
中考数学专题复习《圆的阅读理解题》测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________1.请阅读下列材料 并完成相应的任务:斯库顿定理:如图1.在ABC 中 AD 为BAC ∠的平分线 则2··AD BD DC AB AC +=.下面是该定理的证明过程: 证明:如图2O 是ABC 的外接圆 延长AD 交O 于点E 连接BE .∵AD 为BAC ∠的平分线 ∵BAE DAC ∠=∠.∵E C ∠=∠ (依据∵__________________________) ABE ADC ∴△∽△.(依据∵_________________________) AB ADAE AC∴= AD AE AB AC ∴⋅=⋅又AE AD DE =+()AD AD DE AB AC ∴⋅+=⋅.2AD AD DE AB AC ∴+⋅=⋅.……任务:(1)证明过程中的依据是:∵__________________________________. ∵__________________________________. (2)将证明过程补充完整:(3)如图3.在圆内接四边形ACEB 中 对角线AE BC 相交于点D .若BE CE = 4AC =6AB=2BD=请利用斯库顿定理直接写出线段AE的长.CD=32.如图1 正五边形ABCDE内接于∵O阅读以下作图过程并回答下列问题作法:如图2 ∵作直径AF∵以F为圆心FO为半径作圆弧与∵O交于点M N∵连接AM MN NA.,,∠的度数.(1)求ABC(2)AMN是正三角形吗?请说明理由.(3)从点A开始以DN长为半径在∵O上依次截取点再依次连接这些分点得到正n边形求n的值.3.阅读与应用请阅读下列材料完成相应的任务:托勒密是“地心说”的集大成者著名的天文学家地理学家占星学家和光学家.后人从托勒密的书中发现一个命题:圆内接四边形对边乘积的和等于对角线的乘积.下面是对这个命题的证明过程.如图1 四边形ABCD 内接于O .求证:AB DC AD BC AC BD ⋅+⋅=⋅.证明:如图2 作BAE CAD ∠=∠交BD 于点E .∵AD AD = ∵ABE ACD ∠=∠.(依据) ∵ABE ACD ∽△△.∵AB BEAC CD=.AB DC AC BE ⋅=⋅. …∵ABC AED ∽△△. ∵AC BCAD ED=.∵AD BC AC ED ⋅=⋅. ∵AB DC AC BE ⋅=⋅∵()AB DC AD BC AC BE AC ED AC BE ED AC BD ⋅+⋅=⋅+⋅=+=⋅. ∵AB DC AD BC AC BD ⋅+⋅=⋅. 任务:(1)证明过程中的“依据”是______ (2)补全证明过程(3)如图3 O的内接五边形ABCDE的边长都为2 求对角线BD的长.4.阅读与思考请阅读下列材料,并按要求完成相应的任务.阿基米德是伟大的古希腊数学家哲学家物理学家他与牛顿高斯并称为三大数学王子.他的著作《阿基米德全集》的《引理集》中记述了有关圆的15个引理其中第三个引⊥于点C点D在弦AB上且理是:如图1 AB是O的弦点P在O上PC AB=.小明思考后给出如=在PB上取一点Q使PQ PAAC CD=连接BQ则BQ BD下证明:任务:(1)写出小明证明过程中的依据: 依据1:________ 依据2:________(2)请你将小明的证明过程补充完整(3)小亮想到了不同的证明方法:如图3 连接AP PD PQ DQ .请你按照小亮的证明思路 写出证明过程.5.阅读资料:我们把顶点在圆上 一边和圆相交 另一边和圆相切的角叫做弦切角 如图1中CBD ∠即为弦切角.同学们研究发现:A 为圆上任意一点 当弦AB 经过圆心O 且DB 切O 于点B 时 易证:弦切角CBD A ∠=∠.问题拓展:如图2 点A 是优弧BC 上任意一点 DB 切O 于点B 求证:CBD A ∠=∠. 证明:连接BO 并延长交O 于点A ' 连接A C ' 如图2所示. ∵DB 与O 相切于点B ∵A BD ∠'=________ ∵90A BC CBD ∠'+∠=︒. ∵A B '是直径∵90ACB ∠'=︒_____________(依据). ∵90A A BC ∠'+∠'=︒.∵CBD A ∠=∠'________________(依据).又∵A A ∠'=∠________________(依据) ∵CBD A ∠=∠.(1)将上述证明过程及依据补充完整.(2)如图3 ABC 的顶点C 在O 上 AC 和O 相交于点D 且AB 是O 的切线 切点为B 连接BD .若2,6,3AD CD BD === 求BC 的长.6.阅读:如图1所示 四边形ABCD 是∵O 的内接四边形 连接AC BD .BC 是∵O 的直径 AB =AC .请说明线段AD BD CD 之间的数量关系.下面是王林解答该问题的部分解答过程 请补充完整:+CD =BD .理由如下:∵BC 是∵O 的直径 ∵∵BAC =90°. ∵AB =AC ∵∵ABC =∵ACB =45°.如图2所示 过点A 作AM ∵AD 交BD 于点M …(1)补全王林的解答过程(2)如图3所示 四边形ABCD 中∵ABC =30° 连接AC BD .若∵BAC =∵BDC =90° 直接写出线段AD BD CD 之间的关系式是 . 7.阅读下列材料 并按要求完成相应的任务. 黄金三角形与五角星当等腰三角形的顶角为36°(或108°)时 我们把这样的三角形叫做黄金三角形. 按下面的步骤画一个五角星(如图):∵作一个以AB 为直径的圆 圆心为O ∵过圆心O 作半径OC ∵AB ∵取OC 的中点D 连接AD∵以D 为圆心OD 为半径画弧交AD 于点E ∵从点A 开始以AE 为半径顺时针依次画弧正好把∵O 十等分(其中点F G B H I 为五等分点) ∵以点F G B H I 为顶点画出五角星. 任务: (1)求出AEOA的值为 (2)如图 GH 与BF BI 分别交于点M N 求证:△BMN 是黄金三角形. 8.阅读下面材料 并按要求完成相应的任务.阿基米德是古希腊的数学家 物理学家.在《阿基米德全集》里 他关于圆的引理的论证如下:命题:设AB 是一个半圆的直径 并且过点B 的切线与过该半圆上的任意一点D 的切线交于点T 如果作DE 垂直AB 于点E 且与AT 交于点F 则DF EF =. 证明:如图1 延长AD 与BT 交于点H 连接OD OT . ∵DT BT 与半圆O 相切 ∵……∵ ∵BT DT =. ∵AB 是半圆O 的直径 ∵90ADB ︒∠=.∵在BDH △中 由BT DT = 可得TDB TBD ∠=∠ ∵H TDH ∠=∠.∵BT DT HT ==. 又∵//DE BH ∵DF AFHT AT = EF AF BT AT=∵EF DFBT HT=. 又∵BT HT = ∵DF EF =任务:(1)请将∵处的证明过程补充完整. (2)证明过程中∵的证明依据是 .(3)如图2 AB 为∵O 的直径 ∵BED 是等边三角形 BE 是∵O 的切线 切点是B 点D 在∵O 上 CD ∵AB 垂足为C 连接AE 交CD 于点F .若∵O 的半径为2 求CF 的长. 9.阅读材料 某个学习小组成员发现:在等腰ABC 中 AD 平分BAC ∠ ∵AB AC =BD CD = ∵AB BDAC CD= 他们猜想:在任意ABC 中 一个内角角平分线分对边所成的两条线段与这个内角的两边对应成比例.【证明猜想】如图1所示 在ABC 中 AD 平分BAC ∠ 求证:AB BDAC CD=. 丹丹认为 可以通过构造相似三角形的方法来证明△和ACD面积的角度来证明.思思认为可以通过比较ABD(1)请你从上面的方法中选择一种进行证明.(2)【尝试应用】如图2O是Rt ABC的外接圆点E是O上一点(与B不重合且=连结AE并延长AE BC交于点D H为AE的中点连结BH交AC于点G求AB AEHG的值.GB(3)【拓展提高】如图3在(2)的条件下延长BH交O于点F若BE EF=求=GH xO的直径(用x的代数式表示).10.请阅读下面材料并完成相应的任务阿基米德折弦定理阿基米德(Arehimedes 公元前287—公元前212年古希腊)是有史以来最伟大的数学家之一他与牛顿高斯并称为三大数学王子.阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1 AB和BC是O的两条弦(即折线ABC是圆的一条折弦)>M是ABC的中点则从点M向BC所作垂线的垂足D是折弦ABC的中点即BC ABCD AB BD=+.=+的部分证明过程.这个定理有很多证明方法下面是运用“垂线法”证明CD AB BD证明:如图2 过点M作MH⊥射线AB垂足为点H连接MA MB MC.∵M 是ABC 的中点 ∵MA MC =. … 任务:(1)请按照上面的证明思路 写出该证明的剩余部分(2)如图3 已知等边三角形ABC 内接于O D 为AC 上一点 15ABD ∠=︒ CE BD ⊥于点E 2CE = 连接AD 则DAB 的周长是______.11.阅读与思考请阅读下列材料 并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2 正五边形ABCDE 内接于∵O AB =2 求对角线BD 的长.12.阅读下列材料 完成相应任务:如图∵ ABC 是∵O 的内接三角形 AB 是∵O 的直径AD 平分BAC ∠交∵O 于点D 连接BD 过点D 作∵O 的切线 交AB 的延长线于点E .则CAD BDE ∠=∠.下面是证明CAD BDE ∠=∠的部分过程:证明:如图∵ 连接DO AB 是∵O 的直径 90ADB ∴∠=︒ODA ∴∠+∵________90=︒.(1) DE 为∵O 的切线 90ODE ∴∠=︒90ODB BDE ∴∠+∠=︒ (2)由(1)(2)得 ∵________________. AD 平分,BAC CAD OAD ∠∴∠=∠.,OA OD OAD ODA =∴∠=∠CAD ∴∠=∵________CAD BDE ∴∠=∠.任务:(1)请按照上面的证明思路 补全证明过程:∵________ ∵________ ∵________ (2)若5,2OA BE == 求DE 的长.13.阅读下列材料:平面上两点P 1(x 1 y 1) P 2(x 2 y 2)之间的距离表示为()()22121212PP x x y y =-+- 称为平面内两点间的距离公式 根据该公式 如图 设P (x y )是圆心坐标为C (a b )半径为r 的圆上任意一点 则点P ()()22x a y b r -+-= 变形可得:(x ﹣a )2+(y ﹣b )2=r 2 我们称其为圆心为C (a b ) 半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1 2) 半径为5.根据上述材料 结合你所学的知识 完成下列各题.(1)圆心为C (3 4) 半径为2的圆的标准方程为:(2)若已知∵C 的标准方程为:(x ﹣2)2+y 2=22 圆心为C 请判断点A (3 ﹣1)与∵C的位置关系.14.阅读以下材料 并按要求完成相应的任务:几何定论 是指变化的图形中某些几何元素的几何量保持不变(如定长 定角 定比 定积等) 或几何元素间的某些性质或位置关系不变(如定点 定线 定方向等)如图∵ 点A 为O 外一点 过点A 为O 作直线与O 相交于点B C 点B '为点B 关于OA 的对称点 连接B C '交OA 于点M 设O 的半径为R .如图∵ 当过点A 的直线与O 相切时 点B C 重合 可得2R OA OM =⋅.如图∵ 当过点A 的直线与O 相交时 证明2R OA OM =⋅.证明:如图∵ 连接OC CD .∵B ' B 关于OA 对称∵BD BD '=.∵∵1=∵2 .(依据)…任务:(1)上述证明过程中的依据是____________________(2)根据以上的证明提示 完成上述证明过程(3)如图∵ 若5OA = 1OM = 求O 的半径.15.阅读下列相关材料 并完成相应的任务.婆罗摩笈多是古印度著名的数学家 天文学家他编著了《婆罗摩修正体系》 他曾经提出了“婆罗摩笈多定理” 也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直 则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证 并完成这个定理的证明过程已知:__________________求证:_________________证明:(2)如图(2) 在O 中 弦AB CD ⊥于M 连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点 EM BD ⊥于,G FM AD ⊥于H 当M 是AB 中点时 直接写出四边形EMFC 是怎样的特殊四边形:__________.参考答案:1.解:(1)∵同弧或等弧所对的圆周角相等∵E ∠和C ∠所对的弧是同一条弧∵∵应填:同弧或等弧所对的圆周角相等∵两角分别相等的两个三角形相似∵题目中的结论是两个三角形相似 用的方式是三角形的两个角分别相等∵∵应填两角分别相等的两个三角形相似(2)∵BDE ADC ∠=∠ E C ∠=∠.BDE ADC ∽△∴△.BD DE AD DC∴= AD DE BD DC ∴⋅=⋅2AD BD DC AB AC ∴+⋅=⋅(3)42AE =∵BE CE =.∵弧BE =弧CE∵BAE CAE ∠=∠∵AE 平分BAC ∠.由斯库顿定理 得2AD BD DC AB AC +⋅=⋅又∵4AC = 6AB = 2CD = 3BD =∵23264AD +⨯=⨯.解得=AD AD =-。
中考数学:专题(5)阅读理解问题(含答案)
专题五 阅读理解问题错误!A 组 全国中考题组一、填空题1.(2015·湖南株洲,16,4分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S =a +b 2-1,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是_____,并运用这个公式求得图2中多边形的面积是_____.解析 如题图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+82-1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+102-1;∴公式中表示多边形内部整点个数的字母是a ;题图2中,a =15,b =7,故S =15+72-1=17.5.答案 a 17.52.(2015·四川资阳,16,4分)已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C ′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC ′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为________.解析 ∵y =x 2+2x +1=(x +1)2,∴A 点坐标为(-1,0),解方程组⎩⎨⎧y =x 2+2x +1,y =2x +2得⎩⎨⎧x =-1,y =0或⎩⎨⎧x =1,y =4, ∴点C ′的坐标为(1,4),∵点C 和点C ′关于x 轴对称,∴C (1,-4),设原抛物线解析式为y =a (x -1)2-4,把A (-1,0)代入得4a -4=0,解得a =1,∴原抛物线解析式为y =(x -1)2-4=x 2-2x -3.答案 y =x 2-2x -3二、解答题3.(2015·浙江绍兴,21,10分)如果抛物线y =ax 2+bx +c 过定点M (1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式,小敏写出了一个答案:y =2x 2+3x -4.请你写出一个不同于小敏的答案.(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y =-x 2+2bx +c +1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.解 (1)不唯一,如y =x 2-2x +2.(2)∵定点抛物线的顶点坐标为(b ,c +b 2+1),且-1+2b +c +1=1,∴c =1-2b ,∵顶点纵坐标c +b 2+1=2-2b +b 2=(b -1)2+1,∴当b =1时,c +b 2+1最小,抛物线顶点纵坐标的值最小;此时c =-1,∴抛物线的解析式为y =-x 2+2x .4.(2015·浙江温州,20,8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形,如何计算它的面积?奥地利数学家皮克(G .Pick ,1859~1942年)证明了格点多边形的面积公式:S =a+12b -1,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,a =4,b =6,S =4+12×6-1=6.(1)请在图甲中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积;(2)请在图乙画一个格点三角形,使它的面积为72,且每条边上除顶点外无其它格点.解 (1)画法不唯一,如图①或图②,面积分别为9,5.(2)画法不唯一,如图③,图④等.5.(2015·浙江宁波,24,10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为S =ma +nb -1,其中m ,n 为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.解 (1)答案不唯一(2)三角形:a =4,b =6,S =6;平行四边形:a =3,b =8,S =6;菱形:a =5,b =4,S =6;任选两组数据代入S =ma +nb -1,解得m =1,n =12.6.(2015·浙江杭州,19,8分)如图1,⊙O 的半径为r (r >0),若点P ′在射线OP 上,满足OP ′·OP =r 2,则称点P ′是点P 关于⊙O 的“反演点”.如图2,⊙O 的半径为4,点B 在⊙O 上,∠BOA =60°,OA =8,若点A ′,B ′分别是点A ,B 关于⊙O 的反演点,求A ′B ′的长.解 因为OA ′·OA =16,且OA =8,所以OA ′=2,同理可知,OB ′=4,即B 点的反演点B ′与B 重合.设OA 交⊙O 于点M ,连结B ′M .因为∠BOA =60°,OM =OB ′,所以△OB ′M 为正三角形,又因为点A ′为OM 的中点,所以A ′B ′⊥OM .根据勾股定理,得:OB ′2=OA ′2+A ′B ′2,即16=4+A ′B ′2,解得:A ′B ′=2 3.B 组 全国中考题组一、选择题1.(2012·浙江嘉兴,9,4分)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”.如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( ) A.14 B.310 C.12 D.34解析 从1,3,4,5中任选两数共有12种可能情况,其中属于“V 数”的有6种可能情况,所以从1,3,4,5中任选两数,能与2组成“V 数”的概率是12,故选C.答案 C 2.(2013·山东潍坊,12,3分)对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .56解析 法一 ∵将x =40代入[x +410]得[40+410]=4,选项A 错误;将x =45代入[x +410]得[45+410]=4,选项B 错误;将x =51代入[x +410]得[51+410]=5,选项C 正确;将x =56代入[x +410]得[56+410]=6,选项D 错误.故选C.法二由[x +410]=5得⎩⎪⎨⎪⎧x +410≥5,x +410<6,解得46≤x <56,故选C. 答案 C二、填空题3.(2014·山东德州,17,4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3,…A n,…,则顶点M2 014的坐标为(________________).解析∵抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上,∴设平移后的抛物线为y=(x-m)2+m,由题意可知抛物线y=(x-m)2+m经过点A2 014(2014,2 0142),∴2 0142=(2014-m)2+m,解得m=4 027或m=0(不合题意舍去),∴M2 014(4 027,4 027),故答案为:(4 027,4 027).答案(4 027,4 027)4.(2014·北京,22,5分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD =75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图1图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为________,AC的长为________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,∠BAC =90°,∠CAD =30°,∠ADC =75°,AC 与BD 交于点E ,AE =2,BE =2ED ,BC 的长为________.解析 ∵CE ∥AB ,∴∠BAC +∠ACE =180°.∵∠BAD =75°,∠CAD =30°,∴∠ACE =180°-∠BAC =180°-75°-30°=75°,∠E =∠BAD =75°,∴∠E =∠ACE ,∴AC =AE .∵CE ∥AB ,∴△ABD ∽△ECD ,∴AD ED =BD CD .∵BD =2DC ,∴AD =2ED .∵AD =2,∴ED =1,∴AC =AE =AD +ED =2+1=3.过点D 作DF ⊥AC 于点F ,∵∠BAC =90°,∴AB ∥DF ,∴△ABE ∽△FDE .∴AB FD =AE FE =BE DE =2,∴EF =1,AF =AE +EF =3.∵∠CAD =30°,∴DF =AF ·tan 30°=3,AD =2DF =2 3.∵∠ADC =75°,∴∠ACD =180°-∠ADC -∠CAD =75°.∴AD =AC ,∴AC =2 3.∵AB FD =2,∴AB =2 3.在Rt △ABC 中,由勾股定理得BC =AB 2+AC 2=2 6.答案 75° 23 2 65.★(2013·山东菏泽,12,3分)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段图3叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是________(写出1个即可).解析 如图,(1)等边三角形的高AD 是它的一条面径,AD =32×2=3;(2)当EF ∥BC 时,EF 为它的一条面径,此时,⎝ ⎛⎭⎪⎫EF BC 2=12,解得EF = 2. 所以,它的面径长可以是2, 3. 答案 2或 3三、解答题6.(2014·安徽,22,12分)若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2-4mx +2m 2+1,和y 2=ax 2+bx +5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求当0≤x ≤3时,y 2的最大值.解 (1)答案不唯一,如顶点是原点,开口向上的二次函数,y =x 2和y =2x 2;(2)把点A (1,1)坐标代入到y 1=2x 2-4mx +2m 2+1中,得2×12-4m ×1+2m 2+1=1,解得m =1.∴y 1=2x 2-4x +3,∵y 1+y 2=2x 2-4x +3+ax 2+bx +5=(a +2)x 2+(b -4)x +8,又∵y 1=2x 2-4x +3=2(x -1)2+1,其顶点为(1,1),且y 1+y 2与y 1为“同簇二次函数”,∴⎩⎪⎨⎪⎧-b -42(a +2)=1,4(a +2)×8-(b -4)24(a +2)=1,解得⎩⎨⎧a =5,b =-10.∴y 2=5x 2-10x +5=5(x -1)2,当x ≥1时,y 随x 的增大而增大,当x =3时,y =5×(3-1)2=20,当x <1时,y 随x 的增大而减小,当x =0时,y =5×(0-1)2=5,故当0≤x ≤3时,y 2的最大值是20.7.(2012·浙江绍兴,21,10分)联想三角形外心的概念,我们可引入如下概念. 定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若P A =PB ,则点P 为△ABC 的准外心.应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数.探究:已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,试探究P A 的长.解 应用:若PB =PC ,则∠PCB =∠PBC .∵CD 为等边三角形的高,∴AD =BD ,∠PCB =30°,∴∠PBD =∠PBC =30°,∴PD =33DB =36AB .与已知PD =12AB 矛盾,∴PB ≠PC .若P A =PC ,同理可得P A ≠PC .若P A =PB ,由PD =12AB ,得PD =BD =AD ,因此点A ,P ,B 在以AB 为直径的圆上,∴∠APB =90°,故∠APB =90°.探究:若PB =PC ,设P A =x ,则x 2+32=(4-x )2,∴x =78,即P A =78.若P A =PC ,则P A =2.若P A=PB,在Rt△P AB中,不可能.故P A=2或7 8.8.(2012·浙江台州,24,14分)定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是______;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______.(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.解(1)2 5(2)如图甲,过点A 作直线EF ⊥x 轴,当点B 落在圆A 上,且位于EF 的右侧(或EF 上)时,线段BC 与线段OA 的距离即圆A 的半径,此时4≤m ≤6,且d =2.如图乙,当点B 落在圆A 上,且位于EF 的左侧时,过点B 作BN ⊥x 轴于点N ,垂线段BN 的长即为线段BC 与线段OA 的距离,此时2≤m <4.图甲图乙在Rt △ABN 中,∠ANB =90°,AN =4-m ,AB =2,由勾股定理可得:d =BN =22-(4-m )2=4-16+8m -m 2 =-m 2+8m -12.∴d 关于m 的函数解析式为:d =⎩⎨⎧-m 2+8m -12 (2≤m <4),2 (4≤m ≤6).(3)①如图丙,由题意可知:当线段BC 的端点B 或端点C 沿环形跑道运动时,方可使得动线段BC 与线段OA 的距离始终为2,由线段PI ,IJG ︵,线段GK ,KQP ︵所围成的封闭图形就是点M 随线段BC 运动所围成的.∴点M 随BC 运动所围成的封闭图形的周长为:2×π×2+2×2×4=16+4π.图丙②∵m ≥0,n ≥0,∴点M 随线段BC 运动所形成的图形是M 0E ,EF ︵,如图丁所示.图丁∵Rt △AOD 中,OD ∶OA =1∶2,∴若△AMH 与△AOD 相似,则必有MH ∶HA =1∶2或MH ︰HA =2∶1. ∵当2≤m +2<4时,显然M 1H 1>H 1A ,∴M 1H 1∶H 1A =2∶1.∵M 1H 1=2,∴H 1A =1,∴OH 1=3.∴m 1=3-2=1.当4≤m +2≤6时,即点M 2在线段TE 上时,同理可求:m 2=5-2=3.当6<m +2≤8时,即点M 3在EF ︵上时,∵AH 3≥2≥M 3H 3,∴M 3H 3∶AH 3=1∶2.设M 3H 3=x ,则AH 3=2x ,∴RH 3=2x -2.∵RM 3=2,∴(2x -2)2+x 2=22,解方程可得:x 1=85,x 2=0(不合题意,舍去).∴此时,OH 3=4+2x =365.∴m 3=365-2=265.综上所述,在平移过程中存在△AHM 与△AOD 相似,相应m 的值为1,3,265.。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
中考数学阅读理解题
×3×5×7)=___2_0___;④f(25×3×5×7)=_1_4____.
21
15
解:(2)设交换 t 的个位上数与十位上的数得到的新数为 t′,则 t′=10b +a,根据题意得 t′-t=(10b+a)-(10a+b)=9(b-a)=54,∴b=a+ 6.∵1≤a≤b≤9,a,b 为正整数,∴满足条件的 t 为 17,28,39.∵f(17)=117 , f(28)=47 ,f(39)=133 ,∵47 >133 >117 ,∴f(t)的最大值为47 .
专题六 阅读理解题(含初高中衔接)
类型一 代数类 1.定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫作虚数单 位,把形如a+bi(a,b为实数)的数叫作复数,其中a叫这个复数的实部,b 叫作这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算 类似.
例如:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i; (1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i. 根据以上信息,完成下列问题: (1)填空:i3=__-__i__,i4=__1__; (2)计算:(1+i)×(3-4i). 解:(1)【解法提示】i3=i2·i=-i,i4=(i2)2=(-1)2=1; (2)(1+i)×(3-4i)=3-4i+3i-4i2=3-i+4=7-i.
7.对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫作以a为底N的 对数,记作x=logaN.比如指数式24=16可以转化为对数式4=log216,对数 式2=log525可以转化为指数式52=25.
我们根据对数的定义可得到对数的一个性质:
loga(M·N)=logaM+logaN(a>0,a≠1,M>0,N>0). 设logaM=m,logaN=n,则M=am,N=an, ∴M·N=am·an=am+n, 由对数的定义得m+n=loga(M·N), 又∵m+n=logaM+logaN ∴loga(M·N)=logaM+logaN.
中考数学阅读理解题目集锦
阅读理解题 1 / 8阅读理解题1、 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2、 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d ,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x xx +--+6=,则x =__________.3、 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分) ()0,0,10log log >>≠>=+N M a a N M a a且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4、先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=。
初三中考初中数学阅读理解专题训练含答案
初三中考初中数学阅读理解专题训练含答
案
阅读理解是中考数学考试中常见的题型之一。
在这种题型中,
学生需要通过阅读一篇数学相关的文章,并回答相关的问题。
以下
是一些初三中考初中数学阅读理解专题训练题目及其答案,供同学
们练。
题目一:
某公司为两位员工A和B购买了一套办公设备,设备总价为元。
公司决定按照员工A的工作量和贡献度,将设备总价分成两份。
员工A参与公司工作的时间为8个月,员工B参与公司工作的时间为4个月。
设员工A和B分别支付的费用为X元和Y元,则X+Y
的值为多少?
A. 4000元
B. 6000元
C. 8000元
D. 元
答案:C. 8000元
题目二:
某学校举行篮球比赛,共有12名学生参加。
其中有7名男生
和5名女生。
学校规定,要选出一支由至少3名男生和至少2名女
生组成的比赛队。
则符合要求的不同组队方式有多少种?
A. 50种
B. 60种
C. 70种
D. 80种
答案:C. 70种
题目三:
某商店打折出售一种商品,原价120元,现在打8折出售。
同时,商店还提供会员折扣,会员购买可再打7折。
某消费者是该商
店的会员,他购买了两件该商品。
则他需要支付的总费用是多少元?
A. 82.4元
B. 86.4元
C. 89.6元
D. 93.6元
答案:B. 86.4元
通过完成以上的阅读理解训练题目,同学们可以提高自己的阅读理解能力,并更好地应对中考数学考试。
中考数学专题(阅读理解)
中考专题(阅读理解题) 姓名 学号1.阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,;{}min 1231-=-,,;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin30cos 45tan30=,, ;如果{}min 222422x x +-=,,,则x 的取值范围为x ________≤≤_________. (2)①如果{}{}212min 212M x x x x +=+,,,,,求x ;②根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”.证明你发现的结论;③运用②的结论,填空:若{}{}2222min 2222M x y x y x y x y x y x y +++-=+++-,,,,, 则x y += .(3)在同一直角坐标系中作出函数1y x =+,2(1)y x =-,2y x =-的图象(不需列表描点).通过观察图象,填空:{}2min 1(1)2x x x +--,,的最大值为.2.(05陕西省) 阅读:我们知道,在数轴上,1x =表示一个点.而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图2-4-10可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组13x y =⎧⎨=⎩x在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图2-4—11;21y x≤+也表示一个平面区域,即直线21y x=+以及它下方的部分,如图2—4—12.回答下列问题:在直角坐标系(图2-4—13)中,(1)用作图象的方法求出方程组222xy x=-⎧⎨=-+⎩的解.(2)用阴影表示222xy xy≥-⎧⎪≤-+⎨⎪≥⎩,所围成的区域.图2-4-12图2-4-11图2-4-10yxOy=2x+1yxO13y=2x+11P(1,3)O x y3。
中考数学复习阅读理解专题试题
阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或者介绍一个新的知识点,或者给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或者提醒的数学规律,或者暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进展迁移,建模应用,解决题目中提出的问题.一、新定义型例1 对于实数a ,b ,定义运算“*〞:a*b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.假设x 1,x 2是一元二次方程x 2-5x +6=0的两个根,那么x 1*x 2=_________________.分析:用公式法或者因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案3或者-3..此题容易无视讨论思想,会少一种情况.评注:此题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考察了学生观察问题,分析问题,解决问题的才能. 跟踪训练:1.假设定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,那么((2,3))g f -等于〔 〕A .〔2,-3〕B .〔-2,3〕C .〔2,3〕D .〔-2,-3〕2.对于实数x,我们规定【x 】表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,假设5104=⎥⎦⎤⎢⎣⎡+x ,那么x 的值可以是〔 〕 A .40 B .45 C .51 D .56二、类比型例2 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:01-x 3x 2 01x 2-x <,>++等 .那么如何求出它们的解集呢?根据我们学过的有理数除法法那么可知,两数相除,同号得正,异号得负,其字母表达式为:〔1〕假设a >0 ,b >0 ,那么b a >0,假设a <0 ,b <0,那么b a>0; 〔2〕假设a >0 ,b <0 ,那么b a <0 ,假设a <0,b >0 ,那么ba<0.反之,〔1〕假设b a>0,那么⎩⎨⎧⎩⎨⎧;<,<或,>,>0b 0a 0b 0a 〔2〕假设ba<0 ,那么__________或者_____________. 根据上述规律,求不等式 ﹙A ﹚ ,>012x +-x ﹙B ﹚2x 2-3x+2021<2021的解集. 分析:对于〔2〕,根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于〔A 〕,据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于〔B 〕,将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可. 解:〔2〕假设<0,那么或者故答案为或者;由上述规律可知,不等式﹙A ﹚转化为或者所以x >2或者x <﹣1.不等式﹙B ﹚即为2x 2-3x+1<0.∵2x 2-3x+1=﹙x -1﹚〔2x-1〕,∴2x 2-3x+1<0可化为﹙x -1﹚〔2x-1〕<0.由上述规律可知①10230x x ->⎧⎨-<⎩或者②10230x x -<⎧⎨->⎩解不等式组①,无解, 解不等式组②,得21<x<1. ∴不等式2x 2-3x+2021<2021的解集为21<x<1. 评注:此题本质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例4 阅读材料:关于三角函数还有如下的公式:sin 〔α±β〕=sinαcosβ±cosαsinβ;tan 〔α±β〕=tan tan 1tan tan αβαβ± .利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan〔45°-30°〕=tan 45-tan 301tan 45tan 30︒︒+︒︒=1==根据以上阅读材料,请选择适当的公式解答下面问题 〔1〕计算:sin15°;〔2〕一铁塔是标志性建筑物之一〔图1〕,小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A 相距7米的C 处,测得塔顶的仰角为75°,小草的眼睛离地面的间隔DC ,〕.分析:〔1〕把15°化为〔45°-30°〕以后,再利用公式sin 〔α±β〕=sinαcosβ±cosαsinβ计算,即可求出sin15°的值;〔2〕先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:﹙1﹚sin15°=sin〔45°-30°〕=sin45°cos30°-232162622-==〔2〕在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DEtan ∠BDE=DEtan75°. ∵tan75°=tan〔45°+30°〕=tan 45tan 301tan 45tan 30︒+︒-︒︒=31(33)(33)126333(33)(33)1+++==+--3∴BE=7〔333≈27.7〔米〕. 答:乌蒙铁塔的高度约为.评注:此题考察了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=〔1+〕2.擅长考虑的小艳进展了以下探究:设a+b=〔m+n〕2〔其中a,b,m,n均为正整数〕,那么有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小艳的方法探究并解决以下问题:〔1〕当a,b,m,n均为正整数时,假设a+b=,用含m,n的式子分别表示a,b,得:a= ,b= ;〔2〕利用所探究的结论,找一组正整数a,b,m,n填空: + =〔 + 〕2;〔3〕假设a+4=,且a,m,n均为正整数,求a的值.分析:〔1〕根据完全平方公式的运算法那么,即可得出a,b的表达式;〔2〕首先确定m,n的正整数值,然后根据〔1〕的结论即可求出a,b的值;〔3〕根据题意,4=2mn,首先确定m,n的值,通过分析m=2,n=1或者者m=1,n=2,然后即可确定a的值.解:〔1〕∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.〔2〕设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.〔3〕由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或者者m=1,n=2.∴a=22+3×12=7,或者a=12+3×22=13.评注:此题主要考察二次根式的混合运算,完全平方公式,关键在于纯熟运算完全平方公式和二次根式的运算法那么.例6 阅读:大家知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3-①.观察图①可以得出,直线x=1与直线y=2x+1的交点P 的坐标(1,3)就是方程组⎩⎨⎧=+-=012,1y x x 的解,所以这个方程组的解为⎩⎨⎧==.3,1y x 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧局部,如图3-②. y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的局部,如图3-③.(5) 图3答复以下问题:(1)在如图3-④所示直角坐标系中,用作图象的方法求出方程组⎩⎨⎧+-=-=22,2x y x 的解;(2)用阴影表示不等式组⎪⎩⎪⎨⎧≥+-≤-≥0,22,2y x y x 所围成的区域.分析:通过阅读材料可知,要解决第(1)小题,只要画出函数x=-2和y=-2x+2的图象,找出它们的交点坐标即可;第(2)小题,该不等式组表示的区域就是直线x=-2及其右侧的局部,直线y=-2x+2及其下方的局部和y=0及其上方的局部所围成的公一共区域.解:〔1〕如图3-⑤所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,观察图象可知,这两条直线的交点是P(-2,6). 所以⎩⎨⎧=-=6,2y x 是方程组⎩⎨⎧+-=-=22,2x y x 的解. 〔2〕如图3-⑤所示.评注:此题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或者不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的根底上,用这种方法解决类似的问题.解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论根据,然后给出问题的解答.通过该题的解答,我们理解了用函数的图象来解方程组或者不等式组,是解方程组或者不等式组的一种特殊方法. 跟踪训练:3.先阅读理解下面的例题,再按要求解答以下问题:解一元二次不等式x 2-4>0. 解:不等式x 2-4>0可化为 〔x+2〕〔x-2〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得 ①2020x x +>⎧⎨->⎩②2020x x +<⎧⎨-<⎩解不等式组①,得x >2,解不等式组②,得x <-2.∴〔x+2〕〔x-2〕>0的解集为x >2或者x <-2,即一元二次不等式x 2-4>0的解集为x >2或者x <-2.〔1〕一元二次不等式x 2-16>0的解集为 ; 〔2〕分式不等式103x x ->-的解集为 ;材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=.一般地,从n 个不同的元素中选取m 个元素的排列数记作mn A .(1)(2)(3)(1)m n A n n n n n m =---⋅⋅⋅-+ 〔m ≤n 〕.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个不同的元素中选取2个元素的组合,组合数为2332321C ⨯==⨯. 例:从6个不同的元素选3个元素的组合数为3665420321C ⨯⨯==⨯⨯.阅读后答复以下问题:〔1〕从5张不同的卡片中选出3张排成一列,有几种不同的排法? 〔2〕从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 答案:1. 解:由题意,得f(2,-3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),应选B . 2 .C3.解:〔1〕不等式x 2-16>0可化为 〔x+4〕〔x-4〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得①4040x x +>⎧⎨->⎩或者②4040x x +<⎧⎨-<⎩解不等式组①,得x>4,解不等式组②,得x<-4.∴〔x+4〕〔x-4〕>0的解集为x>4或者x<-4,即一元二次不等式x2-16>0的解集为x>4或者x<-4.〔2〕∵13xx->-,∴1030xx->⎧⎨->⎩或者1030xx-<⎧⎨-<⎩解得x>3或者x<1.4.解:〔1〕3554360A=⨯⨯=;〔2〕3887656 321C⨯⨯==⨯⨯.励志赠言经典语录精选句;挥动**,放飞梦想。
2024届九年级中考数学第三轮热点题型阅读理解及新定义专项练习(附解析)
2024届九年级中考数学第三轮热点题型阅读理解及新定义专项练习热点解读中考数学中阅读理解型问题在近几年的全国中考试题中频频 “亮相”,应引起我们特别地重视,这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力,属于新颖数学题。
如果对这类题型了解不清楚的情况下,很多同学直接就选择了放弃,其实其难度并不是特别大部分,分值拿到手还是非常轻松的。
解题思路解决这类问题的关键是要认真仔细地阅读所给的材料,边读边勾画出重要的信息,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题。
所以这类题型并不是像其他题型一样定点考察个别明确的知识点,而是通过材料的阅读。
分析匹配到相对应的基础知识内容,结合题目当中所给的方法来进行解题。
在历年的考题当中,以下的三大类阅读型的题型值得大家在复习当中明确其考查的方式和方法,对于大家对阅读型理解题型的了解迈出重要的一步。
首先,阅读试题所提供的新定义,新定理,解决新问题。
这类题型的解决方法以及做题的规律都从题目当中进行寻找,题目已经给出,只要结合题目中的方法进行简单的推理,那么就可以得到我们解决问题的方法,其中计算的方式是大家比较困难的,所以题目中所给的例子一定要研读清楚,搞清楚其变化的规律,就能掌握其解题的技巧。
针对练习1、(2024·陕西西安·二模)完成下列各题(1)【问题提出】如图1,为的一条弦,点C 在弦所对的优弧上,根据圆周角性质,我AB O AB 们知道的度数______(填“变”或“不变”);若,则______度.即:若ACB ∠100AOB ∠=︒ACB =∠∵60BE AD A ⊥∠=︒,,∴,315sin 5322BE AB A =⨯=⨯=设经过圆心O 时的线段为,则PC 11PC 1PC∵90BAD BCD ∠=∠=︒∴45CBD CDB ∠=∠=︒∴180BAD BCD ∠+∠=∴四点共圆,A B C D ,,,∴45BAC CDB ∠=∠=︒∴2MON MAN ∠=∠=则ADC PBC ≌,∴90CP CA ACP =∠=,,.∵180BAD BCD ∠+∠=∴180D ABC ∠+∠=︒,∴180ABC CBP ∠+∠=∴三点共线,A B P ,,∴为等腰直角三角形,ACP △,2290,2EAG EG AE ∴∠=︒=∵,2222AE BE DE =+222,EG BE DE ∴=+∴,222EG DG DE =+90,EDG ∴∠=︒∴,180EAG EDG ∠+∠=︒,180AED AGD ∴∠+∠=︒∴,180AED AEB ∠+∠=︒点在对角线上.∴E BD 3、(2024九年级·全国·竞赛)如图,点为等腰直角斜边的中点,与分别相O ABC BC O AB AC 、切于点,交于点的延长线交的延长线于点,已知.D E 、OC F DF ,AC G 8cm AB =(1)求的长;DE (2)求证:;CFG CGF ∠=∠(3)求由和所围成的图形(阴影部分)的面积.D G 、E G DE 【正确答案】(1)2πcm(2)见解析点分别为与的切点,D E 、O AB AC 、,且OD AB OE AC ∴⊥⊥,OD OE =为等腰直角的斜边,BC ABC ,,90A ∴∠=︒45B ∠=︒则1142422DEG S EG OE =⨯⨯=⨯⨯ ()2290π44πcm 360DOE S S ︒=⨯⨯=︒扇形,阴影部分的面积为DEG DOE S S +- 扇形设,则dm EF y =MF =(1)观察猜想如图①,四边形是对补四边形,且对角线平分ABCD BD 关系是________.(2)深入探究如图②,在直角三角形中,,ACB 90ACB ∠=︒60cm AB =于点D ,E 为边上的一点,连接,作与交于点AC DE DF DE ⊥BC【分析】(1)过点作,,通过证明即可求解;D DE AB ⊥DF BC ⊥()AAS DCF DAE ≌(2)①过点D 作于点G ,于点H ,利用全等三角形的判定与性质,求解即可;DG AC ⊥DH BC ⊥②过点D 作,交于点G ,通过证明求解即可;DG AB ⊥BC ()ASA ADE GDF △≌△(3)利用二次函数的性质求解即可.【详解】(1)解:,理由如下:AD CD =过点作,,如下图:D DE AB ⊥DF BC ⊥则,90DEA DFC ∠=∠=︒由题意可得:,180A BCD ∠+∠=︒180DCF BCD ∠+∠=︒∴,DCF A ∠=∠又∵平分BD ABC∠∴DF DE=∴()AAS DCF DAE ≌∴DA DC=(2)解:①如图②,过点D 作于点G ,于点H .DG AC ⊥DH BC ⊥又平分,∴.CD ACB ∠DG DH =又∵90ACB ∠=︒∴四边形为矩形,DGCH 又∵CD 平分,,ACB ∠DG AC ⊥DH BC⊥∴DG DH=∴矩形是正方形.DGCH ∵,90ACB EDF ∠=∠=︒∴,.180DEC DFC ∠+∠=︒DEC DEA ∠+∠=180︒∴.DEA DFC ∠=∠又,90DGE DHF ∠=∠=︒∴.DGE DHF ≌∴DGCHCFDE S S =正方形四边形∵,,DG BC ∥:1:3AD AB =∴.:1:3DG BC =设,则,,,,cm DG x =3cm BC x =2cm BH x =cm DH x =40cm BD =在中,,Rt DHB △222DH BH BD +=∴.222(2)40x x +=∴.2320x =∴.2320cm DGCH S =四边形∴.2320cm CFDE S =四边形∴四边形的面积为.CFDE 2320cm ②如图③,过点D 作,交于点G .DG AB ⊥BC由(1)可知,.DE DF =DEA DFG ∠=∠∵,EDF ∠=90ADG ∠=︒∴.ADE GDF ∠=∠∴.()ASA ADE GDF △≌△【正确答案】图中阴影部分面积的最小值为【分析】设,DM EM a ==BN 有最大值,则图中阴影部分面积有最小值,当CMN S 【详解】解:设与的切点为MN BD∴,AD AE AB ==ADM ∠=∴,Rt Rt ADM AEM ≌△△Rt ∴,,=DM EM BN EN =设,DM EM a ==BN EN =∵,222MC NC MN +=则都是等腰直角三角形,CFM CFN 、△△在正方形中,ABCD AD CD ==∴,424FC =-∴,48322CMN S =-△【正确答案】(1)①;(【分析】(1)求出函数y(2)求出函数y x c =+(1)取,的中点D ,E ,在边上作;AB AC BC MN DE =(2)连接,分别过点D ,N 作,,垂足为G ,H ;EM DG EM ⊥NH EM ⊥(3)将四边形剪下,绕点D 旋转至四边形的位置,将四边形BDGM 180︒ADPQ E 旋转至四边形的位置;180︒AEST (4)延长,交于点F .PQ ST[任务3]的方法画出示意图如图由【任务2】可得PQ BC ∥过点D 作,垂足为DR BC ⊥在中,Rt DCR sin DCB ∠=∴4sin 95DR CD DCB =⋅∠=⨯(12GEST ABCD S S ==⨯正方形梯形(3)方法迁移:ABCD用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:E小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形设正方形的边长为,根据折叠的性质,可得2设,则DG x =2AG =-根据折叠,可得GH GD =在中,Rt BEC △EC =∴,52EH =-理由如下,连接,设正方形的边长为GE设,则DG x =4AG x=-根据折叠,可得GH GD =在中,Rt BEC △EC =∴,174EH =-设,则DG x =1AG x=-根据折叠,可得GH GD =在中,Rt BEC △EC EB =∴,211EH m =+-在中,Rt ,Rt AEG GHE(1)若菱形为“可旋四边形”,其面积是,则菱形ABCD 4(2)如图1,四边形为“可旋四边形”,边ABCD AB 的度数;ACB ∠(3)如图2,在四边形中,,与ABCD AC BD =AD 请说明理由.∵四边形为“可旋四边形ABCD ∴,OC OB =∴,OCB OBC ∠=∠由方法1可知,不等式故;23x -<<(2)解:由题意知,故选:D ;(3)解:如图2,作函数由图像可得,的解集为260x x --<综上,的解集为260x x --<2-本题考查了数形结合求一元二次不等式的解集,作二次函数、一次函数、反比例函数的图像.解题∵四边形为平行四边形,若,ABCD ,AB a BC b ==∴,,,AB DC a AD BC AD BC b ====∥∵,,AE BC ⊥DF BC ⊥∴,AE DF =∴,()Rt Rt HL ABE DCF ≌△△∴,BE CF =∴222222AC BD AE CE BF DF+=+++()()()22222AB BE BC BE BC CF DF =-+-+++222222222AB BE BC BC BE BE BC BC BE BE AE =-+-⋅+++⋅++22222AB BC BC BE AE =++++2222AB BC BC AB =+++()222AB BC =+;()222a b =+拓展提升:延长到点C ,使,BO OD BO =∵为的一条中线,BO ABC ∴,OA CO =∴四边形是平行四边形,ABCD ∵.,,AB a BC b AC c ===(1)滑块从点到点的滑动过程中,的值________________;(填“由负到正”或“由正到负”)A B d (2)滑块从点到点的滑动过程中,求与的函数表达式;B A d t (3)在整个往返过程中,若,求的值.18d =t 【正确答案】(1)由负到正(2)12234d t =-+(3)当或时,6t =18t =18d =【分析】(1)根据等式,结合题意,即可求解;12d l l =-(2)设轨道的长为,根据已知条件得出,则,根据当AB n 121l l n ++=12d l l =-181t n =-+和时,与之对应的的两个值互为相反数;则时,,得出,继而求得4.5s t = 5.5s d 5t =0d =91d =滑块返回的速度为,得出,代入,即可求解;()()91115=6m/s -÷()2612l t =-12d l l =-(3)当时,有两种情况,由(2)可得,①当时,②当时,分别令,18d =010t ≤≤1227t ≤≤18d =进而即可求解.【详解】(1)∵,12d l l =-当滑块在点时,,,A 10l =2d l =-0<当滑块在点时,,,B 20l =1d l =0>∴的值由负到正.d 故由负到正.(2)解:设轨道的长为,当滑块从左向右滑动时,AB n ∵,121l l n ++=∴,211l n l =--∴()12111221291181d l l l n l l n t n t n =-=---=-+=⨯-+=-+∴是的一次函数,d t ∵当和时,与之对应的的两个值互为相反数;4.5s t =5.5s d ∴当时,,5t =0d =∴,18510n ⨯-+=∴,91d =∴滑块从点到点所用的时间为,A B ()911910-÷=()s ∵整个过程总用时(含停顿时间).当滑块右端到达点时,滑块停顿,27s B 2s ∴滑块从点到点的滑动时间为,B A 27102=--15s ∴滑块返回的速度为,()()91115=6m/s -÷∴当时,,1227t ≤≤()2612l t =-∴,()12911906121626l l t t =--=--=-∴,()12162661212234l l t t t -=---=-+∴与的函数表达式为;d t 12234d t =-+(3)当时,有两种情况,18d =由(2)可得,①当时,,010t ≤≤1891118t -+=解得:;6t =②当时,,1227t ≤≤1223418t -+=解得:,18t =综上所述,当或时,.6t =18t =18d =本题考查了一次函数的应用,分析得出,并求得往返过程中的解析式是解题的关键.91n =17、(2023·江苏连云港·中考真题试卷)【问题情境 建构函数】(1)如图1,在矩形中,是的中点,,垂足为.设ABCD 4,AB M =CD AE BM ⊥E ,试用含的代数式表示.,BC x AE y ==x y【由数想形新知初探】y x(2)在上述表达式中,与是否具有对称性?若有,请说明理由,并在图【数形结合深度探究】x(3)在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:y增大;②函数值的取值范围是∽∽∽在图像上存在四点A B C__________.(写出所有正确结论的序号)(3)根据函数图象可得①函数值②由(1)可得函数值,故函数值的范围为y AB <③根据中心对称的性质,不存在一条直线与该函数图像有四个交点,故④因为平行四边形是中心对称图形,则在图像上存在四点四边形,故④正确;或缩小,再将所得多边形沿过该点的直线翻折,我们称这种变换为自位似轴对称变换,变换前后的图形成自位似轴对称.例如:如图①,先将以点为位似中心缩小,得到,再将沿过点的直线翻ABC A ADE V ADE V A l 折,得到,则与成自位似轴对称.AFG ABC AFG(1)如图②,在中,,,,垂足为,下列3对三角形:①ABC 90ACB ∠=︒AC BC <CD AB ⊥D 与;②与;③与.其中成自位似轴对称的是ABC ACD BAC BCD △DAC △DCB △________(填写所有符合条件的序号);(2)如图③,已知经过自位似轴对称变换得到,是上一点,用直尺和圆规作点,ABC ADE V Q DE P 使与是该变换前后的对应点(保留作图痕迹,写出必要的文字说明);P Q (3)如图④,在中,是的中点,是内一点,,,连ABC D BC E ABC ABE C ∠=∠BAE CAD ∠=∠接,求证:.DE DE AC ∥【正确答案】(1)①②(2)见解析(3)见解析【分析】(1)根据题中定义作出图形,即可得出结论;②与成自位似轴对称,对称轴为BAC BCD △ ③与不成自位似轴对称,DAC △DCB △故①②;(2)解:如图,1)分别在和上截取AC AB AE '=(3)证明:延长交于点BE AC本题考查位似和轴对称的性质、相似三角形的判定与性质,理解题中所给定义,熟练掌握轴对称性质和相似三角形的判定与性质是解答的关键.19、(2022·江苏南通·中考真题试卷)定义:函数图像上到两坐标轴的距离都不大于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
努力的你,未来可期!
一、解答题 1.阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数. (1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除. (2)是否任意六位连接数,都能被13整除,请说明理由.
(3)若一个四位连接数记为M ,它的各位数字之和的3倍记为N ,M ﹣N 的结果能被13整除,这样的四位连接数有几个? 2.阅读理解:如图1,在
的边
上取一点,连接
,可以把分成两个三角形,如果这两个三角形都是等腰三角形,我们就称点是
的边
上的和谐点.
(1)如图2,在中,
,试找出边
上的和谐点;
(2)如图3,已知
,
的顶点在射线上,点是边
上的和谐点,请在图3
中画出所有符合条件的点,并写出相应的
的度数.
3.阅读理解:在平面直角坐标系XOY 中,对于任意两点()111,P x y 与()222,P x y 的“非常距离”给出下列定义: 若1212x x y y -≥-,则点1P 与2P 的“非常距离”为
12x x -;
若1212x x y y -<-,则点1P 与2P 的“非常距离”为12y y -. 例如:点()11,2P ,点
()23,5P ,因为1325-<-,所以点1P 与2P 的“非常距离”为253-=,也就是图
1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点). (1)已知点A 1,02⎛⎫
-
⎪⎝⎭
,B 为y 轴上一个动点. ①若点B (0,3),则点A 与点B 的“非常距离”为 ;
②若点A 与点B 的“非常距离”为2,则点B 的坐标为 ; ③直接写出点A 与点B 的“非常距离”的最小值 . (2)已知点D (0,1),点C 是直线3
34
y x =
+上的一个动点,
如图2,求点C 与点D “非常距离”的最小值及相应的点C 的坐标.
4.阅读理解:如图①,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB=FC ,从而把AB ,AD ,DC 转化到△ADF 中即可判断.
(1)AB 、AD 、DC 之间的等量关系为 ; (2)完成(1)的证明.
问题探究:如图②,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.
5.【阅读理解】对于任意正实数a 、b ,因为
2
≥0,所以a - b ≥0,
所以a b +a b =时,等号成立.
【获得结论】在a b +a 、b 均为正实数)中,若ab 为定值p ,则a b +
只有当a b =时, a b +有最小值
根据上述内容,回答下列问题:若m >0,只有当m = 时, 1
m m
+有最小值 .
努力的你,未来可期!
【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线
12
y
x
=(x>0)上的
任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
6.阅读理解题:
你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将
•
0.7化成分数.
设
•
0.7x
=.
由
•
0.70.777
=,可知
••
100.77.77770.7
⨯==+,
即7x10x
+=.(请你体会将方程两边都乘以10起到的作用)
可解得
7
x
9
=,即
•7
0.7
9
=.
填空:将
•
0.4直接写成分数形式为_____________ .
(2)请仿照上述方法把小数
••
0.25化成分数,要求写出利用一元一次方程进行解答的过
程.
7.阅读理解:
如图①,在平面直角坐标系中,若已知点A(x A,y A)和点C(x C,y C),点M为线段AC 的中点,利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即x M﹣x A=x C
﹣x M,y A﹣y M=y M﹣y C,从而有,即中点M的坐标为(,).
基本知识:
(1)如图①,若A 、C 点的坐标分别A (﹣1,3)、C (3,﹣1),求AC 中点M 的坐标; 方法提炼:
(2)如图②,在平面直角坐标系中,▱ABCD 的顶点A 、B 、C 的坐标分别为(﹣1,5)、(﹣2,2)、(3,3),求点D 的坐标;
(3)如图③,点A 是反比例函数y=(x >0)上的动点,过点A 作AB ∥x 轴,AC ∥y
轴,分别交函数y ═(x >0)的图象于点B 、C ,点D 是直线y=2x 上的动点,请探索在点A 运动过程中,以A 、B 、C 、D 为顶点的四边形能否为平行四边形,若能,求出此时点A 的坐标;若不能,请说明理由.
8.阅读理解:对于任意正实数a 、b ,∵-)2
≥0,∴a -b ≥0,∴a
+b ≥,只有当a =b 时,等号成立.
结论:在a +b ≥a 、b 均为正实数)中,若ab 为定值p ,则a+b ≥
当a =b 时,a +b 有最小值. 根据上述内容,回答下列问题:
(1)若m >0,只有当m = 时,m +m
1
有最小值 ; 若m >0,只有当m = 时,2m +m
8
有最小值 . (2)如图,已知直线L 1:y =2
1
x +1与x 轴交于点A ,过点A 的另一直线L 2与双曲线y =
x
-8 (x >0)相交于点B (2,m ),求直线L 2的解析式.
努力的你,未来可期!
(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.
9.阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、
Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如
P(1,2),Q(3,4),则|PQ|==2.
对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.
解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.
(1)到点A的距离等于线段AB长度的点的轨迹是;
(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;
问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F
作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②为定值.
10.【阅读理解】对于任意正实数a、b,∵(-)2≥0,∴a+b-2≥0,
∴a+b≥2,只有当a=b时,等号成立.
【数学认识】在a+b≥2(a、b均为正实数)中,若ab为定值k,则a+b≥2,只有当a=b时,a+b有最小值2
【解决问题】
(1)若x>0时,x+有最小值为,此时x=;
(2)如上图,已知点A在反比例函数y(x>0)的图像上,点B在反比例函数y
(x>0)的图像上,AB∥y轴,过点A作AD⊥y轴于点D,过点B作BC⊥y轴于点C.求四边形ABCD周长的最小值
(3)学校准备在图书馆后面的场地上建一个面积为100平方米的长方形自行车棚.图书馆的后墙只有5米长可以利用,其余部分由铁围栏建成,如下图是小尧同学设计的图纸,设所需铁围栏L米,自行车棚长为x米.L是否存在最小值,如果存在,那么当x 为何值时,L最小,最小为多少米?如果不存在,请说明理由.。