数学选修2-1期末考试卷及答案

合集下载

最新人教A版高中数学选修2-1测试题全套含答案解析

最新人教A版高中数学选修2-1测试题全套含答案解析
(3)﹁s:∀x∈R,x3+3≠0,假命题.这是由于当x=-时,x3+3=0.
18.(本小题满分12分)指出下列命题中,p是q的什么条件?
(1)p:{x|x>-2或x<3};q:{x|x2-x-6<0};
(2)p:a与b都是奇数;q:a+b是偶数;
(3)p:0<m<;q:方程mx2-2x+3=0有两个同号且不相等的实根.
【解】(1)因为{x|x2-x-6<0}={x|-2<x<3},
所以{x|x>-2或x<3}{x|-2<x<3},
而{x|-2<x<3}⇒{x|x>-2或x<3}.
所以p是q的必要不充分条件.
(2)因为a,b都是奇数⇒a+b为偶数,而a+b为偶数a,b都是奇数,所以p是q的充分不必要条件.
(3)mx2-2x+3=0有两个同号不等实根⇔⇔⇔⇔.
【解析】当x=2且y=-1时,满足方程x+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分不必要条件.
【答案】A
5.“关于x的不等式f(x)>0有解”等价于()
A.∃x0∈R,使得f(x0)>0成立
【答案】B
3.已知抛物线C1:y=2x2的图象与抛物线C2的图象关于直线y=-x对称,则抛物线C2的准线方程是()
A.x=-B.x=
C.x=D.x=-
【解析】抛物线C1:y=2x2关于直线y=-x对称的C2的表达式为-x=2(-y)2,即y2=-x,其准线方程为x=.
【答案】C
4.已知点F,A分别为双曲线C:-=1(a>0,b>0)的左焦点、右顶点,点B(0,b)满足·=0,则双曲线的离心率为()

(完整)最新人教A版高中数学选修2-1测试题全套及答案,推荐文档

(完整)最新人教A版高中数学选修2-1测试题全套及答案,推荐文档

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p∨q 与命题都是真命题,则( )p ⌝A .命题p 不一定是假命题 B .命题q 一定是真命题C .命题q 不一定是真命题 D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .p :∀x ∈A ,2x ∉BB .p :∀x ∉A ,2x ∉B ⌝⌝C .p :∃x 0∉A ,2x 0∈BD .p :∃x 0∈A ,2x 0∉B⌝⌝4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数 B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合使得是“”的C C C B C A U ⊆⊆,∅=B A ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为,则△ABC 的三内角成等差数列”的逆命题( )π3A .与原命题同为假命题 B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题 B .“p ∧q ”是假命题C .p 为假命题D .q 为假命题⌝⌝9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 311.已知A :,B :,若A 是B 的充分不必要条件,则实数a 的13x -<(2)()0x x a ++<取值范围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x-1)(x-2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-2,-1] B .[-2,-1]C .[-3,1]D .[-2,+∞)二 、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是14.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值范围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“<”的充分不必要条件;1x 12④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值范围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若则二次方程没有实根.,0≥ac 02=++c bx ax (1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =”是假命φ题,求实数m 的取值范围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;若不存在,请(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在上为增函数,若命题p ∧q 为假,命题p ∨q 为真,求实数c 的取(12,+∞)值范围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x +2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值范围.2024.(10分)已知数列{a n }的前n 项和为S n ,数列{}是公比为2的等比数列.Sn +1证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案1、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.p3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为”,它是真命题.π37.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⇒a ∈[-1,0].{a ≤0,a +2≥1,)8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=Error!综上可知,“p 或q ”是假命题.9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=2+≥>0,因此选项B 是真命题;对于C ,在△ABC 中,(lg x +12)3434A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命π2题.10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知,当时,,若1324x x -<⇔-<<2a <(2)()02x x a x a ++<⇔-<<-A 是B 的充分不必要条件,则有且,故有,即;当时,A B ⊆B A ≠4a ->4a <-2a =B=,显然不成立;当时,,不可能有,φ2a >(2)()02x x a a x ++<⇔-<<-A B ⊆故.(),4a ∈-∞-12.不等式(x-1)(x-2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15. 16.①② 17.(-∞,-2]∪{1}[-2,94]18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有,由此解得1<m <4,即实数m 的取值范{m -2<2m +2>3)围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由得-8≤a <0,{a <0,Δ=a 2+8a ≤0)所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-≤a ≤;当22有两个非负实根时,⇔即≤a ≤.综上,{Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0){4a ≤9,a >12,a ≤-2或a ≥ 2.)294得-≤a ≤.2416.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③<,则-=<0,解得x <0或x >2,所以1x 121x 122-x2x “x >2”是“<”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命1x 12题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若则二次方程有实根.,0<ac 02=++c bx ax (2)命题p 的否命题是真命题. 证明如下:,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程有实根. 02=++c bx ax 故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥}.32假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有Error!⇒Error!⇒m ≥.32又集合{m |m ≥}关于全集U 的补集是{m |m ≤-1},2所以实数m 的取值范围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以Error!所以Error!这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以Error!所以m ≤3.又1+m ≥1-m,所以m≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以p :c >1.⌝又因为f (x )=x 2-2cx +1在上为增函数,所以c ≤.即q :0<c ≤,因为c >0且c ≠1,(12,+∞)1212所以q :c >且c ≠1.⌝12又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩=.{c |c >12且c ≠1}{c |12<c <1}②当p 假,q 真时,{c |c >1}∩=∅.{c |0<c ≤12}综上所述,实数c 的取值范围是.{c |12<c <1}23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =或x =-a ,a2所以当命题p 为真命题时≤1或|-a |≤1,所以|a |≤2.|a2|又“只有一个实数x 0满足不等式x +2ax 0+2a ≤0”,20即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}.24.证明: 因为数列{}是公比为2的等比数列,所以=·2n -1,即Sn +1Sn +1S 1+1S n +1=(a 1+1)·4n -1.因为a n ={a 1,n =1,Sn -Sn -1,n ≥2,)所以a n =显然,当n ≥2时,=4.{a 1,n =1,3(a 1+1)·4n -2,n ≥2,)an +1an ①充分性:当a 1=3时,=4,所以对n ∈N *,都有=4,即数列{a n }是等比数列.a 2a 1an +1an ②必要性:因为{a n }是等比数列,所以=4,a 2a 1即=4,解得a 1=3.3(a 1+1)a 1综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是()A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-=1的左、右焦点.若点P 在双曲线上,且y 29|PF 1|=5,则|PF 2|=()A .5B .3C .7D .3或73.已知椭圆+=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是x 225y 292,N 是MF 1的中点,则|ON |的长为()A .1B .2C .3D .44.“2<m <6”是“方程+=1表示椭圆”的( )x 2m -2y 26-m A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线-=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则x 2a 2y 2b 2双曲线的离心率e 等于()A .2B .C .D .33226.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是()A .(0,0)B .(3,2)C .(3,-2)D .(2,4)667.已知双曲线-=1(a >0,b >0)的离心率为,则椭圆+=1的离心率为x 2a 2y 2b 252x 2a 2y 2b 2()A .B .C .D .123332228.设F 1,F 2是双曲线x 2-=1的两个焦点,P 是双曲线上的一点,且y 2243|PF 1|=4|PF 2|,则△PF 1F 2的面积等于()A .4B .8C .24D .48239.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是()A .B .C .D .2222322210.若点O 和点F 分别为椭圆+=1的中心和左焦点,点P 为椭圆上的任意一点,x 24y 23则·的最大值为()OP → FP→ A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +y +4=0有且仅有一3个交点,则椭圆的长轴长为()A .3B .2C .2D .267712.双曲线-=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的x 2a 2y 2b 2切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±2xC .y=±(1+)xD .y=±(-1)x233 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:-=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在x 216y 29曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (,4),则|PA |+|PM |的最小值是_____.7217.已知F 1为椭圆C :+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,x 22则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为的直线与该抛物线交于A ,B 两点,3A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为10,则p=_____.3三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±x ,并且焦点都在圆x 2+y 2=100上,求43双曲线方程.20.(10分)已知点P (3,4)是椭圆+=1(a >b >0)上的一点,F 1,F 2是椭圆x 2a 2y 2b 2的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为5,求此抛物线方程.1322.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B .x 2a 2(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且=,求a 的值.PA → 512PB →24.(10分)已知椭圆C :+=1(a >b >0)的离心率为,且经过点(,).x 2a 2y 2b 2633212(1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C9.B10.A11.C12.C提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=|MF 2|=4.124.若+=1表示椭圆,则有Error!所以2<m <6且m ≠4,故2<m <6是+x 2m -2y 26-m x 2m -2=1表示椭圆的必要不充分条件.y 26-m 5.依题意,得c =2,a =1,所以e ==2.ca 6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2===1+=,所以=,在椭圆中,e 2==c 2a 2a 2+b 2a 2b 2a 254b 2a 214c 2a 2=1-=1-=,所以椭圆的离心率e =.a 2-b 2a 2b 2a 21434328.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =×6×8=24.129.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d ==.|1-0+1|2210.由椭圆方程得F (-1,0),设P (x 0,y 0),则·=(x 0,y 0)·(x 0+1,y 0)OP → FP→=x +x 0+y ,因为P 为椭圆上一点,所以+=1,所以·=x +x 0+3(1-)=2020x 204y 203OP → FP→20x 204+x 0+3=(x 0+2)2+2,因为-2≤x 0≤2,所以·的最大值在x 0=2时取得,且最x 20414OP → FP→大值等于6.11.根据题意设椭圆方程为+=1(b >0),则将x =-y -4代入椭圆方程,x 2b 2+4y 2b 23得4(b 2+1)y 2+8b 2y -b 4+12b 2=0,因为椭圆与直线x +y +4=0有且仅有一个交点,33所以Δ=(8b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以3b 2=3,长轴长为2=2.b 2+4712.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=,那么cos ∠BF 1F 2=,根据余弦定理有cos ∠BF 1F 2==c a c b cb,整理有b 2-2ab -2a 2=0,即()2-2-2=0,解得c a a c a 222)4()2()2(222⨯⨯-+a b ab=1+(=1-<0舍去),故双曲线的渐近线方程为y=±x=±(1+)x .a b 3a b 3ab 3二、填空题13. 14.+=115.1016.17.18.318x 281y 27292823提示:13.由x 2=y 知,p =,所以焦点到准线的距离为p =.14181814.依题意知:2a =18,所以a =9,2c =×2a ,所以c =3,所以13b 2=a 2-c 2=81-9=72,所以椭圆方程为+=1.x 281y 27215.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (,0),又点A (,4)在抛物线的外侧,抛1272物线的准线方程为x =-,则|PM |=d -,又|PA |+d =|PA |+|PF |≥|AF |=5,所以1212|PA |+|PM |≥.9217.设点A (x 1,y 1),B (x 2,y 2),则由Error!消去y 整理得3x 2-4x =0,解得x 1=0,x 2=,易得点A (0,-1)、B (,).又点F 1(-1,0),因此|F 1A |+|F 1B |=434313+=.12+(-1)2(73)2+(13)282318.由抛物线y 2=2px (p>0)得其焦点F (,0),直线AB 的方程为y=(x -),2p 32p设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立,⎪⎩⎪⎨⎧=-=px y p x y 22(32整理有y 2-2py -p 2=0,可得y 1+y 2=,y 1y 2=-p 2,则有x 1+x 2=,而梯形ABCD3332p 35p 的面积为S=(x 1+x 2)(y 2-y 1)==10,整理有p 2=9,而2165p212214)(y y y y -+3p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0),从而有()2+()2=100,解得λ=±576,|λ|4|λ|3所以双曲线的方程为-=1和-=1.x 236y 264y 264x 23620.解:(1)因为P 点在椭圆上,所以+=1,①9a 216b 2又PF 1⊥PF 2,所以·=-1,得:c 2=25,②43+c 43-c 又a 2=b 2+c 2,③由①②③得a 2=45,b 2=20,则椭圆方程为+=1;x 245y 220(2)S =|F 1F 2|×4=5×4=20.21F PF 1221.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-x ,12解方程组Error!可得点A 的坐标为;(p2,p )解方程组Error!可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=5,13所以+(64p 2+16p 2)=325,(p 24+p 2)所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-,p2设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8,所以x 1++x 2+=8,即x 1+x 2=8-p ,p2p2因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y =(x 2-6)2+y ,212又y =2px 1,y =2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0,212因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4,所以所求抛物线方程是y 2=8x .23.解:(1)联立Error!消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得Error!因为与双曲线交于两点A 、B ,所以Error!,可得0<a 2<2且a 2≠1,所以e 的取值范围为(,)∪(,+∞);6222(2)由(1)得Error!因为=,所以x 1=x 2,则x 2=,① PA → 512PB→5121712-2a 21-a 2 x =,②5122-2a 21-a 2由得,a 2=,①2②289169结合a >0,则a =.171324.解:(1)由e 2==1-=,得=,①a 2-b 2a 2b 2a 223ba 13由椭圆C 经过点(,),得+=1,②321294a 214b2联立①②,解得b =1,a =,3所以椭圆C 的方程是+y 2=1;x 23(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0,令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-,x 1x 2=,12k 1+3k 291+3k 2所以S △AOB =|S △POB -S △POA |=×2×|x 1-x 2|=|x 1-x 2|,12因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-)2-=,12k1+3k 2361+3k 236(k 2-1)(1+3k 2)2设k 2-1=t (t >0),则(x 1-x 2)2==≤=,36t(3t +4)2369t +16t +243629t ×16t +2434当且仅当9t =,即t =时等号成立,此时k 2=,△AOB 面积取得最大值.16t 437332第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是( ).A .5B .C .9D .352.化简+--,结果为( ).AB CD CB AD A .B .C .D .0AB AC AD 3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是( ).A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·cC .m (a +b )=m a +m bD .(a ·b )·=a ·(b ·c )c 4.已知+=(2,-1,0),-=(0,3,-2),则cos<,>的值为( a b a b a b ).A .B .-C .D .313233375.若P 是平面α 外一点,A 为平面 α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面 α 所成的角为().PA A .40º B .50º C .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且,则的值是( 0 + + 3+ 2+ OD x OC OB OA x ).A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .D .58528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥,则c 等于().x A .4B .-4C .D .-6219.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(++)2=3()2;A A 111D A 11B A 11B A ②·(-)=0;C A 111B A A A 1③向量与向量的夹角为60º;1AD B A 1④正方体ABCD —A 1B 1C 1D 1的体积为|·1AA ·|.AB AD 错误命题的个数是( ). A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·AB BC BC CD CD DA DA >0,则该四边形为().AB A .平行四边形 B .梯形C .任意的平面四边形 D .空间四边形二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b = .12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |= .13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小 .14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为 .15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量=2a ,a 与b 夹角为30º,且|a |=,则++…+n A A 1321A A 32A A 在向量的方向上的射影的模为.n n A A 1-b 三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形,O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是、A A 1的中点.11B A(1)求·;BN M C 1(2)求cos<,>.1BA 1CB 19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;(3)AE 等于何值时,二面角D 1—EC —D 的大小为.420.如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠DAB为直角,AB CD//,AD=CD=2AB,E,F分别为PC、CD中点.(1)试证:CD⊥平面BEF;(2)设PA=k·AB,且二面角E—BD—C的平面角大于30º,求k的取值范围.参考答案一、选择题1.D 2.A 3.D 4.B解析:两已知条件相加,得 =(1,1,-1),再得 =(1,-2,1),则a b cos<,>=-.a b ba 325.B6.D 7.C 8.B 9.B10.D 解析:由·>0得∠ABC >90º,同理,AB BC ∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12..1413.90°.14.60º或120º.15.4x +4y -6z +3=0.16.3.三、解答题17.提示:∵==+=2+.C B 1D A 111C A D C 11OC D C 1∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1.18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0.(2) .1030提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得·=0.1DA E D 1(2).31提示:平面ACD 1的一个法向量为n 1=(2,1,2),d ==.11n n | |1·E D 31(3)2-.3提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =),利用x cosx =2-.4 320.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >.15152提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><,其中n 1,n 2分别为面23EBD ,面BDC 的一个法向量.。

数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

章末检测试卷(三)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是________. 答案 5解析 ∵a ·b =-3+2x -5=2, ∴x =5.2.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)答案 -23a +12b +12c解析 如图,连结ON ,由向量的加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .3.设i ,j ,k 为单位正交基底,已知a =3i +2j -k ,b =i -j +2k ,则5a ·3b =________. 答案 -15解析 ∵a =(3,2,-1),b =(1,-1,2),∴5a ·3b =15a ·b =-15.4.设平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为________.考点 向量法求解平面与平面的位置关系 题点 向量法解决面面平行 答案 平行或重合解析 ∵平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),满足v =-3u ,∴α∥β或重合.5.若空间向量a ,b 满足|a |=|b |=1,且a 与b 的夹角为60°,则a ·a +a ·b =________. 答案 32解析 由空间向量数量积的性质,知a ·a =|a |2=1. 由空间向量数量积的定义,得a ·b =|a ||b |cos 〈a ,b 〉=1×1×cos60°=12,从而a ·a +a ·b =1+12=32.6.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 为________三角形. 答案 直角解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.7.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是________.(填序号)①⎝⎛⎭⎫1,1,12;②(1,2,1);③(1,1,1);④(2,-2,1). 答案 ①解析 由题意知,C (0,0,0),A (1,0,0),B (0,1,0),P (0,0,2),则P A →=(1,0,-2),AB →=(-1,1,0), 设平面P AB 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧ x -2=0,-x +y =0,解得⎩⎪⎨⎪⎧x =2,y =2,∴n =(2,2,1).又⎝⎛⎭⎫1,1,12=12n ,∴①正确. 8.已知Rt △ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为________. 答案 120°解析 如图,取CD 中点E ,在平面BCD 内过点B 作BF ⊥CD ,交CD 延长线于点F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB →2=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos 〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,又∵〈EA →,FB →〉∈[0°,180°], ∴〈EA →,FB →〉=120°. 即所求的二面角为120°.9.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,若以{AB →,AC →,AD →}为基底,则GE →=________.答案 -112AB →-13AC →+34AD →解析 GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14DB →-13(AB →+AC →)=AD →+14AB →-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.10.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AB =8,AD =6,AA ′=8,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.答案 18解析 ∵AC ′—→=AC →+CC ′—→=AB →+AD →+AA ′—→,|AC ′—→|2=(AB →+AD →+AA ′—→)2=|AB →|2+|AD →|2+|AA ′—→|2+2(AB →·AD →+AB →·AA ′—→+AD →·AA ′—→) =82+62+82+2×(24+32+24)=324, ∴|AC ′—→|=324=18.11.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为________.答案105解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系S -xyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫0,0,12. 因为SM →=⎝⎛⎭⎫12,12,0, BN →=⎝⎛⎭⎫0,-1,12, 所以|SM →|=12,|BN →|=54, SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →| |BN →|=-105,因为异面直线所成的角为锐角或直角, 所以异面直线SM 与BN 所成角的余弦值为105. 12.如图所示,已知二面角αlβ的平面角为θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.答案3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.13.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 答案 ⎝⎛⎭⎫43,43,83解析 设Q (x ,y ,z ),因为Q 在OP →上,故有OQ →∥OP →, 设OQ →=λOP →(λ∈R ),可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),所以QA →·QB →=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23, 故当λ=43时,QA →·QB →取最小值,此时Q ⎝⎛⎭⎫43,43,83. 14.给出下列命题:①若AB →=CD →,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段; ②若a ·b <0,则〈a ,b 〉是钝角;③若a 为直线l 的方向向量,则λa (λ∈R )也是l 的方向向量;④非零向量a ,b ,c 满足a 与b ,b 与c ,c 与a 都是共面向量,则a ,b ,c 必共面. 其中不正确的命题为________.(填序号) 答案 ①②③④解析 ①错误,如在正方体ABCD -A 1B 1C 1D 1中,AB →=A 1B 1—→,但线段AB 与A 1B 1不重合;②错误,a ·b <0,即cos 〈a ,b 〉<0⇒π2<〈a ,b 〉≤π,而钝角的取值范围是⎝⎛⎭⎫π2,π;③错误,当λ=0时,λa =0不能作为直线l 的方向向量;④错误,在平行六面体ABCD -A 1B 1C 1D 1中,令AB →=a ,AD →=b ,AA 1—→=c ,则它们两两共面,但显然AB →,AD →,AA 1—→是不共面的. 二、解答题(本大题共6小题,共90分)15.(14分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0, ∴k =-52或k =2.16.(14分)已知空间内三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 与向量AB →,AC →都垂直,且|a |=3,求向量a 的坐标. 解 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12,又∵∠BAC ∈[0°,180°],∴∠BAC =60°,∴S =|AB →||AC →|sin60°=7 3. (2)设a =(x ,y ,z ),由a ⊥AB →,得-2x -y +3z =0, 由a ⊥AC →,得x -3y +2z =0, 由|a |=3,得x 2+y 2+z 2=3, ∴x =y =z =1或x =y =z =-1. ∴a =(1,1,1)或a =(-1,-1,-1).17.(14分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.(1)化简12AA 1—→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的点,且C 1N =14C 1B ,设MN→=αAB →+βAD →+γAA 1—→,试求α,β,γ的值.解 (1)取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连结EF ,则12AA 1—→+BC →+23AB → =EA 1—→+A 1D 1—→+D 1F —→=EF →. (2)MN →=MB →+BN → =12DB →+34BC 1—→ =12(DA →+AB →)+34(BC →+CC 1—→)=12AB →+14AD →+34AA 1—→, 所以α=12,β=14,γ=34.18.(16分)如图所示,已知直三棱柱(侧棱垂直于底面的三棱柱)ABC -A 1B 1C 1中,AC ⊥BC ,D 是AB 的中点,AC =BC =BB 1.(1)求证:BC 1⊥AB 1; (2)求证:BC 1∥平面CA 1D .证明 如图所示,以C 1为坐标原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1—→=(0,-2,-2),AB 1—→=(-2,2,-2), ∴BC 1—→·AB 1—→=0-4+4=0, 即BC 1—→⊥AB 1—→,故BC 1⊥AB 1. (2)取A 1C 的中点E ,连结DE . 由于E (1,0,1),∴ED →=(0,1,1),又BC 1—→=(0,-2,-2), ∴ED →=-12BC 1—→,且ED 与BC 1不共线,∴ED ∥BC 1,又ED ⊂平面CA 1D ,BC 1⊄平面CA 1D , ∴BC 1∥平面CA 1D .19.(16分)如图,已知四棱锥P -ABCD 中,P A ⊥底面ABCD ,且ABCD 为正方形,P A =AB =a ,点M 是PC 的中点.(1)求BP 与DM 所成的角的大小; (2)求二面角M -DA -C 的大小.解 (1)以A 为坐标原点,AB →,AD →,AP →为x 轴,y 轴,z 轴正方向,建立空间直角坐标系. 由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ. ∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角θ=90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0), BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0. 又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22.∴所求的二面角M -DA -C 的大小为45°.20.(16分)如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求PQ 的长;如果不存在,请说明理由.(1)证明 取AB 的中点O ,连结OD ,OE , 因为△ABE 是正三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形, 所以OD ∥BC .又AB ⊥BC ,所以AB ⊥OD ,又OE ∩OD =O ,所以AB ⊥平面ODE , 所以AB ⊥DE .(2)解 因为平面ABCD ⊥平面ABE ,AB ⊥OE ,OE ⊂平面ABE ,平面ABCD ∩平面ABE =AB . 所以OE ⊥平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点,OA ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (1,0,0),B (-1,0,0), D (0,0,1),C (-1,0,1), E (0,3,0),所以AD →=(-1,0,1),DE →=(0,3,-1).最新中小学教案、试题、试卷设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·DE →=0,n 1·AD →=0,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0, 令z 1=1,则x 1=1,y 1=33, 所以n 1=⎝⎛⎭⎫1,33,1, 同理可求得平面BCE 的一个法向量为 n 2=(-3,1,0),设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪33-373×2=77, 所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. (3)解 假设存在Q (x 2,y 2,0)满足题意,因为P ⎝⎛⎭⎫-12,32,12,所以PQ →=⎝⎛⎭⎫x 2+12,y 2-32,-12, 又CD →=(1,0,0),DE →=(0,3,-1), 所以⎩⎪⎨⎪⎧PQ →·CD →=0,PQ →·DE →=0,即⎩⎨⎧ x 2+12=0,3⎝⎛⎭⎫y 2-32+12=0, 解得⎩⎨⎧x 2=-12,y 2=33, 易知点Q ⎝⎛⎭⎫-12,33,0在△ABE 内, 所以△ABE 内存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.。

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。

高二理科数学选修2-1期末试卷及答案

高二理科数学选修2-1期末试卷及答案

高二年级理科数学选修2-1期末试卷(测试时间:120分钟 满分150分)注意事项:答题前;考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时;答案写在答题纸上对应题目的空格内;答案写在试卷上无效..........本卷考试结束后;上交答题纸. 一、选择题(每小题5 分;共12小题;满分60分)1. 已知命题tan 1p x R x ∃∈=:,使;其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a ; 0) (B )(-a ; 0) (C )(0; a ) (D )(0; -a ) 3. 设a R ∈;则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3;3;2);B (4;-3;7);C (0;5;1);则BC 边上的 中线长为 ( ) (A )2 (B )3 (C )4 (D )55.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底;那么b a ,的关系是不共线;②,,,O A B C 为空间四点;且向量OC OB OA ,,不构成空间的一个基底;则点,,,O A B C 一定共面; ③已知向量c b a ,,是空间的一个基底;则向量c b a b a ,,-+也是空间的一个基底。

其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中;M 为11C A 与11D B 的交点。

若a AB =;b AD =;c AA =1则下列向量中与BM 相等的向量是( )(A ) c b a ++-2121 (B )c b a ++2121 (C )c b a +--2121 (D )c b a +-21217. 已知△ABC 的周长为20;且顶点B (0;-4);C (0;4);则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0)(C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0)8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1; y 1)B (x 2; y 2)两点;如果21x x +=6;C1那么AB = ( ) (A )6 (B )8 (C )9 (D )109. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点;那么k 的取值范围是 ( )(A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) x y 42-=上求一点P ;使其到焦点F 的距离与到()1,2-A 的距离之和最小;则该点坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2- 11. 在长方体ABCD-A 1B 1C 1D 1中;如果AB=BC=1;AA 1=2;那么A 到直线A 1C 的距离为 ( )(A (B ) (C (D )F 1、F 2分别是椭圆22221x y a b+=的左、右焦点;过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点;若△ABF 2为正三角形;则该椭圆的离心率e 为 ( )(A )12 (B )(C )13(D二、填空题(每小题4分;共4小题;满分16分)A (1;-2;11)、B (4;2;3)、C (x ;y ;15)三点共线;则x y =___________。

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试卷 班级________姓名:_________考试时间:120分钟 试卷满分:150分一、选择题:本大题共12小题,每小题5分,共60分.将答案写在后面的框内,否则一律不给9分.1.“1x ≠”是“2320x x -+≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.(重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A . 22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 下列各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( )二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.命题“若0a >,则1a >”的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .16. 已知椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且AEDCB3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。

(完整版)数学选修2-1测试题(含答案)

(完整版)数学选修2-1测试题(含答案)

数学选修2-1 综合测评时间:90分钟 满分:120分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( ) A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .(2,-3,-22)解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式.即b ≠0,a ∥b ⇔a =λb ,a =(1,-3,2)=-1⎝ ⎛⎭⎪⎫-12,32,-1,故选C. 答案:C2.若命题p :∀x ∈⎝ ⎛⎭⎪⎫-π2,π2,tan x >sin x ,则命题綈p :( ) A .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≥sin x 0 B .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0>sin x 0 C .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0 D .∃x 0∈⎝ ⎛⎭⎪⎫-∞,-π2∪⎝ ⎛⎭⎪⎫π2,+∞,tan x 0>sin x 0 解析:∀x 的否定为∃x 0,>的否定为≤,所以命题綈p 为∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0.答案:C3.设α,β是两个不重合的平面,l ,m 是两条不重合的直线,则α∥β的充分条件是( )A .l ⊂α,m ⊂β且l ∥β,m ∥αB .l ⊂α,m ⊂β且l ∥mC .l ⊥α,m ⊥β且l ∥mD .l ∥α,m ∥β且l ∥m解析:由l ⊥α,l ∥m 得m ⊥α,因为m ⊥β,所以α∥β,故C 选项正确. 答案:C4.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1C.x 216+y 24=1D.x 24+y 216=1解析:由x 24-y 212=1,得y 212-x 24=1.∴双曲线的焦点为(0,4),(0,-4),顶点坐标为(0,23),(0,-23).∴椭圆方程为x 24+y 216=1.答案:D5.已知菱形ABCD 边长为1,∠DAB =60°,将这个菱形沿AC 折成60°的二面角,则B ,D 两点间的距离为( )A.32B.12C.32D.34解析:菱形ABCD 的对角线AC 与BD 交于点O ,则AC ′⊥BD ,沿AC 折叠后,有BO ⊥AC ′,DO ⊥AC ,所以∠BOD 为二面角B -AC -D 的平面角,即∠BOD =60°.因为OB =OD =12,所以BD =12.答案:B6.若双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .6解析:双曲线x 26-y 23=1的渐近线方程为y =±22x ,因为双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,故圆心(3,0)到直线y =±22x 的距离等于圆的半径r ,则r =|2×3±2×0|2+4= 3. 答案:A7.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( ) A.83 B.38 C.43 D.34解析:取DA →,DC →,DD 1→分别为x 轴,y 轴,z 轴建立空间直角坐标系,可求得平面AB 1D 1的法向量为n =(2,-2,1).故A 1到平面AB 1D 1的距离为d =|AA 1→·n ||n |=43. 答案:C8.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8解析:抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.答案:C9.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,则α的集合是( )A.⎩⎨⎧⎭⎬⎫π2 B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪π6≤α≤π2 C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π4≤α≤π2D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π3≤α≤π2 解析:取C 1D 1的中点E ,PM 必在平面ADEM 内,易证D 1N ⊥平面ADEM .本题也可建立空间直角坐标系用向量求解.答案:A10.已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( )A.12B.23C.13D.53解析:由PF 1→·PF 2→=0,得△PF 1F 2为直角三角形,由tan ∠PF 1F 2=12,设|PF 2|=s ,则|PF 1|=2s ,又|PF 2|2+|PF 1|2=4c 2(c =a 2-b 2),即4c 2=5s 2,c =52s ,而|PF 2|+|PF 1|=2a =3s ,∴a =3s 2,∴e =c a =53,故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.解析:原命题的否定形式为∀x ∈R,2x 2-3ax +9≥0,为真命题.即2x 2-3ax +9≥0恒成立,∴只需Δ=(-3a )2-4×2×9≤0,解得-22≤a ≤2 2.答案:[-22,22]12.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则动点P 的轨迹方程是__________.解析:由OP →·OA →=4得x ·1+y ·2=4,因此所求动点P 的轨迹方程为x +2y -4=0.答案:x +2y -4=013.在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 为边长是1的正方形,P A =2,则AB 与PC 的夹角的余弦值为__________.解析:因为AB →·PC →=AB →·(P A →+AC →)=AB →·P A →+AB →·AC →=1×2×cos45°=1,又|AB →|=1,|PC →|=6,∴cos 〈AB →,PC →〉=AB →·PC →|AB →||PC →|=11×6=66. 答案:6614.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为__________.解析:由题意,如图,在Rt △AOF 中,∠AFO =30°,AO =a ,OF =c ,∴sin 30°=OA OF =a c =12.∴e =c a =2.答案:2三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15.(12分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.解:由于不等式|x -1|>m -1的解集为R ,所以m -1<0,m <1;因为f (x )=-(5-2m )x 是减函数,所以5-2m >1,m <2.即命题p :m <1,命题q :m <2.因为p 或q 为真,p 且q 为假,所以p 和q 中一真一假.当p 真q 假时应有⎩⎨⎧ m <1,m ≥2,m 无解. 当p 假q 真时应有⎩⎨⎧ m ≥1,m <2,1≤m <2.故实数m 的取值范围是1≤m <2.16.(12分)已知椭圆x 2b 2+y 2a 2=1(a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)直线l :x -y +m =0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.解:(1)由题意得⎩⎪⎨⎪⎧ c a =22,a 2=2b ,解得⎩⎨⎧ a =2,c =1,所以b 2=a 2-c 2=1,故椭圆的方程为x 2+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线与椭圆的方程得⎩⎪⎨⎪⎧ x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,Δ=(2m )2-4×3×(m 2-2)>0,m 2<3,所以x 0=x 1+x 22=-m 3,y 0=x 0+m =2m 3,即M ⎝ ⎛⎭⎪⎫-m 3,2m 3.又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3与m 2<3矛盾.∴实数m 不存在.17.(13分)已知点P (1,3),圆C :(x -m )2+y 2=92过点A ⎝ ⎛⎭⎪⎫1,-322,点F 为抛物线y 2=2px (p >0)的焦点,直线PF 与圆相切.(1)求m 的值与抛物线的方程;(2)设点B (2,5),点Q 为抛物线上的一个动点,求BP →·BQ →的取值范围.解:(1)把点A 代入圆C 的方程,得(1-m )2+⎝ ⎛⎭⎪⎫-3222=92,∴m =1. 圆C :(x -1)2+y 2=92. 当直线PF 的斜率不存在时,不合题意.当直线PF 的斜率存在时,设为k ,则PF :y =k (x -1)+3,即kx -y -k +3=0.∵直线PF 与圆C 相切, ∴|k -0-k +3|k 2+1=322. 解得k =1或k =-1.当k =1时,直线PF 与x 轴的交点横坐标为-2,不合题意,舍去. 当k =-1时,直线PF 与x 轴的交点横坐标为4,∴p 2=4.∴抛物线方程为y 2=16x .(2)BP →=(-1,-2),设Q (x ,y ),BQ →=(x -2,y -5),则BP →·BQ →=-(x -2)+(-2)(y -5)=-x -2y +12=-y 216-2y +12=-116(y +16)2+28≤28.∴BP →·BQ →的取值范围为(-∞,28].18.(13分)如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =2,AB =AC .(1)证明:AD ⊥CE ;(2)设CE 与平面ABE 所成的角为45°,求二面角C -AD -E 的余弦值.解:①(1)证明:作AO ⊥BC ,垂足为O ,则AO ⊥底面BCDE ,且O 为BC 的中点.以O 为坐标原点,射线OC 为x 轴正方向,建立如图①所示的直角坐标系O -xyz .设A (0,0,t ).由已知条件知C (1,0,0),D (1,2,0),E (-1,2,0),CE →=(-2,2,0),AD →=(1,2,-t ),所以CE →·AD →=0,得AD ⊥CE .(2)作CF ⊥AB ,垂足为F ,连接FE ,如图②所示.②设F (x,0,z ),则CF →=(x -1,0,z ),BE →=(0,2,0),CF →·BE →=0,故CF ⊥BE .又AB ∩BE =B ,所以CF ⊥平面ABE ,故∠CEF 是CE 与平面ABE 所成的角,∠CEF =45°. 由CE =6,得CF = 3.又CB =2,所以∠FBC =60°,所以△ABC 为等边三角形,因此A (0,0,3).作CG ⊥AD ,垂足为G ,连接GE .在Rt △ACD 中,求得|AG |=23|AD |.故G ⎝ ⎛⎭⎪⎫23,223,33,GC →=⎝ ⎛⎭⎪⎫13,-223,-33, GE →=⎝ ⎛⎭⎪⎫-53,23,-33. 又AD →=(1,2,-3),GC →·AD →=0,GE →·AD →=0,所以GC →与GE →的夹角等于二面角C -AD -E 的平面角.故二面角C -AD -E 的余弦值cos 〈GC →,GE →〉=GC →·GE →|GC →||GE →|=-1010.。

高中数学选修2 1期末考试试题及答案

高中数学选修2 1期末考试试题及答案

高中数学选修2-1期末考试试题及答案.新世纪教育培训中心高二期末考试数学试题一.选择题(每小题5分,满分60分)1.设均为直线,其中在平面的?”?nm且?l”是“l?a内,则“l nm,n,,lm()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.对于两个命题:①,②,221x?cos x?,sin?x?R1sin x?R?x?,?1?)。

下列判断正确的是(都 C. ①②假①真②①A. 假②真 B.都真①②假 D.共焦点且过点的双曲线方程是3.与椭圆2x()222xxy D.21y??(2,1)Q4A.B.C.4.已知是椭圆2221??y??1y?x?122422yx1??33的两个焦点,过且与椭圆长轴垂直的F,FF121弦交椭圆与,两点,则是正三角形,则椭圆的离心ABF?BA2率是()w.w.w.k.s.5.u.c.o.m321 CB A3222新世纪教育培训中心1D 3与抛5.过抛物线的焦点作倾斜角为直线,直线20x8?y45ll物线相交与,两点,则弦)的长是(AB BA A 8 B 16 C 32w.w.w.k.s.5.u.c.o.m D 64的曲线方程6.在同一坐标系中,22222)b?0?ax?by0(a?bax?x?1与)大致是(. C..A B D.22在椭点7.已知椭圆的两个焦点(>0) F,F,yx ba?P1??2122ba最大值一定是(圆上,则的面积)FPF?21 A B C 222a baa?ab D 22b?ba的值则实数k互相垂直,已知向量8.ba?k0,2),且a?b与2?),,a?(11,0b?(1, )是(137...1 B. C D A 555所中,是棱.9在正方体的中点,则与EABD DCAABCD?B BA E11111111)成角的余弦值为(3新世纪教育培训中心105510... AC. BD510510过原点与A,B两点,交于10.若椭圆22x与直线y?1?n?1(m?0,?0)nymx?n2( ) ,则线段AB的值是中点的连线的斜率为m2223C.D2B..2A.292作直线交抛物线于F的焦点11.过抛物线2y?4x两点,若,则的值为()????6y?Px,y y,P?x,y PP2121122112A.5 B.6 C.8 D.10=1的焦点为顶点,12..以顶点为焦点的椭22yx圆方程为?124()222222yxyxxyD.B.A. C.1???1???141216161612二.填空题(每小题4分)1OCOB?OM?xOA?y面13.已知A、C三点不共线,对平B、3是实数,若外一点O,给出下列表达式:其中x,yABCx+y=___ 、B、C四点共面,则点M与A且与抛的焦点,y2=4x14.斜率为1的直线经过抛物线___ 两点,则A,B等于物线相交于AB,则实数“P:x>0,”是真命题15.若命题2?0x?2ax??2.a的取值范围是___,则直,为空间中一点,且.已知16C??90AOB???AOC??BOC?60所成角的正弦值为与平面.线___AOBOC4新世纪教育培训中心三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。

(新)高中数学选修2-1综合测试卷(有详细答案)

(新)高中数学选修2-1综合测试卷(有详细答案)

模块综合测试时间:90 分钟分值: 150分第Ⅰ卷 (选择题,共 60分)一、选择题 (每小题 5 分,共 60分)1.命题“对任意的 x∈R,x3-x2+1≤ 0”的否定是 ( )A .不存在 x∈R, x3-x2+ 1≤0B.存在 x∈R, x3-x2+1≤0C.对任意的 x∈R,x3- x2+1>0D.存在 x∈R, x3-x2+1>0解析:含有量词的命题的否定,一是要改变相应的量词,二是要否定结论.答案:D2.命题“若 A? B,则 A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题有 ( )A.0 个B.2个C.3个D.4 个解析:逆命题与否命题正确,原命题与其逆否命题错误.答案:Bx 2y23.设椭圆的标准方程为k-x3+5-y k=1,其焦点在 x 轴上,则 k 的取值范围是 ( )A .4<k<5 B. 3<k<5C. k>3 D. 3<k<4解析:由题意知, k-3>5-k>0,解得 4<k<5. 答案:A 4.已知α,β表示两个不同的平面, m 为平面α内的一条直线,则“ α⊥β”是“ m⊥β”的 ( )A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若 m⊥β,由面面垂直的判定定理,则α⊥β,反之不成立.答案:B5.已知条件 p:|x-1|<2,条件 q:x2-5x-6<0,则 p是 q的( )A .充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分又不必要条件解析:命题 p:- 1<x<3,记 A={ x|-1<x<3} ,命题 q:- 1<x<6,记 B={x|-1<x<6} ,∵A B,∴p是 q的充分不必要条件.答案:B16.已知命题 p:“x∈ R 时,都有 x2-x+4<0”;命题q:“存在x∈R,使 sinx+ cosx= 2成立”.则下列判断正确的是 ( ) A.p∨q为假命题B.p∧q 为真命题C.綈 p∧ q 为真命题D.綈 p∨綈 q 是假命题解析:易知 p假, q真,从而可判断得 C正确.答案:Cx 2y27.以双曲线x4-y5=1 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 ( )A.y2=12x B.y2=- 12xC.y2=6x D.y2=- 6xx 2y2解析:由4-5=1,得 a2=4,b2=5,∴c2=a2+b2=9.∴右焦点的坐标为 (3,0),故抛物线的焦点坐标为 (3,0),顶点坐标为(0,0).故p2=3.∴抛物线方程为 y2=12x.答案:A8.对于空间任意一点 O 和不共线的三点 A、B、C,有如下关系:6O→P=O→A+2O→B+3O→C,则 ( )A.四点 O、A、B、C 必共面B.四点 P、A、B、C 必共面C.四点 O、P、B、C 必共面D.五点 O、 P、A、 B、C 必共面1 1 1 1 1 1解析:由已知得 O→P=6O→A+3O→B+2O→C,而6+3+2=1,∴四点 P、A、B、C 共面.答案:B9.如图,将边长为 1的正方形 ABCD 沿对角线 BD 折成直二面角, 11 若点 P 满足B →P =12B →A -21B →C +B →D ,则|B →P|2的值为 ( )解析:由题可知 |B →A|=1,|B →C|=1,|B →D|= 2.〈B →A ,B →D 〉= 45 °, 〈 B →D ,B →C 〉= 45 °,〈B →A ,B →C 〉= 60 °.∴|B →P|2=(12B →A -12B →C +B →D)2=14B →A2+14B →C2+B →D2-12B →A ·B →C + B →A ·B →D -B →C ·B →D1 1 1 12 2 9= 4+4+2-2×1×1×2+1× 2× 2 -1× 2× 2 =4.答案:Dx2 y 210.已知 P 是双曲线 a 2-b 2=1(a>0,b>0)上的点, F 1,F 2是其焦 点,双曲线的离心率是 54,且P →F 1·P →F 2=0,若△2B3PF1F2的面积为 9,则 a+b的值为 ( )A .5 B. 6C. 7 D. 8解析: 由P →F 1·P →F 2=0,得P →F 1⊥P →F 2,设 |P →F 1|=m ,|P →F 2|=n ,不妨设 m>n ,则 m 2+n 2=4c 2,m-n = 2a , 12mn =9,c a =54,解得 a =4,c =5,故 b = 3.因此 a + b = 7,选 C. 答案:C11.在正方体 ABCD -A 1B 1C 1D 1中,直线 BC 1 与平面 A 1BD 所成 角的余弦值为 ( )B.32D.23解析:建立如下图所示的空间直角坐标系. 设正方体的棱长为 1,则 D(0,0,0), A 1(1,0,1),B(1,1,0),C 1(0,1,1). ∴DA 1=(1,0,1),DB =(1,1,0),BC 1=(-1,0,1). 设平面 A 1BD 的法向量为 n =(x , y ,z),则 n ·D →A 1=0,n ·D →B =0.A.C.答案:C12.双曲线 a x2- b y2=1(a>0, b>0)的两个焦点为 F 1、F 2,若 P 为其上一点,且 |PF 1|=2|PF 2|,则双曲线离心率的取值范围为 ( )解析: 由题意知在双曲线上存在一点 P ,使得 |PF 1|= 2|PF 2|,如右 图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点 P 使得|PF 2|=2a ,即|AF 2|≤2a.x +z =0, x +y令 x =1,则 n =(1,- 1,-1),∴cos 〈n ,BC 1〉 n ·B →C 1 = -2=- 6|n||B →C 1| 3· 23∴直线BC 1与平面 A 1BD 所成角的正弦值为 6. 3. ∴直线BC 1与平面 A 1BD 所成角的余弦值为3.3.A .(1,3) C . (3,+B .(1,)∴|OF 2|- |OA|= c-a≤ 2a.∴c≤ 3a. 又∵c>a,∴a<c≤3a.c∴1< ≤3,即 1<e≤3.a答案:B第Ⅱ卷(非选择题,共 90 分)二、填空题(每小题 5 分,共 20分)13.命题 p:? m∈ R,方程 x2+mx+ 1=0 有实数根,则“非 p” 形式的命题是___________ ,此命题是命题(填“真”或“假” ).解析:命题 p 为特称命题,所以綈 p 是全称命题,∴ 綈 p 是? m ∈R,方程 x2+mx+1=0没有实数根.∵m≥2或m≤-2时,Δ≥0,即该方程有实数根,所以 p真,綈 p假.答案: ? m∈R,方程 x2+mx+1=0没有实数根假14.双曲线x a2-b y2=1 的离心率 e∈(1,2),则其中一条渐近线的斜率取值范围是.a2+b2b解析: e=a∈(1,2),解得 0<a b< 3,又双曲线的渐近线方 aa程为 y=±a b x,故其中一条渐近线的斜率取值范围是(0,3)或(- 3, 0)).答案:(0, 3)或(- 3,0)15.如图,在四棱锥 O —ABCD 中,底面 ABCD 是边长为 2 的正 方形, OA ⊥平面 ABCD ,OA =2,M 为 OA 的中点.则异面直线 OB 与 MD 所成角余弦值为解析:以 A 为原点建立空间直角坐标系,如图则O →B =(2,0,-2),M →D =(0,2,-1).设O →B ,M →D 所成的角为 θ,O →B ·M →D = 2 = 10. |O →B||M →D |2 2·5 10 16.若直线 y = kx -2 与抛物线 y 2=8x 交于 A ,B 两点,若线段AB 的中点的横坐标是 2,则|AB|= __ .y 2=8x , 4k +8解析: k 2x 2-(4k +8)x +4=0,x 1+x 2= k 2 =4,y = kx -2, k则 cos θ= 答案:10 10得 k =-1或 2,当 k =-1 时,x 2-4x +4=0 有两个相等的实数根,不合题意.当 k =2 时,|AB|= 1+k 2|x 1-x 2|= 5 x 1+x 2 2- 4x 1x 2= 5 16- 4=2 15.答案: 2 15三、解答题 (写出必要的计算步骤,只写最后结果不得分,共 70 分)轴上的椭圆; q :实数 t 满足不等式 t 2-(a - 1)t -a<0.(1)若 p 为真,求实数 t 的取值范围;(2)若 p 是 q 的充分不必要条件,求实数 a 的取值范围.x 2 y 2解:(1)∵方程 x + y =1 所表示的曲线为焦点在 x 轴上的椭圆,3- t t +1∴3-t>t +1>0.解得- 1<t<1.(2)∵p 是 q 的充分不必要条件,∴ { t|-1<t<1}是不等式 t 2-(a -1)t -a<0解集的真子集.解方程 t 2-(a -1)t -a =0得 t =-1或 t =a.①当 a>-1时,不等式的解集为 {t|-1<t<a},此时,a>1.②当 a =- 1时, 不等式的解集为 ?,不满足题意.③当 a<-1 时,不等式的解集为 {t|a<t< 17.(10 分)已知 p :方程 223-t +t+1 1 所表示的曲线为焦点在-1} ,不满足题意.综上, a>1.18.(12 分)ABC— A1B1C1 中, CA= CB,AB= AA1,∠ BAA1= 60°.(1)证明: AB⊥A1C;(2)若平面 ABC⊥平面 AA1B1B,AB= CB,求直线 A1C 与平面 BB1C1C 所成角的正弦值.解:(1)取 AB 的中点 O,连接 OC,OA1,A1B.因为 CA= CB,所以 OC⊥ AB.由于 AB=AA1,∠BAA1=60°,故△AA1B 为等边三角形,所以 OA1 ⊥AB.因为 OC∩OA1=O,所以 AB⊥平面 OA1C.又 A1C? 平面 OA1C,故 AB⊥ A1C.(2)由(1)知 OC⊥ AB,OA1⊥AB.又平面 ABC⊥平面 AA1B1B,交线为 AB,所以 OC⊥平面AA1B1B,故 OA ,OA 1,OC 两两相互垂直.以 O 为坐标原点, O →A 的方向为 x 轴的正方向, |O →A|为单位长,建 立如图所示的空间直角坐标系 O - xyz.由题设知 A (1,0,0),A 1(0, 3, 0), C (0,0,3),B (-1,0,0).则B →C =(1,0, 3),B →B 1= A →A 1=(-1, 3,0),A →1C =(0,- 3, 3).设 n =(x ,y ,z )是平面 BB 1C 1C 的法向量,n ·B →C =0x + 3z = 0 则 → ,即n ·B →B 1=0 -x + 3y = 0可取 n =( 3,1,- 1).所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 19.(12 分)已知定点 F (0,1)和定直线 l 1:y =- 1,过定点 F 与直 线 l 1 相切的动圆圆心为点 C.(1)求动点 C 的轨迹方程;(2)过点 F 的直线 l 2交轨迹于两点 P ,Q ,交直线 l 1于点 R ,求R →P ·R →Q 的最小值.解:(1)由题意,点 C 到点 F 的距离等于它到 l 1的距故 cos n , A →1C n ·A →1C =- 10 |n||A →1C| 5 105离,∴点C 的 轨迹是以 F 为焦点, l 1 为准线的抛物线.∴所求轨迹的方程为 x 2=4y.(2)由题意,直线 PQ 的斜率存在,且不为 0,设直线 l 2 的方程为 y =kx +1(k ≠ 0),与抛物线方程联立消去 y ,得 x 2- 4kx -4=0.记 P (x 1, 2y 1),Q (x 2,y 2),则 x 1+ x 2=4k ,x 1x 2=- 4.易得点 R 的坐标为 -k ,-1 , → → 2 2 2 2∴R →P ·R →Q = x 1+ k , y 1+ 1 ·x 2+k ,y 2+1 = x 1+ k x 2+k + (kx 1+2)(kx 2 + 2)= (1 + k 2)x 1x 2 + k 2+2k (x 1 + x 2) + k 42 + 4 = - 4(1 + k 2) + 2 4 1 14k k +2k +k 2+4= 4 k 2+k 2 +8,∵k 2+k 2≥ 2,当且仅当 k 2=1 时取到 等号,∴R →P ·R →Q ≥4×2+8=16,即 R →P ·R →Q 的最小值为 16.x 2y220.(12 分)设 F 1,F 2 分别是椭圆: a 2+b 2= 1(a>b>0)的左、右焦 点,过 F 1倾斜角为 45°的直线 l 与该椭圆相交于 P ,Q 两点,且 |PQ| 4=3a.(1)求该椭圆的离心率.(2)设点 M (0,- 1)满足|MP|=|MQ|,求该椭圆的方程. 解:(1)直线 PQ 斜率为 1,设直线 l 的方程为 y= x+c,其中 c= a2-b2.y=x+c,设 P(x1,y1),Q(x2,y2),则 P,Q 两点坐标满足方程组 x2 y2+b2=1,a2化简得(a2+ b2)x2+2a2cx+a2(c2- b2)=0,- 2a2c a2c2-b2则 x1+ x2= 2 2, x1x2= 2 2.a2+b2a2+ b2所以 |PQ|= 2|x2-x1|= 2[ x1+ x2 2-4x1x2] =34a.4 4ab2得34a=a42+ab b2,故a2=2b2,(2)设 PQ 的中点为 N(x0,y0),2x1+ x2 -a2c 2 c y0=x0+c=3由|MP|= |MQ|得 k MN=- 1.y0+1即0x+01=-1,得 c=3,从而 a=3 2,b= 3.x 2y2 故椭圆的方程为1x8+y9=1.21.(12 分)所以椭圆的离如图所示,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,AC⊥AD, AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证: PC⊥AD;(2)求二面角 A- PC-D 的正弦值;(3)设E为棱 PA上的点,满足异面直线 BE与 CD所成的角为 30°,求 AE 的长.解:如右图所示,以点 A 为原点建立空间直角坐标系,依题意得11A(0,0,0), D(2,0,0),C(0,1,0),B -2,2,0 ,P(0,0,2).(1)证明: P→C=(0,1,-2),A→D=(2,0,0),所以P→C·A→D=0,所以PC ⊥AD.(2)解:P →C =(0,1,-2),C →D =(2,-1,0). 设平面 PCD 的法向量为 n = (x , y , z ),故平面 PCD 的一个法向量为 n =(1,2,1).可取平面 PAC 的法向量为 m =(1,0,0).所以二面角 A —PC — D 的正弦值为 630.(3)解:设点 E 的坐标为 (0,0,h ),其中 h ∈[0,2] ,→1 1→ 由此得B →E = 2,-2,h ,又C →D =(2,-1,0),以 = cos30 =°2 ,解得 h = 10 h =- 1100舍去 ,即AE =10+20h2 2 10 1010.10 .22.(12分)(2014 大·纲全国卷 )已知抛物线 C :y 2=2px (p>0)的焦点5n ·PC =0, n ·C →D =0, y -2z =0, 即 2x -y =0.不妨令 z = 1,则 x =1, y = 2, 于是 cos m , n m ·n 1 6|m| ·|n|= 6=,从而 sinm ,n 30=6,故 cos 〈 B →E ,C →D 〉 =B →E ·C →D |B →E| ·|12+h 2× 5 10+ 20h 2为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且|QF|=4|PQ|.(1)求 C 的方程;(2)过 F 的直线 l 与 C 相交于 A,B 两点,若 AB 的垂直平分线 l′ 与 C相交于 M,N两点,且 A,M,B,N四点在同一圆上,求 l 的方程.8解:(1)设 Q(x0,4),代入 y2= 2px 得 x0=p.8 p p 8 所以|PQ|=p,|QF|=2+x0=2+p.p 8 5 8由题设得2p+8p=45×p8,解得 p=- 2(舍去)或 p=2.所以 C 的方程为 y2=4x.(2)依题意知 l 与坐标轴不垂直,故可设 l 的方程为 x = my+ 1(m≠0).代入 y2=4x 得 y2- 4my- 4= 0.设 A(x1,y1),B(x2,y2),则 y1+y2=4m,y1y2=-4.故 AB 的中点为 D(2m2+1,2m),|AB|= m2+1|y1- y2|=4(m2+ 1).1又 l′的斜率为- m,所以 l′的方程为 x=-m y+2m2+3.4将上式代入 y2= 4x,并整理得 y2+m y-4(2m2+3)=0.4设 M(x3,y3),N(x4,y4),则 y3+y4=-m,y3y4=- 4(2m2+3). 22故 MN 的中点为 E m2+2m2+3,-m,1 4 m 2+1 2m2+ 1|MN|= 1+m2|y3-y4|=m2 .由于 MN 垂直平分 AB,故 A,M,B,N 四点在同一圆上等价于 |AE|1 1 1=|BE|=2|MN|,从而4|AB|2+|DE|2=4|MN|2,22即 4(m2+1)2+ 2m+m2+m2+ 2 24 m2+1 2 2m2+ 1=m4,化简得 m2-1=0,解得 m=1 或 m=- 1.所求直线 l 的方程为 x-y-1=0 或 x+y-1=0.。

高中数学选修2--1期末考试题与答案

高中数学选修2--1期末考试题与答案

高二期末考试数学试题一.选择题〔每题5分,总分值60分〕1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,以下判断正确的选项是〔 〕。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是〔 〕 A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 那么2ABF ∆是正三角形,那么椭圆的离心率是〔 〕A22 B 12 C 33 D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,那么弦AB 的长是〔 〕A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是〔 〕A .B .C .D .7.椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,那么12PF F ∆的面积 最大值一定是〔 〕A 2a B ab C 22a a b - D 22b a b -8.向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直,那么实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,那么1A B与1D E所成角的余弦值为〔 〕A .510B .1010C .55D .10510.假设椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,那么m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,假设621=+y y ,那么21P P 的值为 〔 〕A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 〔 〕 A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题〔每题4分〕13.A 、B 、C 三点不共线,对平面ABC 外一点O ,给出以下表达式:OCOB y OA x OM 31++=其中x ,y 是实数,假设点M 与A 、B 、C 四点共面,那么x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,那么AB等于___15.假设命题P :“∀x >0,0222<--x ax 〞是真命题 ,那么实数a 的取值范围是___.16.90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,那么直线OC 与平面AOB 所成角的正弦值为___.三.解答题〔解容许写出必要的文字说明、证明过程和演算步骤。

数学选修2_1期末考试题和答案解析

数学选修2_1期末考试题和答案解析

高二数学选修2-1期末考试卷一、选择题(每小题5 分,共10小题,满分50分)1、对抛物线24y x =,下列描述正确的是A 、开口向上,焦点为(0,1)B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件3、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、c b a ++-2121B 、 c b a ++2121C 、 c b a +-2121 D 、 c b a +--2121 4、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、15、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为A 、平面B 、直线C 、圆D 、线段6、已知a =(1,2,3),b =(3,0,-1),c =⎪⎭⎫ ⎝⎛--53,1,51给出下列等式: ①∣c b a ++∣=∣c b a --∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为A 、椭圆B 、双曲线C 、抛物线D 、圆 8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的A 、充分必要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④=a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么b a ⋅= 。

数学选修2-1期末考试卷及答案

数学选修2-1期末考试卷及答案

高二数学选修2-1期末考试卷一、选择题(每小题5 分,共10小题,满分50分)1、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件3、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、++-2121B 、 ++2121C 、 +-2121 D 、 +--2121 4、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、15、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为A 、平面B 、直线C 、圆D 、线段6、已知=(1,2,3), =(3,0,-1),=⎪⎭⎫ ⎝⎛--53,1,51给出下列等式: ①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为 A 、椭圆 B 、双曲线 C 、抛物线 D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的A 、充分必要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④a b =a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么b a ⋅= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-1期末考试卷一、选择题(每小题5 分,共10小题,满分50分)1、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件3、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,c A A =1,则下列向量中与M B 1相等的向量是A 、c b a ++-2121B 、 c b a ++2121C 、 c b a +-2121 D 、 c b a +--2121 4、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、15、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为A 、平面B 、直线C 、圆D 、线段6、已知a =(1,2,3),b =(3,0,-1),c =⎪⎭⎫ ⎝⎛--53,1,51给出下列等式: ①∣c b a ++∣=∣c b a --∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为 A 、椭圆 B 、双曲线 C 、抛物线 D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的A 、充分必要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④a b =a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么b a ⋅= 。

12、以(1,1)-为中点的抛物线28y x =的弦所在直线方程为: .13、在△ABC 中,BC 边长为24,AC 、AB 边上的中线长之和等于39.若以BC 边中点为原点,BC 边所在直线为x 轴建立直角坐标系,则△ABC 的重心G 的轨迹方程为: .14、已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2的一点M 满足21M M =24MM ,则向量OM 的坐标为 。

15、下列命题①命题“事件A 与B 互斥”是“事件A 与B 对立”的必要不充分条件.② “am 2<bm 2”是“a <b ”的充分必要条件.③ “矩形的两条对角线相等”的否命题为假.④在ABC ∆中,“︒=∠60B ”是C B A ∠∠∠,,三个角成等差数列的充要条件.⑤ABC ∆中,若sin cos A B =,则ABC ∆为直角三角形.判断错误的有___________16、在直三棱柱111ABC A B C -中,11BC AC ⊥.有下列条件: ①AB AC BC ==;②AB AC ⊥;③AB AC =.其中能成为11BC AB ⊥的充要条件的是(填上该条件的序号)________.三、解答题(共五小题,满分74分)17、(本题满分14分)求ax2+2x+1=0(a≠0)至少有一负根的充要条件.18、(本题满分15分)已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.19、(本题满分15分)如图,在平行六面体ABCD-A1BC1D1中,O是B1D1的中点,求证:B1C∥面ODC1。

20、(本题满分15分)直线l :1y kx =+与双曲线C :2231x y -=相交于不同的A 、B 两点.(1)求AB 的长度; (2)是否存在实数k ,使得以线段AB 为直径的圆经过坐标第原点?若存在,求出k 的值;若不存在,写出理由.21、(本题满分15分)如图,直三棱柱ABC-A 1B 1C 1底面△ABC中,CA=CB=1,∠BCA=90°,棱AA 1=2M ,N 分别是A 1B 1,A 1A 的中点。

(1)求BN 的长度;(2)求cos (1BA ,1CB )的值;(3)求证:A 1B ⊥C 1M 。

参考答案一、选择题(每小题5 分,共10小题,满分50分)1、B2、C3、A4、D5、B6、D7、C8、B9、A 10、C二、填空题(每小题6分,共6小题,满分36分)11、- 65 12、430x y +-= 13、22116925x y +=(0y ≠) 14、⎪⎭⎫ ⎝⎛--29,41,411 15、②⑤16、①、③三、解答题(共六小题,满分74分)17、(本题满分14分)解:若方程有一正根和一负根,等价于1210x x a=<⇒ a <0 若方程有两负根,等价于4402010Δa aa ⎧⎪=-≥⎪⎪-<⇒⎨⎪⎪>⎪⎩0<a ≤1综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x+1=0至少有一负根的充分条件.所以ax 2+2x+1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤118、(本题满分15分)解:不等式|x -1|<m -1的解集为R ,须m -1<0即p 是真 命题,m<1f(x)=-(5-2m)x 是减函数,须5-2m>1即q 是真命题,m<2由于p 或q 为真命题,p 且q 为假命题故p 、q 中一个真,另一个为假命题 因此,1≤m<219、(本题满分15分) 证明:设c C C b D C a B C ===11111,,,则),(,b a O C a c C B +=-=2111c x b y x a y x b a y c a b x a c R y x OC y OD x C B y x c a b OD a b OD +-++-=⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡+-=-∈+=+-=-=)()()()(则)成立,,(,使得,。

若存在实数)(),(2121212121211111∵不同面,,,c b a ∴⎩⎨⎧==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=+111021121y x x y x y x 即)()( ∴,11OC OD C B += ∵内。

所确定的平面,不在为共面向量,且,,11111ODC OC OD C B OC OD C B ∴。

平面,即平面1111////ODC C B ODC C B20、(本题满分15分)联立方程组⎩⎨⎧=-+=13122y x ax y 消去y 得()022322=---ax x a ,因为有两个交点,所以{()038403222>-+=∆≠-a a a,解得2212212232,32,3,6ax x a a x x a a --=-=+≠<且。

(1) )36(36524)(1122224212212212≠<-++-=-++=-+=a a a a a x x x x ax x a AB 且。

(2)由题意得 0)1)(1(,0,121212121=+++=+-=ax ax x x y y x x k k ob oa 即即 整 理得1,12±==a a 符合条件,所以21、(本题满分15分)如图,解:以C 为原点,1CC CB CA ,,分别为x 轴,y 轴,z 轴建立空间直角坐标系。

(1) 依题意得出3101010=BN N B ),,,(),,,(;(2) 依题意得出),,(),,,(),,,(),,(21000001020111B C B A532102111111===⋅=-=∴CB BA CB BA ),,,(),,,( ∴cos ﹤11CB BA ,﹥30101=CB BA (3) 证明:依题意将,,,),,,(,,,),,,(⎪⎭⎫ ⎝⎛=--=⎪⎭⎫ ⎝⎛02121211221212001111M C B A M C MC B A M C B A M C B A 111111002121⊥∴⊥∴=++-=⋅∴,。

相关文档
最新文档