统计学原理第六章抽样调查

合集下载

统计学第六章抽样调查

统计学第六章抽样调查

Part
05
系统抽样技术
系统抽样原理及步骤
• 系统抽样原理:系统抽样是一种等距抽样方法,它首先确定一个抽样间隔,然后在总体中按照这个间隔进行抽 样。这种方法适用于总体单位排列有序且周期性变化的情况。
系统抽样原理及步骤
01
系统抽样步骤
02
确定总体范围和抽样框;
03
计算抽样间隔,确定样本量;
系统抽样原理及步骤
01
03 02
分层标准选择与确定方法
• 以调查对象的某些自然特征或社会特征作 为分层标准。
分层标准选择与确定方法
专家判断法
依靠专家经验判断选择合 适的分层标准。
数据分析法
通过对历史数据或相关数据的 分析,找出影响调查指标的主 要因素,作为分层标准。
试验法
通过试验确定不同分层标准 对调查结果的影响程度,选 择最优的分层标准。
缺点
由于样本可能被重复抽取,导致样本的代表性降 低。
缺点
操作相对复杂,需要记录已经抽取过的样本。
简单随机抽样优缺点分析
操作简单
简单随机抽样的操作过程相对简单,易于理解和实施。
等概率原则
保证了每个单位被抽中的机会相等,避免 具有代表性:当样本量足够大时,简单随机抽样可以获得具有代表性的样本。
整群抽样优缺点比较
• 适用于某些特定情况:对于某些总体分布不均匀或难以划分的情况,整群抽样 可能更为适用。
整群抽样优缺点比较
抽样误差较大
01
由于是以群为单位进行抽样,可能导致抽样误差较大。
样本代表性不足
02
如果群的划分不合理或随机性不足,可能导致样本代表性不足。
对群内个体差异考虑不足
03

统计学原理:第6章 抽样调查

统计学原理:第6章 抽样调查
n
x = t m = 0.26(克)
置信区间(150.04,150.56)
2) p = 70%
mp =
0.7 0.3 = 4.56% 100
p = 3 4.56% =13.68%
置信区间:(56.32%,83.68)
3)
t = = 0.15 = 1.72
m 0.0872
F(1.72) = 91.46%
第六章
第六章 抽样调查
抽样调查
教学内容与要求
1、理解抽样调查的意义、特点及有关的基本概念; 2、理解并掌握抽样误差、平均抽样误差、极限误
差的涵义与计算,理解影响抽样误差的因素。 3、掌握区间估计的基本要素与计算过程和方法; 4、理解常见抽样组织形式的应用特点与有关参数
的计算,必要样本单位数的确定; 5、掌握总体参数的假设检验
2、考虑顺序的重复抽样
BnN = Nn
3、不考虑顺序的不重复抽样
Cn N
=
AnN n!
=
N(N 1)(N n!
n
1)
4、不考虑顺序的重复抽样
Dn N
=
Cn Nn1
=
(N
n
1)(N
n
2)N
n!
四、抽样调查的理论依据
第六章 抽样调查
大数法则
如果被研究的总体是由相互独立的随机因素构成,而每个 因素对总体的影响都相对的小,则这些因素加以综合平均,因 素的个别影响将相互抵消,而显现出它们的共同倾向,使总体 具有稳定的性质。
6.2 抽样调查的基本概念和理第六论章 抽依样调据查
一、全及总体和抽样总体
全及总体 ▪ 所要认识对象的全体。是具有统一 性质的许多单位的集合体(N)

统计学原理-第六章 抽样调查(复旦大学第六版)

统计学原理-第六章  抽样调查(复旦大学第六版)
全体。其单位数用N来表示。
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28

2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。

2
x X f
2
f

2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x

N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学原理抽样调查

统计学原理抽样调查

根据平均数抽样分布理论,在给定置信度1-α时,大样本条件下的 广极泛限应误用差的可是以: 表1示-α为=9:0%, Z =1.65
抽样平均数的极限11误--αα差==9955.%45,%,xZZ==21.296x
抽样成数的极限误11差--αα==9999.%7 3,%p,ZZ
= 2.58p
=3 2
Z α/2是什么?
二、抽样调查组织方式
简单随机抽样: 对总体不做任何处理,直接随机抽取样本。具体包括抽签法, 随机数表法。适用性:总体单位之间差异较小,且总体单位数目较少的情况。 类型抽样:又称分层抽样,将总体单位按某种属性特征分类或分层,再从各类 或各层抽样。适用性:总体单位之间差异较大,且总体单位数目较多的情况。 等距抽样:又称机械抽样或系统抽样,将总体各单位按一定标志或顺序排列, 实施等距或等间隔(k=N/n)抽样。 整群抽样:又称集团抽样,将总体按某一标志划分成若干群,随机抽取若干 群,对抽中的群内的所有单位逐一调查。
抽样平均数的极限误差
x x
2
重复抽样的平均误差
x
2
n
S2 n
52 0.5克 100
本次抽样极限误差 x1.9 60.50.9克 8
意思是说,我们有95%的把握保证样本的平均重量与总体的平 均重量的误差不超过0.98克
练习
1、对某地区电视机拥有率进行抽样调查,抽取100户,调查显示 90户拥有电视机,试以95%的把握程度计算本次调查的极限误差
样本平均数的抽样平均误差
(x X)2
x 可能的样本个数
样本成数的抽样平均误差
(p P)2
p 可能的样本个数
当样本单位数既定时,从一个总体可抽取多个样本,抽样指标(如平均数、 抽样成数等),就有多个不同的数值,它们对总体指标(如总体平均数、总体成 数等)的离差也就有大有小,这就必需用一个指标来衡量抽样误差的一般水平。

统计学原理抽样调查

统计学原理抽样调查

统计学原理抽样调查统计学原理是一门研究数据收集、整理、分析和解释的学科。

在统计学中,抽样调查是一种常用的数据收集方法。

抽样调查通过抽取一部分个体,称为样本,来推断整个总体的特征。

本文将介绍抽样调查的基本原理、常见的抽样方法以及优缺点。

抽样调查的基本原理是从目标总体中抽取一部分个体进行观察,然后将观察结果推广到整个总体。

抽样调查的目的是基于样本的统计数据,得出对总体特征的推断。

在进行抽样调查时,需要考虑以下几个因素:总体的定义、总体的大小、样本的大小、样本的抽取方法以及调查内容。

总体的定义是指研究的对象。

在抽样调查中,总体可以是人群、组织、产品、地域等。

总体的大小是指总体中所包含的个体数量。

样本的大小是指从总体中选取的个体数量。

合理选择样本大小可以在保证统计推断准确性的基础上节约成本和时间。

样本的抽取方法有多种,常见的抽样方法包括随机抽样、分层抽样、系统抽样和整群抽样等。

随机抽样是指以随机的方式从总体中选取个体。

随机抽样可以保证样本的代表性,即样本能够很好地反映总体的特征。

分层抽样是将总体按照一定的特征分成若干层,然后从每一层中选取样本。

通过分层抽样,可以保证各层样本在总体中的比例与总体的比例基本一致。

系统抽样是指从总体中的其中一位置开始,按照一定的间隔选取样本。

整群抽样是将总体分成若干群,然后从每一群中全面抽取样本。

抽样调查的优点在于相对于全面调查,它能够节约时间和成本。

通过从总体中选取一部分个体进行观察,可以得到与全面调查相似的结果。

此外,抽样调查还可以减少调查工作的复杂性和难度。

抽样调查的缺点是存在一定的抽样误差。

抽样误差是指由于样本的随机性导致的样本结果与总体真实结果之间的差异。

为了降低抽样误差,需要采用合理的抽样方法和样本大小,并进行合适的数据分析。

在抽样调查中,可以通过计算抽样误差的置信区间来评估统计结果的可靠性。

置信区间是指对总体特征的一个区间估计,该区间以样本统计量为中心,上下限由样本误差限定。

抽样调查

抽样调查

2020/7/5
浙江财经学院
21
《统计学》课件
二、抽样平均误差的计算 1、理论公式
变量总体x
(xi X )2 (i 1,2,, k) k
属性总体 p
( pi P)2 k
实际上,全及指标是未知的,而且实践中只会抽 样一个样本。所以这个公式实践中不采用。
2020/7/5
浙江财经学院
22
《统计学》课件
2、抽样指标:根据抽样总体中的各单位标志值或标志特征
计算的综合指标。又称统计量,是一个随机
变量总体: 属性总体:
变量。
x x
n
S (x x)2
n 1 p n1
n
S p(1 p) pq
S称为样本标准差
q n0 n
pq 1
n1 具有某种属性的单位数 , n0 不具有某种属性的单位数
2020/7/5
客观地抽取样本,并推断总体。
2020/7/5
浙江财经学院
7
《统计学》课件
2、特 点
1)只抽取部分单位; 2)用部分推断总体; 3)抽样遵循随机原则; 4)会产生抽样误差,但误差可以计算和控制。
3、统计误差
统计数字与各种实际数量之间的差别。
登记误差: 调查误差或工作误差,指在登记、汇总计 算过程中产生的误差。(可以避免的)
而变动。这样,可以在统计意义上,推断总体指标在 一定范围内。样本指标与总体指标的离差绝对值就是
抽样极限误差 。由于离差可正可负,整个变动的
范围区间称为置信区间。
变量总体 x x X
属性总体 p p P
2020/7/5
浙江财经学院
30
《统计学》课件
对上式去掉绝对值符号,并且移项可得到:

《统计学》第六章抽样调查

《统计学》第六章抽样调查

《统计学》第六章抽样调查第六章抽样调查§1抽样调查的意义§2抽样调查的基本概念和理论依据§3抽样平均误差§4抽样推断§5必要抽样单位数的确定§1、抽样调查的意义一、抽样调查的概念、特点(一)、概念:抽样调查是按照随机原则从全部研究对象中抽取一部分单位进行观察,并依据所获得的数据对全部研究对象的数量特征做出具有一定可靠性的估计判断,从而达到对全部研究对象的认识的一种统计方法。

抽样推断的抽样误差可以事先计算并且加以控制。

二、抽样调查的作用:对某些不可能进行全面调查而又要了解其全面情况的社会经济现象,必须应用抽样调查。

对某些社会经济现象虽然可以进行全面调查,但抽样调查可以节约时间、费用,提高调查的时效性。

抽样调查和全面调查同时进行,可以发挥相互补充和检查质量的作用。

抽样调查可以用于工业生产过程的质量控制。

利用抽样调查原理,还可以对某种总体的假设进行检验,来判断这种假设的真伪,以决定行动的取舍。

§2、抽样调查的基本概念及理论依据一、总体与样本(一)、总体与总体指标总体:是根据研究目的确定的所要研究的同类事物的全体。

总体单位数称为总体容量,一般用N表示。

总体指标:用来反映总体数量特征的指标,也称为参数。

一般来说总体指标有:总体平均数、总体成数、总体平均数标准差、总体平均数方差、总体成数标准差、总体成数方差。

参数参数:指反映总体数量特征的综合指标,它是确定的、唯一的。

某F某总体平均数F研究总体中(某某)2F的数量标志某总体标准差F 总体成数研究总体中的品质标志成数平均数成数标准差N1PN某PPPP(1P)未分组情况下的全及指标总体平均数总体成数具备某种特征的单位数PN总体方差2某i1Ni某2N总体标准差某i1Ni某2N总体指标:某FF某或某FF某i某F2FN1某PPNPP1P,也称统计量。

一般来说样本指标有:样本平均数、样本成数、样本平均数标准差、样本平均数方差、样本成数标准差、样本成数方差。

统计学第六章抽样调查

统计学第六章抽样调查

n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%

经济应用统计学-第六章抽样推断

经济应用统计学-第六章抽样推断

非参数检验优缺点总结
• 易于理解和实现:非参数检验方法通常基于直观和易于理解的思想,计算和实现相对简单。
非参数检验优缺点总结
检验效能较低
与参数检验方法相比,非参数检 验方法的检验效能通常较低,即 当原假设为真时,非参数检验方 法更容易犯第二类错误(接受原 假设)。
对数据信息的利用不 充分
非参数检验方法通常只利用数据 的部分信息(如排序信息),而 忽略了数据的其他有用信息(如 数值大小),因此可能无法充分 利用数据信息。
两配对样本非参数检验
包括Wilcoxon 符号秩次检验、McNemar 检验 等方法,用于比较同一总体内两个配对样本的差 异是否显著。
两独立样本非参数检验
包括Mann-Whitney U 检验、Kruskal-Wallis H 检验等方法,用于比较两个独立样本所来自的 总体的分布位置或分布形状是否存在差异。
考虑样本量大小
在选择置信水平时,应充分考虑样本量的大小。当样本量较小时,应选择较低的置信水平以避免过大的估计误差;当 样本量较大时,可以选择较高的置信水平以获得更精确的估计结果。
参考相关文献或行业标准
在选择置信水平时,可以参考相关领域的文献或行业标准,了解通常采用的置信水平及其依据。这有助 于确保研究结果的可比性和可靠性。
04
假设检验原理与步骤
假设检验基本概念阐述
原假设与备择假设
原假设通常是研究者想要推翻的 假设,而备择假设则是研究者希 望证实的假设。
检验统计量与拒绝域
检验统计量是根据样本数据计算出 的用于检验原假设的统计量,而拒 绝域则是根据显著性水平和检验统 计量的分布确定的,当检验统计量 落入拒绝域时,我们拒绝原假设。
单侧检验
当研究者对备择假设的方向有明确预期时,即备择假设只可能大于或小于原假设时,应选择单侧检验 。例如,在比较两种药物疗效的研究中,如果研究者预期新药疗效优于旧药,则应选择单侧检验。

统计学课件第六章抽样调查PPT课件

统计学课件第六章抽样调查PPT课件

特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件

统计学原理 李洁明 第六章 抽样调查

统计学原理 李洁明 第六章  抽样调查
n N
不考虑顺序的不重复抽样
N(N − 1)⋯(N − n + 1) N! C = = n ! n (N − n)! !
n N
考虑顺序的重复抽样
n BN = N n
不考虑顺序的重复抽样
n n DN = CN +n−1
抽样调查的理论依据
大数定律:证明了抽样平均数(成数) 大数定律:证明了抽样平均数(成数)趋近于总体平均 成数)的趋势。 数(成数)的趋势。 1)独立同分布大数定律: 独立同分布大数定律: 2)贝努力大数定律: 贝努力大数定律: 中心极限定律: 中心极限定律:证明了多个随机变量和的分布趋近于正 态分布。抽样平均数就是一种随机变量。 态分布。抽样平均数就是一种随机变量。 1)独立同分布中心极限定律: 独立同分布中心极限定律: 拉普拉斯中心极限定律: 2)德莫佛—拉普拉斯中心极限定律: 德莫佛 拉普拉斯中心极限定律
特 点
只抽取部分单位; 只抽取部分单位; 用部分推断总体; 用部分推断总体; 抽样遵循随机原则; 抽样遵循随机原则; 会产生抽样误差,但误差可以计算和控制。 会产生抽样误差,但误差可以计算和控制。
统计误差
统计数字与实际数量之间的差别。 统计数字与实际数量之间的差别。 登记误差: 登记误差: 调查误差或工作误差,指在登记、 调查误差或工作误差,指在登记、汇总计算过程中 产生的误差。(可以避免的) 。(可以避免的 产生的误差。(可以避免的) 代表性误差: 代表性误差: 用部分去推断总体产生的误差。(一般不可避免) 。(一般不可避免 用部分去推断总体产生的误差。(一般不可避免)
x1
1,2,4
x2
1,2,5
x3
3,4,5
x4
1,3,5
x5

统计学原理 第6章 抽样调查

统计学原理 第6章 抽样调查

四、抽样方法和样本可能数目
考虑顺序的不重复抽样
n N
考虑顺序的重复抽样
N! A N ( N 1)(N 2) ( N n 1) ( N n)!
n N n
B N
n N
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
N ( N 1) ( N n 1) N! C n! n!( N n)!
2 5
抽取样本 10 10 10 10 20 20 20 30 30 20 30 40 50 30 40 50 40 50
样本平均数
离差
x
15 20 25 30 25 30 35 35 40
x X
-5 0 -5 0 5 5
x X
225 100 25 0 25 0 25 25 100
2
-15 -10
抽样误差就是指样本指标和总体指标之间数 量上的差别,即 x X 、 p P 。
抽样误差的影响因素:
1. 全及总体标志变异程度。——正比关系
2. 抽样单位数目的多少。——反比关系
3. 不同的抽样方式。
4. 不同的抽样组织形式。
抽样误差的作用:
1. 在于说明样本指标的代表性大小。
误差大,则样本指标代表性低; 误差小,则样本指标代表性高; 误差等于0,则样本指标和总体指标一样大。
通常有以下四种组织形式:
一、简单随机抽样(纯随机抽样)
即从总体单位中不加任何分组、排队, 完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如: 1.直接抽选法; 2.抽签法; 3.随机数码表法;
二、类型抽样(分类抽样)
先对总体各单位按一定标志加以分类 (层),然后再从各类(层)中按随机原则抽 取样本,组成一个总的样本。

第六章 抽样

第六章    抽样
有不同级别的抽样单位。
例:以某高校6000名在校大学生为总体:
抽样1:按一定方式抽取300名大学生作样本;
抽样2:按一定方式抽取10个班作样本;
分析:两种抽样方式下的抽样单位和抽样框
(四)抽样框sample frame
一次直接抽样时总体中所有元素的名单。 抽样框是抽样操作依据的名单,是和调查的总体相 对应的
究总体的操作化界定,规定了调查对象选择的具体指标。
• 目标总体和调查总体吻合度越高,调查的代表性就越好;否则会
产生覆盖误差。
(二)制定抽样框
1.抽样框是对研究总体的进一步操作。
2.抽样框的意义
(1)抽样框与研究/调查总体之间可能不匹配,可能包含研 究总体之外的某些人,或可能遗漏其中的某些人. (2) 根据样本所得到的结果,只能代表组成抽样框的各个 要素的集合 (3) 样本的大小(规模)与其能否正确代表总体比较起 来,是一项不太重要的因素。
(五)参数值——又称总体值,是关于总体中某一变量的 的综合描述,或者说是总体中所有元素的某种特征的综 合数量表现。 –参数值只有对总体中每一个元素都进行调查或测量才 能得到。 (六)统计值——又称样本值,是关于样本中某一变量的 综合描述,或者说是样本中所有元素的某种特征的综合 数量表现。 –统计值是从样本中计算出来的,它是相应的参数值的 估计量。
一、简单随机抽样
(一)定义
又称纯随机抽样,是概率抽样的最基 本形式。 它是按等概率原则,直接从含有N个 元素的总体中随机抽取n个元素组成样本 (N>n)。
(二)选取样本的两种办法
1.抽签方式 (1)将总体名单从1到N编号,形成抽样框; (2)准备N张卡片,每张卡片上的号码与总体 名单编号对应,将卡片放在盒子里,混合均匀; (3)根据抽样设计的样本规模,从盒内n次取 出n张卡片; (4)根据取出的卡片上的号码,找到总体名单 上对应的元素,构成样本。

统计学原理第六章 抽样推断及参数估计

统计学原理第六章  抽样推断及参数估计

1.79%
(四)其他抽样组织方式抽样平均误差的计算 方法
1.类型比例抽样平均误差的计算。 (1)平均数的抽样平均误差
重复抽样条件下:
x
不重复抽样条件下:

n
2
2
[公式6—14]
x n
n 1 N
[公式6—15]
(2)成数的抽样平均误差
重复抽样条件下:
p
估计量评判标准:
ˆ 1.一致性。设 为未知参数θ 的估计量,
x
i
x
j 1
Mi
ij
Mi
r
(i 1,2,3, , r )
[公式6—4]
x
x M
i 1 r
i
i
M
i 1
(i 1,2,3, , r )
[公式6—5]
i
整群抽样的优点:易于组织,节省调查费用 缺点:调查的总体单位过于集中且在少数样 本群中。因此,在条件相同的情况下,整 群抽样的代表性低,通常需要扩大样本群 的数目来弥补这个缺点。
X ,P,然后,再
结合总体单位数N去推算总体的有关标志总
量。总体指标的推断有点估计和区估计两
种方法。
一、点估计
点估计也称定值估计,它是以抽样得到的
样本指标作为总体指标的估计量,并以样本指
标的实际值 x 、p 直接作为总体未知参 数 、P的估计值的一种推断方法。
X
比如:某电子元件厂,某天共生产电子元件 20000件,耐用时间和合格率没进行全面 检测,而是随机抽查5%检测,经计算, 样本的平均耐用时间 x 4120 小时, 合格率p=98.56%。因此,推算这天生 产的全部电子元件平均耐用时间 x 4120 小时 ,合格率 p=98.56%。

统计学原理 第六章 随堂练习题 (1)

统计学原理 第六章 随堂练习题 (1)


2
答案:
16.(2) 17.(1)
18.若总体服从正态分布,且总体方差已知,则通常选用统 计量( )对总体平均数进行检验。
(1)
Z x X0 S n
(2)
Z
x X0

n
x X0 x X0 t t (3) (4) S n n 19.矿砂的5个样品中,测得其含铜量均值为
(
)
( )
10.假设检验和区间估计之间没有必然的联系。
答案: 6. × 7. √ 8. × 9. √ 10. ×
答案:
5.(4)
6.(3)
7.纯随机抽样(重复)的平均误差取决于( )。 (1)样本单位数 (2)总体方差 (3)样本单位数和样本单位数占总体的比重 (4)样本单位数和总体方差
N n 8.抽样平均误差公式中, N 1 这个因子总是( (1)大于1 (2)小于1 (3)等于1 (4)唯一确定值
变异程度的大小和抽样误差无关。 ( ) 7.正态分布总体有两个参数,一个是均值(期望值) X,一个 是方差 2 ,这两个参数确定以后正态分布也就确定了。 ( ) 8.原假设的接受与否,与选择的检验统计量有关,与 (显著
水平)无关。
( )
9.单侧检验中,由于所提出的原假设不同,可分为左侧检验
和右侧检验。
( x x)
n
2
,这是( )。
答案:
3.(2)
4.(1)
5.抽样极限误差是指抽样指标和总体指标之间( (1)抽样误差的平均数 (2)抽样误差的标准差 (3)抽样误差的可靠程度 (4)抽样误差的最大可能范围
)。
6.抽样误差的定义是( )。 (1)抽样指标和总体指标之间抽样误差的可能范围 (2)抽样指标和总体指标之间抽样误差的可能程度 (3)样本指标与所要估计的总体指标之间数量上的差别 (4)抽样平均数的标准差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、抽样平均误差的意义
1. 在于说明样本指标的代表性大小。 误差大,则样本指标代表性低; 误差小,则样本指标代表性高; 误差等于0,则样本指标和总体指标一样大。
2. 说明样本指标和总体指标相差的一般范围。 3. 确定抽样单位数多少的计算依据。
四、抽样平均误差的计算
抽样平均误差实际上是样本指标的标准差。 通常用μ表示。
x p
抽样误差范围的实际意义是要求被估计的 全及指标 X 或P落在抽样指标一定范围内,即
落在 x x 或 p p 的范围内。
3.可信程度 抽样极限误差△=tμ,(t为概率度)
可见,抽样极限误差,即扩大或缩小了以后的 抽样误差范围。

n N n
5
(2)不考虑顺序的重复抽样:D C
n N
n N n 1
2. 如果是不重复抽样:
⑴考虑顺序的不重复抽样:
N! A N ( N 1)( N 2)( N n 1) ( N n)!
n N

5 A50 50 49 48 47 46 254 251 200 ( 种)
935 890 45(头) 差错率 45 890 可用5.06%的系数来修正6000农户养猪头数,即: 9000 (1 5.06%) 9455(头) 5.06%
例2
某市房地局,年报工资总额3218.1万元。 现抽查14个单位: 年报:415.03万元 多报:0.44万元 少报:1.47万元 抵冲后 1.47-0.44=1.03(万元)
三、抽样方法和样本可能数目 抽样方法
根据取样的方式不同,抽样方式分为:重复抽样和不重复抽样。 根据对样本的要求不同,抽样方式分为:考虑顺序抽样和不考 虑顺序抽样。
样本可能数目(p256-257,了解)
1. 如果是重复抽样:
(1)考虑顺序的重复抽样:B N (样本种数) 例 50 312,500,000种
抽取样本
10 10 10 10 10 20 20 20 20 20 30 30 30 10 20 30 40 50 10 20 30 40 50 10 20 30
样本平均数 x 误差 x X
10 15 20 25 30 15 20 25 30 35 20 25 30 -20 -15 -10 -5 0 -15 -10 -5 0 5 -10 -5 0
⑵不考虑顺序的不重复抽样:
N! C n! ( N n)!
n N

5 A 254 251 200 5 50 C 50 2 118 760 ( 种) 5! 5 4 3 2 1
四、抽样调查的理论依据(p257-259,了解) 1.大数定律
(1)独立同分布大数定律 (2)贝努大数定律
2.中心极限定理(p256-257,了解)
(1)独立同分布中心极限定理 (2)德莫佛-拉普拉斯中心极限定理
第三节 抽样平均误差
一、抽样误差的概念
在统计调查中,调查资料与实际情况不一致, 两者的偏离称为统计误差。
登记误差 系统性误差 统计误差 代表性误差 实际误差 随机误差 抽样平均误差
x X
400 225 100 25 0 225 100 25 0 25 100 25 0
2
接左:
抽取样本
30 30 40 40 40 40 40 50 50 50 50 40 50 10 20 30 40 50 10 20 30 40
样本平均数 x
35 40 25 30 35 40 45 30 35 40 45
三、抽样调查的适用范围
抽样调查方法是市场经济国家在调查方法
上的必然选择,和普查相比,它具有准确度高、 成本低、速度快、应用面广等优点。
一般适用于以下范围:
(一)实际工作不可能进行全面调查观察,而又需要 了解其全面资料的事物; (二)虽可进行全面调查观察,但比较困难或并不必 要; (三)和全面调查相比较,抽样调查能节省人力、费 用和时间,而且比较灵活 (四)在有些情况下,抽样调查的结果比全面调查要 准确。 (五)对普查或全面调查统计资料的质量进行检查和 修正; (六)抽样调查方法可以用于工业生产过程中的质量 控制。 (七)利用抽样推断的方法,可以对于某种总体的假 设进行检验,判断这种假设的真伪,以决定取舍。
四、抽样平均误差的计算
(二)抽样成数的抽样平均误差 重复抽样条件下抽样成数的抽样平均误差
抽样平均误差 p
抽样平均误差 p
p (1 p) n
不重复抽样条件下抽样成数的抽样平均误差
p (1 p ) n 1 n N
四、抽样平均误差的计算
计算抽样平均误差时 和p都是全及指标, 一般未知,通常采取四种方法解决:
第二节 抽样调查的基本概念及理论依据
一、全及总体和抽样总体 (一) 全及总体,简称总体
全及总体:所要认识对象的全体。 总体单位数用N表示。 全 及总体按其单位标志性质不同分为:变 量总体和属性总体。 变量总体可以用数量标示加以计量。 属性总体用文字描写属性特征。如: 完好、非完好。
第二节 抽样调查的基本概念及理论依据
1.用过去调查所得的资料。 2.用样本方差的资料代替总体方差。 3.用小规模调查资料。 4.用估计的材料。 (三)抽样平均误差计算实例(p270-271)

五户家庭三月份购买某商品的支出: 10元, 20元, 30元, 40元, 50元 X 30元 现从五户中抽取二户作调查, 如果为重复抽样(考虑顺序) 52=25(种) 排列组合如下:
上例五户中抽取二户调查,如采取不考虑顺序的不重复抽 5 4 样方法,则: C 10(种10 10 20 20 20 30 30 40 合 20 30 40 50 30 40 50 40 50 50 计
样本平均数
离差
x X
-15 -10 -5 0 -5 0 5 5 10 15 -
到平均重量x 1002克,合格率p 98%,我们直接推 断全部产品的平均重量X 1002克,合格率P 98%。
1.直接换算法
抽样平均数(成数)×总体单位数=总体标志总量
1.如果采用点估计方法:上例1中:400×10000=400(万千克) 如果用区间估计方法:上例1中该农场小麦总产量的范围 为: t=2: (397.62 ~ 402.38)×10000=397.62 ~ 402.38(万千克) t=3: (396.43 ~ 403.57)×10000=396.43 ~ 403.57(万千克) 2.上例2中,全部一级品数量的范围为: (92.82% ~ 97.18%)×8000=7425.6 ~ 7774.4(件)
(一)抽样平均数的抽样平均误差
2 ( X x)
抽样平均误差 x
K
K全部可能的样本个数
1. 重复抽样条件下抽样平均数的抽样平均误差
2 抽样平均误差 x
n
n
2. 不重复抽样条件下抽样平均数的抽样平均误差
2 N n 2 n 抽样平均误差 x 1 n N 1 n N 2 N n 2 n n 当 很小时, 1 接近于 1 , 很接近。 与 N n N 1 n N
差错率
1.03
415.03 根据这一系数,再来修正工资总额,则: 年报工资总额 3218.1 (1 0.248%) 3226.09(万元)
0.248%
(二)区间估计
1.区间估计的意义
根据样本指标和抽样误差去推断全 及指标的可能范围,它能说清楚估计的 准确程度和把握程度。
以上资料编成次数分配表如下:
x
10 15
样本数f (即次数分配)
xX
-20 -15
1 2
20
25 30 35
3
4 5 4
-10
-5 0 5
40
45 50 合计
3
2 1 25
(x X) f f
2
10
15 20 -


∴抽样误差是所有可能出现的样本指标的标 准差。它是由于抽样的随机性而产生的样本 指标与总体指标之间的平均离差。
2
(二)抽样指标
抽样指标:抽样总体的那些指标。
x1 x2 ... x N 抽样平均数 x N n1 抽样成数p n 2 ( x x ) 样本方差s N 2 ( x x) 样本标准差s N
2
(三)统计抽样过程(图6-1,p255)
所谓推断,就是用抽样指标来推断全及指标。 一是用抽样平均数 x推断全及平均数 X,从而推断 总体标志总量 二是用抽样成数p推断全及成数P,从而推断总体 单位总量
x
15 20 25 30 25 30 35 35 40 45 -
x X
225 100 25 0 25 0 25 25 100 225 750
2
2 750 ( x-X ) 抽样平均误差( x ) 8.66(元) n 10
第四节 全及指标的推断
一、抽样推断要求
抽样推断就是按照已经抽定的样本指标来估 计总体指标,或其所在的区间范围。
抽样误差即指随机误差,这种误差是抽 样调查固有的误差,是无法避免的。
实际误差就是指样本指标和总体指标之间数 量上的差别,即 x X 、 p P 。无法知道。 抽样平均误差是指所用可能出现的样本指标 的标准差。可以计算。
二、影响抽样平均误差的因素
(一) 全及总体标志变异程度。——正比关系
(二)抽样单位数目的多少。——反比关系 (三)抽样的组织方式。
2. 修正分数法
就是用抽样所得的调查结果同有关资料 对比的系数来修正全面统计资料时采用的一 种方法。
例1
某村6000农户,2005年年末统计养猪头数, 从下往上报的是9000头,现抽10%(600户)的 农户再复查一下,发现有漏报,也有重报。按 600户,原来数字是890头,实际复查为935头, 故总的来说,是少报。
相关文档
最新文档